量子计算在动态递归与自组织神经网络中的机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子计算研究的重要意义已经为许多科学家所共识,特别是将量子计算与神经计算相结合而得到的量子神经网络,已成为人工智能计算发展的一个主流方向。经历十多年的迅速发展,量子神经网络中知识表示的独特结构与信息处理的高效性能,使其在许多理论领域中取得了显著效果,成为信息处理的一个有力工具,为解决一些传统神经网络极难求解的问题提供了全新的思路。
     为使量子神经网络的理论更加完善,并从理论走向实践,国内外许多专家学者,尤其是一大批年轻有为的国内外博士参与到这项研究中,为量子神经网络的发展作出了杰出贡献。本文在研究量子力学中一些原理和概念的基础上,将量子技术引入到神经网络中,通过对量子神经网络拓扑结构及其学习算法的设计,提出了几种量子神经网络模型。具体来讲,本文的工作可总结如下:
     ①提出量子门Elman神经网络模型。新模型由量子比特神经元和经典神经元构成。量子物理规律被应用于量子比特神经元与经典神经元之间的相互作用之中。增加的量子映射层,用于解决由于信息量子化所带来的上下文单元输出与隐藏层输入之间模式不一致的问题。新提出的标准量子学习算法,包含相关量子门参数的更新。新提出的梯度扩展量子学习算法,采用时间调度策略调整学习率参数,利用梯度扩展使得上下文单元的权值与隐藏层的权值同步更新。新提出的带自适应死区向量估计的量子学习算法,采用自适应死区向量控制学习参数,并证明该算法在李亚普诺夫意义下的收敛性。
     ②提出带时间延迟的量子Hopfield神经网络模型。从量子态演化规律出发,结合量子叠加原理和测量原理,提出带时间延迟的量子Hopfield神经网络模型,对Hopfield神经网络中的联想记忆机制,从概率角度给出新的诠释。新模型中,神经元状态及连接权值矩阵均采用量子态表示。当前时刻的量子态由前面若干个时刻的量子态叠加得到。在不同时刻的,与神经元相连接的量测矩阵,包含量子态在相应时刻被观测到的概率信息。在定义量子联想记忆中的量子记忆原型之后,通过计算量测矩阵中相关权值元素出现的概率值,得到量子关键输入模式在特定时刻,以特定量子记忆原型出现的概率。
     ③提出具有弹性邻域半径的量子SOM神经网络模型。新模型将实数对象量子化为量子初始态,在量子门的作用下,初始态历经量子中间态被激化为激发态。与量子化权值相连接的量子激发态在量子学习规则的驱动下,被竞争层神经元感知,实现有序的拓扑映射。新提出的量子学习规则采用量子化权值与量子激发态之间的距离,以及量子化权值与量子激发态之间的相似度共同定义邻域核函数中的弹性半径,从而避免某些竞争层神经元因采用固定半径缩放而形成死区。
     ④实现上述三种量子神经网络在特定背景下的具体应用。针对特定工程对象,分析相关工程现状及需求,实现工程对象与三种量子神经网络的有机结合。在短时载荷预测中,针对众多预测方法采用前馈类网络实现预测的现状,采用量子门Elman神经网进行载荷预测。在验证量子门Elman神经网络性能的同时,也提高电力载荷预测的准确性。在模拟电路故障诊断中,针对采小波分析和主元分析进行故障特征提取的前馈神经网络方法,通过小波包分析和新定义的能量函数提取故障特征,在检验新提出的基于Hopfield编码的故障诊断方法后,针对多故障耦合问题,采用量子Hopfield神经网络从概率角度对故障发生的机制进行新的诠释。在污水处理的出水水质预报中,针对处理过程的超强非线性和超大滞后性,采用量子SOM神经网络进行长时预报。在验证量子SOM神经网络性能的同时,提高预报的准确性。
The significance of quantum computing research has been recognized by manyscientists. In particular, the quantum neural network (QNN), being generated by thecombination of quantum computing and neural computing, has become a mainstreamdirection in the artificial intelligence area. After10-years rapid development, the QNNis considered as a powerful tool for information processing in many theoretical fields,because of its unique structure of knowledge representation and efficient performanceof information processing. It provides a new idea that some problems, being extremelydifficult to solve by the traditional neural network, can be addressed using the QNN.
     To improve the theory of the QNN and practice it, considerable effort has beenmade by many researchers, especially, by a large number of young doctors whoparticipate in this study. This paper provides some novel QNN models by introducingthe quantum principles and concepts into the ANN. Specifically, the work of this papercan be summarized as follows:
     ①A quantum gates Elman neural network model is proposed. The new model iscomposed of qubit neurons and classic neurons. The law of quantum physics is appliedto the interaction between the qubit neurons and the classic neurons. For the newstructure, the quantum mapping layer is used to solve the mode inconsistent between thecontext-lyaer-output and hidden-layer-input. In the standard algorithm, it contains theupdating law of the parameters in the quantum gates. In the the gradient expansionalgorithm, the learning rate is adjusted by the time scheduling strategy. The context-layer-weights and the hidden-layer-weights are synchronized updated by gradientexpansion. In the adaptive dead vector algorithm, the learning parameters arecontrollable. The convergence of the algorithm in the sense of Lyapunov function isproved.
     ②A quantum Hopfield neural network model with time delay is proposed. It is anew idea that this quantum Hopfield neural network can be explained in term ofprobability. The states of neurons and connection weights are described as quantumstates. The evolution of quantum states, described by the quantum superpositionprinciple and the measurement principle, is introduced into this model. Themeasurement matrix connected with the neurons includes the probability information ofthe quantum states. Through the calculation of the measurement matrix elements appearing at different times, we can obtain the probability of the quantum key inputwhich is evolved into the quantum memory prototype.
     ③A quantum SOM neural network model with elastic radius is proposed. Thenew model objects the real data into the quantum initial states, then into the quantumexcited states. The weights connected with the quantum excited states are also quantized.The proposed quantum learning law make quantum excited states have an orderedtopology mapping. In addition, the elastic radius of neighborhood kernel function isdefined by the similarity degree and the distance between quantum excited states andquantized weights. It avoids dead zone to be formed so that neurons in competitive layercan not be trained.
     ④The application of the proposed QNN models is described here. The quantumgate Elman neural network (QEN) is used in the short-term load forecasting. Theaccuracy of forecasting results clearly shows that the QEN has a rapid convergencespeed and a good generalization performance. The Hopfield neural network (HP) andthe quantum Hopfield neural network (QHP) are employed in the analog fault diagnosis.The fault features are extracted by the wavelet packet analysis. The energy of the faultresponses are calculated by a new energy function. The multiple fault diagnostic resultsimply that the fault diagnosis method based on QHP is much more useful than themethod based on HP. To verify the performance of the quantum SOM neural network(QSOM), the experiments about the sewage treatment effluent quality prediction arecarried out. The corresponding results offer a high forecasting accuracy and verifyeffectiveness of of the theory.
引文
[1] Hameroff S R. Quantum coherence in microtubules:an intra-neuronal substrate for emergentconsciousness[J]. Consciousness Studies,1994,1:91-118.
    [2] Perus M. Neuro-quantum parallelism in brain-mind and computer[J]. Informatica,1996,20:173-183.
    [3] Maedaa M, Suenagab M, Miyajimac H. Qubit neuron according to quantum circuit for XORproblem[J]. Applied Mathematics and Computation,2007,185:1015-1025.
    [4]龙桂鲁,裴寿镛,曾谨言量子力学新进展[M].清华大学出版社,北京,2007.
    [5]李承祖.量子信息和量子计算[M].国防科技大学出版社,长沙,2000.
    [6] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]. In:Proceeding of the35thAnnual Symp.on Foundations of Computer Science. New York, USA:IEEE Computer Society Press.1994:124-134.
    [7] Grover L K. A fast quantum mechanical algorithm for database search[C]. In: Proceeding ofthe28thAnnual ACM Symp. on Theory of Computing. New York, USA: ACM Press.1996:212-219.
    [8] Ventura D, Martinez T. Quantum Associative Memory[J]. IEEE Transactions on NeuralNetworks,1998:1-39.
    [9] Kouda N, Matsui N, Nishimura H, Peper F. An examination of qubit neural network incontrolling an inverted pendulum[J]. Neural Processing Letters,2005,22:277-290.
    [10] Matsui N, Takai M, Nishimura H.A network model based on qubit-like neuron correspondingto quantum circuit[J]. IEICETrans,1998,12:1687-1692.
    [11] Gopathy P, Nicolaos B K. Quantum neural networks (QNN's): Inherently fuzzy feedforwardneural networks[J]. IEEE Transactions on neural networks,1997,8(3):679-693.
    [12] Li W. Entangled neural networks, http://www.cic.unb.br/weigang/qc/enn2000.pdf.2000
    [13]解光军,庄镇泉.量子神经网络[J].计算机科学,2001,28(7):1-6.
    [14] Li P, Chai Y, Xiong Q. Quantum neural modeling: quantum gate structure in Elmannetworks[C]. In: Proceeding of Fourth International Workshop on Advanced ComputationalIntelligence (IWCI), Hubei, Wuhan, China,2011,315-320.
    [15] Li P, Chai Y, Xiong Q. Short-term load forecasting using hybrid quantized Elman neuralmodel[C]. In: Proceeding of the31st Chinese Control Conference (CCC’2012), Hefei, Anhui,China,2012,3250-3254.
    [16] Loo C K, Perus M, Bischof H.Associative memory based image and object recognition byquantum holography[J]. Open Sys.&Information Dyn.11:277-289,2004.
    [17] Loo C K, Perus M, Bischof H. Simulated quantum optical object recognition from highresolution images[J]. Optics and Spectroscopy,2005,99(2):218-223.
    [18] Kak S C. On quantum neural computing [J]. Information Sciences,1995,83:143-160.
    [19] Toth G. Quantum cellular neural networks[J]. Super lattices and Microstructures,1996,20(4):473-478.
    [20] Lagaris I E, Likas A, Fotiads D I. Artificial neural network methods in quantum mechanics[J].Computer Physics Communications,1997,114(1-3):1-14.
    [21] Li W G. A study of parallel neural networks[C]. In: Proceedings of the International JointConference on Neural Networks.1999,2:1113-1116.
    [22] Venturad D, Tony M. Quantum associative memory with enponential capacity[C]. In:Proceedings of International Joint Conference on Neural Networks, Anchorage, Alaska.1998,509-513.
    [23] Venturad D, Tony M. Quantum associative memory[J]. Information Science,2000,124:273-296.
    [24] Behrman E C, Steck J E, Skinner S R. A spatial quantum neural computer.In: Proceedings ofthe International Joint Conference on Neural Networks,1999,2:874-877.
    [25] Narayanan A, Menneer T. Quantum artificial neural network architectures and components[C].In: Proceedings of Information Sciences,2000,128:231-255.
    [26] Nobuyuki M, Masato T, Haruhiko N. Learning performance of neuron model based onquantum superposition[C]. In: Proceedings of the9th IEEE International Workshop on Robotand Human Interactive Communication. Osaka, Japan, September,2000,112-117.
    [27] Maeda M, Suenaga M, Miyajima H.Qubit neuron according to quantum circuit for XORproblem[J]. Applied Mathmatics and Computation,2007,185(2):1015-1025.
    [28] Matsui N, Kouda N, Nishimura H. Neural network based on QBP and its performance[C]. In:Proceedings of the IEEE-INNS-ENNS International Joint Conference on. Neural Network,20003,247-252.
    [29] Massimo P, Giuseppe M. Neurofuzzy networks with nonlinear quantum learning[J]. IEEETransactions on Fuzzy Systems,2009,17(3):698-710.
    [30] Nikola K. Integrative probabilistic evolving spiking neural networks utilising quantuminspired evolutionary algorithm: A computational framework. Lecture Notes in ComputerScience (including sub series Lecture Notes in Artificial Intelligence and Lecture Notes inBioinformatics).2009,v5506LNCS, n PART1:3-13.
    [31] Li F, Xu G. A novel scheme of speech enhancement based on quantum neural network[C]. In:Proceedings of International Asia Symposium on Intelligent Interaction and AffectiveComputing, ASIA.2009:141-144.
    [32]解光军,李斌,庄镇泉.量子系统实现神经计算的理论分析[J].电子与信息学报,2003,25(5):606-611.
    [33]解光军,庄镇泉.一种量子竞争学习算法[J].量子电子学报,2003,20(1)1:42-46.
    [34]熊和金,桂启发.量子神经网络动力学极其在信息安全中的应用[J].浙江万里学院学报,2003,16(2):10-13.
    [35]解光军,周典,范海秋.基于量子门组单元的神经网络及其应用[J].系统工程理论与实践,2005(5):113-117.
    [36]李飞,赵生妹,郑宝玉.量子神经网络及其在CDMA多用户检测中的应用[J].信号处理,2005,21(6):555-559.
    [37]朱大奇,桑庆兵.光电雷达电子部件的量子神经网络故障诊断算法[J].电子学报,2006,34(3):473-576.
    [38] Zhou R, Jiang N, Ding Q. Model and training of QNN with weight[J]. Neural ProcessingLetters,2006,24(3):261-269.
    [39] Zhou R, Qin L, Jiang N. Quantum perceptron network[J]. Lecture Notes in Computer Science,2006,41(31):651-657.
    [40]李盼池,李士勇.基于量子遗传算法的正规模糊神经网络控制器设计[J].模式识别与人工智能,2007,19(16):3710-3714.
    [41] Zhou R, Ding Q. Quantum M-P neural network[J]. International Journal of TheoreticalPhysics,2007,46(12):3209-3215.
    [42] Zhou R. Multi-pattern recognition based on Grover’s algorithm[J].Chinese Journal ofElectronics,2007,16(4):679-682.
    [43]李盼池,李士勇.一种量子自组织特征映射网络模型及聚类算法[J].量子电子学报,2007,24(4):463-468.
    [44] P Li, S Li. Quantum-inspired evolutionary algorithm for continuous space optimization basedon Bloch coordinates of qubits[J]. Neurocomputing,2008,72:581-591.
    [45]周日贵,杨淑群,徐新卫等.基于量子傅立叶变换的模式识别[J].南京航空航天大学学报,2008,2(3):22-26.
    [46] Li P, Song K, Yang E. Model and algorithm of neural networks with quantum gatednodes[J].Neural Network World,2010,20(2):189-206.
    [47] Li P, Song K, Yang E.Quantum genetic algorithm and its application to designing fuzzy neuralcontroller. In:Proceedings of the6th International Conference on Natural Computation, ICNC.2010,6:2994-2998.
    [48] Li P, Song K, Yang E.Quantum self-organization feature mapping networks with application.In:Proceedings of the International Conference on Artificial Intelligence and ComputationalIntelligence, AICI.2010,1:257-261.
    [49] Li H, Li M. A new method of image compression based on quantum neural network [C]. In:Proceedings of the International Conference of Information Science and ManagementEngineering, ISME.2010,1:567-570.
    [50]李承祖,黄明球等.量子通信与量子计算[M].长沙:国防科技大学出版社,2000.
    [51] Feynman R P. Simulating physics with computers[J]. Int. J. Theor. Phys,1982,21(6&7):467-488.
    [52]李士勇,李盼池.量子计算与量子优化算法[M].哈尔滨:哈尔滨工业大学出版社,2009.
    [53]达斯格普特S,帕帕迪米特C,沃兹内尼U.算法概论[M].王沛,唐扬斌,刘齐军译.北京:清华大学出版社,2008.
    [54] Nielsen M A, Chuang I L.量子计算和量子信息[M].赵千川译,北京:清华大学出版社,2004.
    [55] Li P C, Li S Y. Phase matching in grover’s algorithm[J]. Physics Letter A,2007,36:42-46.
    [56] Elman J L. Finding structure in time[J]. Cognitive Science,1990,14,179-211.
    [57] Elman J L. Learning and development in neural networks: the importance of starting small [J].Cognitive Science,1993,48,71-99.
    [58] Jordan M. Serial order: A parallel distributed processing approach[R], Institute for CognitiveScience Report8604, San Diego: University of California,1986.
    [59] Song Q. On the Weight Convergence of Elman[J]. Networks IEEE Transactions on neuralnetworks,2010,21(3):463-480.
    [60] Liou C Y, Huang J C, Yang W C. Modeling word perception using the Elman network[J].Neurocomputing,2008,71:3150-3157.
    [61] Chen S, Lin F, Shyu K. Direct decentralized neural control for nonlinear MIMO magneticlevitation system[J]. Neurocomputing,2009,72:3220-3230.
    [62]漆为民,程远楚,姬巧玲,蔡维由. PID型Elman网络及在动态系统辨识中的应用研究[J].控制与决策,2005,20(10):1197-1200.
    [63]宋崇智,吴玉国,王璐,谢能刚.改进Elman网络在发动机齿轮箱故障诊断中的研究[J].仪器仪表学报,2008,29(7):1414-1417.
    [64]杨进,文玉梅,李平.基于相关分析和近似熵的管道泄漏声信号特征提取及辨识方法[J].仪器仪表学报,2009,30(2):272-279.
    [65] Cui A, Xu H, Jia P. An Elman neural network-based model for predicting anti-germperformances and ingredient levels with limited experimental data[J]. Expert Systems withApplications,2011,38:8186-8192.
    [66]李祖欣,王万良,胡文军.资源约束网络中基于LSSVM的预测反馈调度[J].控制与决策,2010,25(3):361-366.
    [67] Subrahmanya N, Shin Y C. Constructive training of recur-rent neural networks using hybridoptimization[J]. Neurocomputing,2010,73:2624-2631.
    [68] Wang D, Liu X., Ahalt S C. On temporal generalization of simple recurrent networks[J].Neural Networks,1996,9(7):1099-1118.
    [69] Li X, Chen G, Chen Z, Yuan Z. Chaotifying linear Elman networks[J]. IEEE Transactions onNeural Networks,2002,13(5):1193-1199.
    [70] Toqeer, R S, Bayindir N S. Speed estimation of an induction motor using Elman neuralnetwork[J]. Neurocomputing,2003,55(3-4):727-730.
    [71] Kouda N, Matsui N, Nishimura H, Peper F. An examination of qubit neural network incontrolling an inverted pendulum[J]. Neural Processing Letters,2005,22:277-290.
    [72] Kouda, N, Matsui, N, Nishimura, H. Image compression by layered quantum neuralnetworks[J]. Neural Processing Letters,2002,16(1):67-80.
    [73] Hammer B, Tino P. Recurrent neural networks with small weights implement definite memorymachines[J]. Neurocomputing,2003,15:1897-1929.
    [74] Vidyasagar M. Nonlinear Systems Analysis[M]. Englewood Cliffs. NJ: Prentice-Hall,1980.
    [75] Song Q, Spall J, Soh Y C, Ni J. Robust neural network tracking controller using simultaneousperturbation stochastic approximation[J]. IEEE Transactions on Neural Networks,2008,19(5):817-835.
    [76] Phat V N, Botmart T, Niamsupb P. Switching design for exponential stability of a class ofnonlinear hybrid time-delay systems[J]. Nonlinear Analysis: Hybrid Systems,2009,3:1-10.
    [77] Zames G. On the input-output stability of time-varying nonlinear feedback systems Part I[J].IEEE Transactions on Automatic Control,1966,11(2):228-238.
    [78] Hopfield J J. Neural networks and physical system with emergent collective computationalabilities[C]. In: Proceeding of the national academy of sciences, USA,1982,79:2554-2558.
    [79] Hopfield J J. Neurons with graded response have collective computational properties likethose of two-state neurons[C]. In: Proceeding of the national academy of sciences, USA,1984,81:3088-3092.
    [80] Mcculloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J].Bulletin of mathematical biophysics,1943,5:115-133.
    [81] Li J H, Michel A N, Porod W. Analysis and synthesis of a classof neural networks: linearsystems operating on a closed hypercube[J]. IEEE Trans. Circuits and Systems,1989,36(11),1405-1422.
    [82] Mitja P, Horst B,Tarik H. A natural quantum neural-like network[J]. NeuroQuantology,2005,3:51-163.
    [83] Allauddin R, Gaddam K, Behrman, E C, Steck J E, Skinner S R. Advantages of quantumrecurrent networks: an examination of stable states[C]. In: Proceedings of2002InternationalJoint Conference on Neural Networks, USA, HI, Honolulu,2002:2732-2737.
    [84]周日贵,姜楠,丁秋林.量子hopfield神经网络及图象识别[J].中国图象图形学报,2008,13(1):32-36.
    [85] Ham F M, Kostanic I. Principles of neurocomputing for science&engineering[M]. USA:McGraw-Hill Science/Engineering/Math,2000.
    [86] Kohonen T. Self-organized formation of topologically correct feature maps[J]. BiologicalCybernetics,1982,43(1):59-69.
    [87] Kohonen T. The self-organized map[C]. In: IEEE proceedings,1990,78:1464-1480.
    [88] Kohonen T. Self-organization and associative memory,3rd ed., Berlin: Springer verlag,1989.
    [89] Willshaw D J, Malsburg C. How patterned neural connections can be set up byself-organization[C]. In: Proceedings of the royal society of London, Series B,1976,194:431-445.
    [90] Anderson J A, Rosenfeld E, eds., Neurocomputing: Foundations of research. Cambridge, MA:M.I.T. Press,1988.
    [91] Hertz J, Krogh A, Palmer R G. Introduction to the theory of neural computation[M]. Redwoodcity, CA: Addison-Wesley,1991.
    [92] Pai P F, Hong W C. Support vector machines with simulated annealing algorithms inelectricity load forecasting[J]. Energy Conversion and Management,2005,46:2669-2688.
    [93] Hobbs B F, et al.. Analysis of the value for unit commitment of improved load forecasts[J].IEEE Trans. Power Syst.,1999,14(4):1342-1348.
    [94] Kebriaei H, Araabi B N, Rahimi-Kian A. Short-term load forecasting with a newnonsymmetric penalty function[J]. IEEE Trans. Power Syst.,2011,26(4):1817-1825.
    [95] Fay D, Ringwood J V. On the influence of weather forecast errors in short-term loadforecasting models[J]. IEEE Trans. Power Syst.,2010,25(3):1751-1758.
    [96] Charytoniuk W, Chen M S, Olinda P V. Nonparametric regression based short-term loadforecasting[J]. IEEE Trans. Power Syst.,1998,13(3):725-730.
    [97] Song K B, Baek Y S, Hong D H, Jang G. Short-term load forecasting for the holidays usingfuzzy linear regression method[J]. IEEE Trans. Power Syst.,2005,20(1):96-101.
    [98] Chen Y, Luh P B, Guan C, et al.. Short-term load forecasting: similar day-based waveletneural networks[J]. IEEE Trans. Power Syst.,2010,25(1):322-330.
    [99] Hippert H, Pedreira C, Souza R. Neural networks for short-term load forecasting: A reviewand evaluation[J]. IEEE Trans. Power Syst.,2001,16(1):44-55.
    [100] Xiao Z, Ye S, Zhong B. Sun C. BP neural network with rough set for short term loadforecasting[J]. Expert Systems with Applications,2009,36:273-279.
    [101] Niu D, Wang Y, Wu D D. Power load forecasting using support vector machine and antcolony optimization[J]. Expert Systems with Applications,2010,37:2531-2539.
    [102] Bashir Z A, El-Hawary M E. Applying wavelets to short-term load forecasting usingPSO-based neural networks[J]. IEEETrans. Power Syst.,2009,24(1):20-27.
    [103] Xia C, Wang J, McMenemyc K. Short, medium and long term load forecasting model andvirtual load forecaster based on radial basis function neural networks[J]. Electrical Power andEnergy Systems,2010,32:743-750.
    [104] Pandey A S, Singh D, Sinha S K. Intelligent hybrid wavelet models for short-term loadforecasting[J]. IEEE Trans. Power Syst.,2010,25(3):1266-1273.
    [105] Catalao J P S, Pousinho H M I, Mendes V M F. Hybrid wavelet-PSO-ANFIS approach forshort-term electricity prices forecasting[J]. IEEE Trans. Power Syst.,2011,26(1):137-144.
    [106] Subrahmanya N, Shin Y C. Constructive training of recurrent neural networks using hybridoptimization[J]. Neurocomputing,2010,73:2624-2631.
    [107] Lifen Y, Yigang H, Jiaoying H, Yichuang S. A new neural-network-based fault diagnosisapproach for analog circuits by using kurtosis and entropy as a preprocessor[J]. IEEETrans.Instrum. Meas.,2010,59(3):586-595.
    [108] Farzan A, Mehran minian A, Collins H W. Analog fault diagnosis of actual circuits usingneural networks[J]. IEEE Trans. Instrum. Meas.,2002,51(3):544-550.
    [109] Catelani M, Fort A. Soft fault detection and isolation in analog circuits: some results and acomparison between a fuzzy approach and radial basis function networks[J]. IEEE Trans.Instrum. Meas.,2002,51(2):196-202.
    [110] Spina R, Upadhyaya S. Linear circuit fault diagnosis using neuromorphic analyzer[J]. IEEETrans. Circuits Syst. II,1997,44(3):188-196.
    [111] Maidon Y, Jervis B W, Fouillat, Lesage P S. Using articial neural networks or lagrangeinterpolation to characterize the faults in an analog circuit: an experimental study[J]. IEEETrans. Instrum. Meas.,1999,48(5):932-938.
    [112] Aminian M, Aminian F. Neural network based analog circuit fault diagnosis using wavelettransform as preprocessor[J]. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.2000,47(2):151-156.
    [113] Negnevitsky M, Pavlovsky V. Neural networks approach to online identification of multiplefailures of protection systems[J]. IEEE Trans. Power Delivery,2005,20(2):588-594.
    [114] Mehran A, Farzan A. A modular fault diagnostic system for analog electronic circuits usingneural networks with wavelet transform as a preprocessor[J]. IEEE Trans. Instrum. Meas.,2007,5(5):1546-1554.
    [115] Tan Y, He Y, Cui C, Qiu G. A novel method for analog fault diagnosis based on neuralnetworks and genetic algorithms[J]. IEEE Trans. Instrum. Meas.,2008,57(11):2631-2639.
    [116]王新攀,王红,杨士元.基于非正弦激励的模拟电路故障诊断[J].清华大学学报,2011,51(S1):1494-1498.
    [117]邓勇,师奕兵.基于相关分析的非线性模拟电路参数型故障诊断方法[J].控制与决策,2011,26(9):1407-1411.
    [118]祝文姬,何怡刚.一种新的模拟电路故障特征提取与诊断方法[J].湖南大学学报,38(4):41-46.
    [119]王军锋,张维强,宋国乡.模拟电路故障诊断的多小波神经网络算法[J].电工技术学报,2006,21(1):33-36.
    [120] Shensa M J. The discrete wavelet transform: wedding the A trous and mallat algorithms[J].IEEE Trans. Sig. Proc.,1992,40(10):2464-2482.
    [121] Lang M, Guo H, Odegard J E, Burrus C S. Noise reduction using an undecimated discretewavelet transform[J]. IEEE Trans. Sig. Proc.,1996,3(1):10-12.
    [122] Chacko B P, Vimal Krishnan V R, Raju G, Babu Anto P. Handwritten character recognitionusing wavelet energy and extreme learning machine Int. J. Mach. Learn.&Cyber.,2012,3:149-161.
    [123] Morchen F. Time series feature extraction for data mining using DWT and DFT, TechnicalReport, No.33, Department of Mathematics and Computer Science, University of Marburg,Germany,2003.
    [124] Hu G S, Zhu F F, Ren Z. Power quality disturbance identication using wavelet packet energyentropy and weighted support vector machines[J]. Expert Systems with Applications,2008,35:143-149.
    [125] Wu X Q, Wang K Q, Zhang D. Wavelet energy feature extraction and mathing for palmprintrecognition[J]. J. Comput. Sci.&Technol.,2005,20(3):411-418.
    [126] Ekici S, Yildirim S, Poyraz M. Energy and entropy-based feature extraction for locating faulton transmission lines by using neural network and wavelet packet decomposition[J]. ExpertSystems with Applications,2008,34:2937-2944.
    [127]丛秋梅,柴天佑,余文.污水处理过程的递阶神经网络建模[J].控制理论与应用,2009,26(1):8-14.
    [128]黄明智,马邕文,万金泉,黄明护.污水处理中人工神经网络应用研究的探讨[J].环境科学与技术,2008,31(3):131-135.
    [129] Kaan Y, Zehra S. Stochastic modeling applications for the prediction of COD removalefficiency of UASB reactors treating diluted real cotton textile wastewater[J]. StochasticEnvironmental Research and Risk Assessment,2009,23(1):13-26.
    [130] Fan L, Boshnakov K. Neural-network-based water quality monitoring for wastewatertreatment processes[C]. In: Proceedings of the6th International Conference on NaturalComputation. China: IEEE Press,2010:1746-1748.
    [131] Xue J, Ma Y, Huang Z. Research on the process of solid-liquid separation of piggerywastewater simulated by BP network[C]. In: Proceedings of the2nd International Conferenceon Modelling and Simulation. United kingdom: IEEE Press,2009:366-371.
    [132]王晓萍,孙继洋,金鑫.基于BP神经网络的钱塘江水质指标的预测[J].浙江大学学报,2007,41(2):361-364.
    [133] Qiao J, Han H, Jia Y. An adaptive self-organizing fuzzy neural network[C]. In: Proceedings ofthe International Conference on Wavelet Analysis and Pattern Recognition. China: IEEE Press,2008:711-715.
    [134]雷璐宁,石为人,范敏.基于改进的SOM神经网络在水质评价分析中的应用[J].仪器仪表学报,2009,30(11):2379-2383.
    [135] Luitel B,Venayagamoorthy G K. Quantum inspired PSO for the optimization of simultaneousrecurrent neural networks as MIMO learning systems[J]. Neural Networks,2010,23(5):583-586.
    [136] Zhang L, Merényi E. Learning multiple latent variables with self-organizing maps[C]. In:Proceedings of the International Conference on Granular Computing. United States: IEEEPress,2010:609-614.
    [137] Van H W S. Engelbrecht Andries P. A comparison of map neuron labeling approaches forunsupervised self-organizing feature maps[C]. In: Proceedings of the International JointConference on Neural Networks. China: IEEE Press.2008:2139-2146
    [138] Furtuna R, Curteanu S, Cazacu M. Optimization methodology applied to feed-forwardartificial neural network parameters[J]. International Journal of Quantum Chemistry,2010,111(3):539-553.
    [139] Rigatos G G. Stochastic processes and neuronal modelling: Quantum harmonic oscillatordynamics in neural structures[J]. Neural Processing Letters,2010,32(2):167-199.
    [140] Menneer T. Quantum artificial neural networks[D]. Ph.D. thesis of the Univ. of Exeter, UK,1998.
    [141] Hao Liang,LiJun Lin,Long Gui Lu.Eavesdropping in a quantum secret sharing protocol basedon Grover algorithm and its solution[J].Science China: Physics, Mechanics and Astronomy,2010,53(3):491-495
    [142] Vallone G,De Martini F,Mataloni P.Quantum algorithms in one-way quantum Computation[J].Optics and Spectroscopy,2010,108(2):282-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700