小麦金属反应元件结合蛋白cDNA的筛选、克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
已有实验证明金属反应元件(metal response element,MRE)在缺铁胁迫诱
    导的基因表达中起到非常重要的作用。本文从Ids1和Ids2基因5’上游的MRE
    出发,人工合成长度为74bp的MRE异源三联体。利用~(32)P末端标记的MRE异源三
    联体直接筛选小麦缺铁诱导根λgt11-cDNA表达文库,克隆得到了编码其结合蛋
    白的长度为279bp的cDNA片段,命名为TaMRE-BP cDNA。该cDNA片段和烟草AVR9
    激发子应答蛋白(AVR9 elicitor response protein)cDNA的相应序列有78%
    的同源性,TaMRE-BP和烟草AVR9激发子应答蛋白在氨基酸水平上有75%的同源
    性。经Northern印迹分析,TaMRE-BP cDNA片段的杂交信号在大约1.5kb处,
    其相应基因的转录活性在缺铁处理第9天的根和叶中明显增强,在缺铁处理第
    13天的根和叶中稍有减弱,和正常处理时的转录活性相当。Southern印迹分析
    结果表明TaMRE-BP cDNA片段的相应基因存在于小麦基因组中。
     据推测TaMRE-BP可能作为一种MRE结合蛋白参与应答植物体内Fe/Cu水平
    的变化。缺铁胁迫改变植物体内的Fe/Cu水平(植物体内Fe含量下降,Cu含量
    上升),进一步诱导该TaMRE-BP cDNA片段相应基因的转录活性,以调节植物体
    内的金属营养元素的平衡。该基因的转录活性在缺铁处理第9天的根和叶中明显
    增强,而这时麦根酸的分泌量最大,因此该基因的表达和麦根酸的合成可能有某
    种联系。TaMRE-BP cDNA片段和烟草AVR9激发子应答蛋白(AVR9 elicitor
    response protein)cDNA有78%的同源性,其原因可能是类似AVR9作用的诱
    发子改变小麦体内Fe/Cu水平,从而诱导该基因的转录。
Previous experiments have established that a cis-acting element named MIRE
     (Metal Response Element, MRE ) plays an important role in Fe-deficiency-induced
    
     gene expression. In this study, three copy of MIRE of 74bp was synthesized and 5?end
     32
     was labeled by P. A eDNA fragment of 279bp named TaMRE-BP eDNA was cloned
    
     by direct screening Fe-deficient wheat root Xgtl 1-eDNA expression library with the
     labeled MIRE. The eDNA exhibits 78% similarity to the eDNA of AVR9 elicitor
     response protein and the deduced amino acid sequence exhibits 75% similarity to that
     of AVR9 elicitor response protein. Northern blotting reveals that the whole length of
     its eDNA is about 1.5kb. On the 9th day of Fe-deficiency treatment, compared with
     the normal treatment control, its transcription activity in roots and leaf is apparently
     elevated. While 13th day the transcription activety is decreased. Southern blotting
     reveals that this gene is wheat genomic gene.
    
     It is assumed that TaMRE-BP response to the change of Fe/Cu level as a
     MIRE-binding protein in wheat. Fe deficiency treatment changes Fe/Cu level in plant
     ( Cu level elevated and Fe level decreased ) . This change tbrther induces the
     transcription activity of this gene to regulate the balance of metal level. As its
     transcription activity is apparently elevated on the 9th day of Fe-deficiency treatment,
     the synthesis of mugineic acid is significantly increased this time. Therefore it抯
     assumed that TaMRE-BP has something with the synthesis of mugineie acid. As to its
     high similiarity to the cDNA of AVR9 elicitor response like protein. It抯 predicted that
     AVR9 like elicitor may indirectly changes Fe/Cu level in wheat, and induces the
     transcription activity of this gene.
引文
1.王琳芳、杨克恭主编,《蛋白质与核酸》,北京医科大学中国协和医科大学联合出版社,343-344
    2. ATCHMAKER One-Hybrid System Protocol(PT1031-1)
    3. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, and Shinozaki K, Two transcription factors, DREB1 and DREB2, with an EREB/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis, Plant Cell, 1998, 10:1391-1406
    4. Ave H, Angeles L, Isolation of DNA-binding proteins by direct screening of cDNA libraries with labeled binding sites. Plant Mol Bio Manual, 1993, B17:1-20
    5. Oeda K, Salinas J, Chua N-H, A tobacco bZIP transcription activator (TAF-1) binds to a G-box like motif conserved in plant genes. EMBO J. 1991, 10:1793-1802
    6. Lam E, Yuriko K-M, Gilmartin P, Niner B, Bhua N-H, A metal-dependent DNA-binding protein interacts with a constitutive element of a light responsive promoter. Plant Cell, 1990, 2:857-866
    7. Perisic O, and Lam E, A tobacco DNA binding protein that interacts with a light responsive box Ⅱ element. Plant Cell, 1992,4:831-838
    8. Gilmartin PM, Memelink J, Hiratsuka K, Kay SA, Chua N-H, Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element.Plant Cell, 1992, 4:839-849
    9. Luehrsen KR, De Wet JR, Wslbot V, Transient expression analysis in plans using firegly luciferase reporter gene. Methods Enzymol., 1992, 216:397-414
    10. Dietrich A, Mayer JE, Hahlbroch K, Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures, J. Biol. Chem.1990, 265:6360-68
    11. Kao C-Y, Cocciolone SM, Vasil IK, Mccarty DR, Localization and interaction of the cis-acting elements for abscisic acid, VIVIPAROUS1, and light activation of the CI gene of maize. Plant Cell, 1995, 8:1171-79
    
    
    12. Xiang CB, Miao Z-H, Lam E, Coordinated activation of a tobacco gutahione S-transferase gene by auxins, salicylic acid, methyljasmonate and hydrogen peroxide., Plant Mol. Biol. 1996,32:415-26
    13. Moyano E, Marfhez-Garcia JF, Martin C, Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell, 1996, 8:1519-32
    14. Ponticelli AS, Pardee TS, Strubl K, The glutamine-rich activation domains of human Spl do not stimulate transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 1995, 15:983-88
    15. Fan H, Sugiura M, A plant basal in vitro system supporting accurate transcription of both RNA polymerase Ⅱ-and Ⅲ-dependent genes: supplement of green leaf component(s) drives accurate transcription of a light-responsive rbcS gervs. EMBOJ., 1995, 14:1024-31
    16. Fan H, Yakura K, Miyanishi M, Sugita M, Sugiura M., In vitro transcription of plant RNA polymerase I-dependent rRNA genes is species-specific. Plant J. 1995, 8:295-98
    17. Samach A, Kohalmi SE, Motte P, Dadar, Haughn GW. Divergence of function and regulation of class B floral oran identity genes. Plant Cell, 1997, 9:559-70
    18. Ueberlacker B, Klinge B, Weir W, Ectopic expression of the maize homeobox genes ZmHoxla or ZmHoxlb causes pleiotropic alterations in the vegetative and floral development of transgenic tobacco. Plant Cell, 1996, 8:349-62
    19. Cannon M, Platz J, O'Leary M, Sookdeo C, Connon F. Organ-specific modulation of gene expression in transgenic plants using antisense RNA. Plant Mol. Biol., 1990, 15:39-47
    20. Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E, The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell, 1994,6:175-86
    21. Koes R, Souer E, Van Houwelingen A, MurL, Spelt C, et al., Targeted gene inactive in petunia by PCR-based selection of transposon insertion mutants. Proc. Natl. Acad. Sci. USA, 1995, 92:8149-53
    
    
    22. Kranz H, Denekamp M, Greco R, Jin H-L, Leyva A, et al., Analysis of MYB transcription factors in Arabidopsis thaliana. Int. Conf. Arabidopsis Res. 1997, 8th, Madison, Wis. (Abstr)
    23. Gatz C, Chemical control of gene expression. Annu. Rev. Plant Physiol. Plant Mol Biol., 1997,48:89-108
    24. Aoyama T, Chun N-H, A glucocorticiod-mediated transcriptional induction system in transgenic plants. Plant J., 1997, 11:605-12
    25. Schena M, Lloyd AM, Davis RW, a steroid-inducible gene expression system for plant cells. Proc. Natl. Acad Sci. USA, 1991, 88:10421-25
    26. Chen X, Meyerowowitz E, Identification of a gene nagtively regulated by the floral homeotic gene AGAMOUS. Int. conf. Arabidopsis Res., 1997, 8th, Madison, Wis.(Abstr)
    27. Sablowski R, Meyerowitz E, Beyond floral homeotic genes: finding their target genes., Int. conf. Arabidopsis Res. 1997, 8th, Madison, Wis.(Abstr)
    28. Sablowski RWM, Baulcombe DC, Sevan M., Expression of a flower-specific Myb protein in leaf cells using a veral vector causes ectopic activation of a targeted promoter. Proc. Natl. Acad Sci. USA, 1995, 92:6901-5
    29. Triezenberg SJ, Structure and function of transcriptional activation domains. Curr. Opin. Genet. Dev., 1995, 5:190-96
    30. Schindler U, Terzaghi W, Beckmann H, Kadesch T, Cashmore AR, DNA-binding site preferences and transcriptional activation properties of the Arabidopsis transcription factor GBF1. EMBOJ., 1992, 11:1275-89
    31. Dingwall C, Laskey RA, Nuclear targeting sequences-aconsensus? Trends Biochem. Sci., 1991, 16:478-81
    32. Raikhel N, Nuclear targeting in plants., Plant Physiol., 1992, 100:1627-32
    33. Varagona MJ, Schmidt RJ, Raikhel NV, Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell, 1992, 4: 1213-27
    34. Terzaghi WB, Bertekap PL Jr, Cashmore AR., Intracellular localization of GBF protein and blue light-induced import of GBF2 fusion proteins into the nuclears of
    
    cultured Arabidopsis and soybean cells., Plant Cell. Plant J. 1997, 11:967-82
    35. Grebenok RJ, Pierson E, Lambert GM, Gong F-C, Afonso CL, et al., Green-fluorescent protein fusions for efficient characterization of nuclear targeting., Plant J. 1997, 11:573-86
    36. Zhang B, Chen W, Foley RC, Buttner M, Singh KB, Interactions between distinct types of DNA binding proteins enhance binding to ocs element promoter sequences. Plant Cell, 1995,7:2241-52
    37. Chen CT, Bartil PL, Stemglanz R, Fields S, The two-hybrid system:a method to identify and clone genes from proteins that interact with a protein of interest. Proc. Natl. Acad Sci. USA, 1991, 88:9578-82
    38. Chevray PM, Nathans D, protein interaction cloning in yeast:identification of mammalian proteins that react with the leucine zipper of Jun, Proc. Natl. Acad. Sci. USA, 1992, 89:5789-93
    39. Hunter T, Karin M., The regulation of transcription by phosphorylation. Cell,1992, 70:375-87
    40. Carey J., Gel retardation,Methods Enzymol., 1991, 208:103-17
    41. Moyano E, Martfnez-Garcia JF, Martin C, Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in Antirrhinum flowers. Plant Cell, 1996,8:1519-32
    42. Sablowski RWM, Moyano E, CulianezMacia FA, Schuch W, Martin C, et al., A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBOJ., 1994, 13:128-37
    43. Lelong JC, et al.,Anal Bicochem,1989,179(2) :299-303
    44. Adhya S,Becker MM, Burkjoff AM, Corman N, Fogerty S, et al., A laboratory guide to in vitro studies of protein-DNA interactions. 1991, Basel:Birkh user
    45. Wissmann A, Hillen W, DNA constructs probed by modification protection and interference studies. 1991, Methods Enzymol. 208:365-79
    46. Wang Z-Y, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM, A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell, 1997,9:491-507
    
    
    47. Lu GH, Paul A-L, McCarty DR, Ferl RJ, Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh? Plant Cell, 1996, 8:847-57
    48. Hammond-Kosack MCU, Bevan MW, Apratical guide to ligation-mediated PCR footprinting and in vivo DNA analysis using plant tissues. Plant Mol. Biol. Rep. 1993, 11:249-72
    49. Hammond-Kosack MCU, Holdsworth MJ, Bevan MW, In vivo footprinting of a low molecular weight glutenin gene(LMWG-lDl) in wheat endosperm. EMBO J. 1993, 12:545-54
    50. Ouellette MM, Wright WE. Use of reiterative selection for defining protein-nucleic acid interaction. Curr. Opin. Biotechnol. 1995, 6:65-72
    51. Ishizuka K, Tanaka A, Fujita O, Studies on the nutrients metabolism in nce.6. Effect of the concentration of Fe, Mn and Cu on the growth and the nutrients content of rice. J Soil Sci Plant Nutr, 1961, 32:97-100
    52. Robinson NJ, Evans IM, Molcrone J, Bryden J, Tommey AMGenes with similarity to metallothionein genes and copper, zinc ligands in Pissum sativum,L. Pan t Soil, 1992, 146:291-298
    53. Treeby M, Marschner H, R mheld V, Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial. and synthetic metal chelators. Plant Soil, 1989, 114:217-226
    54. Suziki K, ItaiR, Formate dehydrogenase, an enzyme of anaerobic metabolism is induced by iron deficiency in barley roots, plan t physiol, 1998, 116:725
    55. Mori S. et al., Revaluation of the gene induced by iron deficiency in barley roots. In Adeo T, ed. Plant Nutrition-for sustainable Food Production and Enviroment, Japan: Kluwer Academic Public, 1997,249
    56. Ling, H.Q. et al., Genetic analysis of two tomato mutants affected in the regulation of iron metabolism. Mol. Gen. Genet. 1996,252:87-92
    57. Okumura N, Nishizawa N-K, Umehara Y and Mori S, An iron deficiency-specific cDNA from barley roots having two homologous cysteine-rich MT domains. Plant Mol. Biol. 1991,17:531-533
    
    
    58. Okumura N, Nishizawa N-K, Umehara Y, Ohata T, Nakanishi H, Yamaguchi T, Chino M and Mori S, A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the root of Hordeum Vulgare. Plant Molecular Biology, 1994, 25:705-719
    59. Evans KM, Gatehouse JA, Lindsay WP, shi J, Tommey AM and Robinson NJ, Expression of the pea metallothionein-like gene PsMTA in E.coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMTA function Plant Mol. Biol., 1992,20:1019-1028
    60. Lescure AM, Proudhon D, Pesey H, Regland M, Theil EC and briat JF, Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc, Natl. Acad. Sci. USA, 1991, 88:8222-8226
    61. Lobreaux S, Massenet O, Briat JF, Iron induced ferritin synthesis in maize plantlets. Plant Mol. Biol., 1992, 19:563-575
    62. Louergue C, Lebrum M, Briat J-F, Expression cloning in Fe2+ transport defective yeast of a novel maize MYC transcription factor. Gene, 1998, 225:47-57
    63. Yamaguchi-Iwai Y, Stearman R, Dancis A and Klausner RD, Iron-regulated DNA binding by the AFT 1 protein controls the iron regulation in Yeast. EMBO J, 1996, 15(13) :3377-3384
    64. Casas, C, Aldea M, Espinet C, Gallego C, Gil R, and Herero E, The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae. Yeast, 1997, 13:621-637
    65. Hassett RF, Romeo AM, and Kosmant J, Regulation of high affinity iron uptake in the yeast Saccharomyces cerevisiae. 1998, 273(13) :7628-7636
    66. Yamaguchi-Iwai Y, Dancis A and Klausner RD, AFT1: a mediator of iron regualated transcriptional control in Saccharomyces cerevisiae. EMBO J. 1995, 14(6) :1231-1239
    67. Philpott CC, Rashford J, Yamaguchi-Iwai Y, Rouault TA, Andrew Dancis and Richard D. Klausner. Cell-cycle arrest and inhibition of Gl cyclin translation by iron in AFTl-lupyeast. EMBOJ. 1998, 17(17) :5026-5036
    68. Jungmann J, Reins H-A, Romeo A, Hassett R, Kosman D and Jentsch S, MAC1, a
    
    nuclear regulatory protein related to Cu-dependent transcription factor is involved in Cu/Fe utilization and stress and stress resistance in yeast. EMBO J. 1993,12(13):5051-5056
    69. Jolley, VD. et al., A genetic related response to iron deficiency stress in regulation of iron metabolism. Mol. Gen. Genet. 1996, 252:87-92
    70. Yamaguchi-Iwai Y, and Guerinot ML, Genetic evidence that induction of root Fe(Ⅲ) chelate reductase activity is necessary for iron uptake under iron deficiency. J.Plant 1996,10:835-844
    71. Wir NV, Mod S., Marschner H and R mheld V, Iron inefficiency in Maize Mutant ysl(zea maysl. cv Yellow-Stripe)is caused by a defect in uptake of Iron phytosiderophores. Plant Physiol, 1992,106:71-77
    72. Grusak MA and Pezeshgi S, Shoot-to-Root signal transmission regulates root Fe(Ⅲ) chelate reductase activity in the dgl mutant of Pea. Plant Physiol,1996:110:329-334
    73. Ackerveken VD, Dunn RM, Cozijnsen AJ, Vossen JP, Brock VD, Nitrogen limitation induces expression of the avirlence gene avr9 in the tomoto pathogen Cladosporium fulvum. Mol Gem Genet 1994,243:277-285
    74. 张福锁 根分泌物与禾本科植物对缺铁胁迫的适应机制,植物营养与肥料学报,1995,(1):17-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700