ERF转录因子LeERF2、JERF2在非生物胁迫应答中的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因表达调控是植物胁迫应答的重要环节。植物激素和转录因子对植物胁迫应答中的基因表达调控起着关键性的作用。ERF类转录因子是植物特有的一个转录因子大家族,它们都具有一个保守的DNA结合域—ERF domain。ERF类转录因子可调节植物对病原物、低温、干旱、高盐及伤害等生物与非生物胁迫的适应性应答,在植物胁迫应答中起着重要的作用。乙烯是植物体内一种多功能植物激素。早期研究表明,在植物的生物胁迫应答中乙烯可以通过ERF转录因子调节大量含有GCC-box(TAGCCGCC)的PR基因表达,提高植物对生物胁迫的抗/耐性,在植物的生物胁迫应答中发挥着重要的作用。近几年的研究表明乙烯也可以通过ERF转录因子参与植物的非生物胁迫应答,提高植物的非生物胁迫耐性。本实验室以GCC-box为bait,利用酵母单杂交系统从番茄cDNA表达文库中筛选到两个新基因LeERF2、JERF2。研究表明它们都属于ERF类转录因子,并参与乙烯和植物的非生物胁迫应答。本实验是在我们实验室原有的研究基础上进一步研究了LeERF2、JERF2在植物非生物胁迫应答中的功能,并分析它们可能参与的调控途径。
     凝胶阻滞实验(又称EMSA)结果表明LeERF2蛋白具有结合GCC-box和DRE/CRT两种顺式作用元件的能力,但不能同ABRE偶联元件CE1结合。转LeERF2基因烟草的Northern杂交结果表明LeERF2的超表达除了导致转基因烟草中含有GCC-box的基因osmotin和PRB-1b的组成型表达外,某些含有DRE/CRT顺式作用元件的基因COR15a和RD17也组成型表达。但另外一些含有DRE/CRT的基因如RD29A和含有ABRE的基因RD29B的表达则不受影响。分别用NaCl、甘露醇和葡萄糖处理野生型和LeERF2转基因烟草种子时发现LeERF2提高了转基因烟草种子的胁迫耐性。低温处理转基因烟草时,LeERF2提高了转基因烟草植株的耐冻性。用-6℃处理烟草植株八小时并恢复生长两天,野生型烟草的死亡率达到86.7%,而转基因植株仅为17%。此外LeERF2还提高转基因烟草幼苗根的盐胁迫耐性。这些结果表明LeERF2基因可能通过调节某些含有GCC-box或DRE/CRT顺式作用元件的基因的表达参与植物的非生物胁迫应答,提高了植物的非生物胁迫耐性。
     对JERF2的研究表明JERF2提高了转基因烟草种子对NaCl和甘露醇的胁迫耐性,而ABA处理转基因烟草种子时发现ABA对JERF2的功能没有明显的影响。对转基因烟草植株的研究表明JERF2提高了转基因植株提对PEG处理下的渗透胁迫的耐性,也显著提高了转基因烟草对NaCl的胁迫耐性。转基因烟草的Northern杂交结果表明LeERF2的超表达可造成某些含有GCC-box的基因如osmotin和PRB-1b的组成型表达,但对含有DRE/CRT顺式作用元件的基因COR15a、RD17和RD29A及含有ABRE顺式作用元件的基因RD29B的表达没有影响。这些结果表明JERF2可能通过调节某些含有GCC-box的基因的表达而提高了植物的非生物胁迫耐性。另外JERF2转基因烟草的乙烯三重反应实验表明JERF2还可能影响乙烯的生成,参与植物体内的其它功能。以上实验结果证明LeERF2、JERF2可以通过不同途径调节植物胁迫相关基因表达,参与植物非生物胁迫应答,提高植物对非生物胁迫的耐性。表明了ERF类转录因子在植物胁迫应答中具有重要作用。
It is the vital step for the response to the stresses of plants to regulate the gene expressions. Hormones and transcription factors play an important role on regulating the gene expressions of plants. ERF transcription factors, which contain a conservative DNA binding domain-ERF domain, and regulate the responses to both biotic and abiotic stresses of plants, such as disease, low temperature, drought, high salinity and wound, belong to a large transcription factors family , which is unique to plants. The ERF transcription factors play a key role on the responses to various stresses of plants. Ethylene (ET) is an important hormone, which can produce a myriad of effects on plant. The early studies showed that ET is important for plants to respond to biotic stress by regulating the expressions of numerous PR genes containing the GCC-box (TAGCCGCC) through ERF transcription factors. In Recent several years, studies supported the fact that ET exerts significant effects on the response to abiotic stress of plants
     through ERF transcription factors. Our label screened the cDNA expressive library of tomato by yeast one-hybrid system with the GCC-box bait and got two new genes: LeERF2 and JERF2. Studies showed that both of them belong to the ERF transcription factors family. This study is to analyze the functions and regulatory pathway of LeERF2 and JERF2 in the responses to abiotic stresses of plants on the base of the former studies of our label.
    Our studies illustrated the LeERF2 protein can bind to both GCC-box and DRE/CRT cis-elemengs, but fail to ABRE coupling element (CE1) in the EMSA. We also found that LeERF2 can result in the constitutive expressions of genes containing either GCC-box or DRE/CRT cis-elemengs in their promoters, such as osmotin, PRB-lb, COR15a and RD17 in transgenic tobacco lines. But LeERF2 had no effect on the expression of RD29A or RD29B which containing ABRE element in their promoters. LeERF2 obviously enhanced the tolerance of transgenic tobacco seeds overexpressing the LeERF2 under the salinity and osmotic stresses by treated with NaCl, mannitol, glucose, respectively. LeERF2 transgenic tobacco also demonstrated highly freezing tolerance under the low-temperature treatment. For example, the death rate of wild type is over 80% under the stress of freezing at -6 C for 8 hours, whereas, the transgenic line is only 17%. Another, LeERF2 enhanced the tolerance of salt stress of root of transgenic tobacco lines. From the above
    results, we believed that LeERF2 enhanced the abiotic tolerance of plants by regulating the expression of genes encoding GCC-box or DRE/CRT element in their promoter.
    JERF2 also enhanced the tolerance of abiotic stress of transgenic seeds under the stresses of NaCl and mannitol. JERF2 increased the tolerance of transgenic tobacco plants under the stress of NaCl and PEG treatment. Whereas the results of the Northern blotting experiment showed that JERF2 only regulated the expressions of genes osmotin and PRB-lb containing GCC-box cis-elemengs in their promoters in the transgenic tobacco plants, but failed to effect the expressions of COR15a, RD17 RD29A and RD29B containing DRE/CRT or ABRE element in their promoters. Another, we found that transgenic tobacco demonstrated the constitutive
    
    
    
    phenotype of ethylene for the effect on the production of ET.
    All above showed that LeERF2, JERF2 perform key function in the response to abiotic stresses of plants and can enhance the tolerance of plants through the different signaling pathways.
引文
[1] 刘强,赵南明,Yamaguch-Shinozaki K,ShinozakiK。DREB转录因子在提高植物抗逆性中的作用。科学通报,2000,45:11-16.
    [2] 杨洪强,接玉玲,李林光。脱落酸信号转导研究进展。植物学通报,2001,18:427~435.
    [3] 余叔文,汤章城.。植物生理学和分子生物学(第二版).。北京:科学出版社,1998,514-18
    [4] Achuo AE, Audenaert K, Meziane H, Hofte M. The SA-dependent defense pathway is active against different pathogens in tomato and tobacco. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet, 2002, 67:149-57.
    [5] Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recongnition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J., 1998, 17:5484-5496.
    [6] Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 2002, 29:23-32.
    [7] Bleecker AB and Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Bioi 2000, 16:1-18.
    [8] Bleecker AB. Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci. 1999, 4:269-274.
    [9] B?ttner M and Singh K B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA, 1997, 94:5961-5966.
    [10] Cancel JD, Larsen PB. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol. 2002, 129:1557-67.
    [11] Castonguay Y, Laberge S, Nadeau P, Vezina LP. A cold-induced gene from medicago sativa encodes a bimolular protein similar to developmentally regulated proteins. Plant Mol Biol. 1994, 24:799-804.
    [12] Chakravarthy S, Tuori RP, D'Ascenzo MD, Fobert PR, Despres C, Martin GB. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell, 2003, 15:3033-50.
    [13] Chang C and Stadler R. Ethylene hormone receptor action in Arabidopsis. Bioessays, 2001, 23:619-27.
    [14] Chang C. and Shockey J.A. The ethylene-response pathway: signal perception to gene regulation. Curr. Opin. Plant Bio, 1999, 2: 352-358.
    [15] Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins, Cell, 1997, 89:1133-44.
    [16] Chen W., Provart N.J., Glazebrook J., et al. Expression profile matrix of Arabidopsis transcription factor genes suggest their putative functions in response to environmental stresses. Plant Cell, 2002, 13: 61-72.
    [17] Chen W., Singh K.B. The auxin, hydrogen peroxide and salicylic acid induced expression of the
    
    Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J., 1999, 19: 667-677.
    [18] Choi D W, Rodriguez E M, Close T J. Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol, 2002, 129:1781-1787.
    [19] Clark KL, Larsen PB, Wang X, Chang C. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A, 1998, 95:5401-6.
    [20] Datta S K, Muthukrishnan S.PATHOGENESIS-RELATED PROTEINS in PLANTS. CRC: press LLC. 1999.
    [21] Deikman J. Molecular mechanisms of ethylene regulation of gene transcription. Physiol. Plant, 1997, 100: 561-566
    [22] Detelf M, Antonella Furini, Francessco S. Structure and regulation of copy an ABA-desiceation-responsive gene from the resurrection plant Cratrostigma plantagineum. Plant Molecular Biology, 1994, 24:249.
    [23] Devoto A, Turner JG. Regulation of jasmonate-mediated plant responses in arabidopsis. Ann Bot (Lond). 2003, 92:329-37.
    [24] Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003, 33:751-763.
    [25] Ecker JR.. The ethylene signal transduction pathway in plants. Science, 1995, 268:667-75.
    [26] Eulgem T., Rushton P.J., Robatzek S., et al. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5:199-206.
    [27] Fits L.V., Memelink J. The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J., 2001, 25: 43-53.
    [28] Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis Ethylene-Responsive Element Binding Factors Act as Transcriptional Activators or Repressors of GCC Box-Mediated Gene Expression. Plant Cell, 2000, 12:393-404.
    [29] Gazzarrini S and Mccourt P. Cross-talk in plant signaling:what the arabidopsis mutants are telling us. Annal of botany, 2003, 91:605-612
    [30] Gilmour S J, Zarka DC, Stockinger EJ, Salazar MP, Houghton JM, Thomashow ME Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J., 1998, 16:433-42.
    [31] Gu Y Q, Wildermuth M C, Chakravarthy S, Lob Y T, Yang C, He X, Han Y, Martin G B. Tomato Transcription Factors Pti4, PtiS, and Pti6 Activate Defense Responses When Expressed in Arabidopsis. Plant Cell, 2002, 14:817-831.
    [32] Gu Y.Q., Yang C., Thara V.K., et al. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto Kinase. Plant Cell, 2000, 12: 771-785.
    [33] Guo H, Ecker JR. Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)- dependent proteolysis of EIN3 transcription factor. Cell, 2003, 115:667-77.
    [34] Guo H, Ecker JR. The ethylene signaling pathway: new insights. Curr Opin Plant Biol, 2004, 7:40-49.
    [35] Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plants. J. Biol. Chem., 1998, 273:26857-26861.
    
    
    [36] Hart C M, Nagy F, Meins F Jr. A 61 bp enhancer element of the tobacco β-1,3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant mol. Biol., 1993, 21:121-131.
    [37] He P, Warren R F, Zhao T, Shan L, Zhu L, Tang X, Zhou J M. Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. Tomato. Mol. Plant Microbe Interact, 2001, 14:1453-1457.
    [38] Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 2003, 33:221-233.
    [39] Jaglo-Ottosen K R, Gilmour S J, Zarka D1 G, r Schabenberger O, Thomashow M F. Arabid- opsis CBF1Overexpression Induces COR Genes and Enhances Freezing Tolerance. Science, 1998, 280:104-106.
    [40] Jakoby M., Weisshaar B., Droge-Laster W., et al. Bzip transcription factors in Arabidopsis. Trends Plant Sci., 2002, 7:106-111.
    [41] Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN 115 gene from winter Brassica napus. Plant Mol. Biol., 1996, 30:679-84.
    [42] Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK. control of Arabidopsis flower and seed development by the homeotic gene APELATA2. the Plant Cell, 1994, 6:1211-1225.
    [43] Johnson PR, Ecker JR. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet, 1998, 32:227-254.
    [44] Kasuga M., Liu Q., Miura S., et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 1999, 17:287-291.
    [45] Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S. Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell. 2003, 15:2707-18
    [46] Kitajima S, Koyama T, Ohme-Takagi M, Shinshi H, Sato F. Characterization of Gene Expression of NsERFs, Transcription Factors of Basic PR Genes from Nicotiana sylvestris. Plant Cell Physiol, 2000, 41:817-824.
    [47] Kitajima S, Sato F. Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J Biochem (Tokyo). 1999, 125:1-8.
    [48] Kizis D., Lumbreras V., Pages M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Letters, 2001, 498: 187-189.
    [49] Kizis D., Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J., 2002, 30: 679-689.
    [50] Klessing DE Malamy J. The salicylic acid signal in plant. Plant Mol Biol., 1994, 26: 1439-58.
    [51] Knoester M, Pieterse CM, Bol JF, Van Loon LC. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant Microbe Interact, 1999, 12:720-727.
    [52] Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol., 2002, 5:325-31.
    [53] Lebel E.,Heifetz P., Thorne L. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J., 1998, 16:223-233.
    
    
    [54] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors,DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal responsive gene experession, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406.
    [55] Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cel, 2003, 15:165-78.
    [56] Lund ST, Stall RE, Klee HJ. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell., 1998, 10:371-382.
    [57] McConn M, Creelman RA, Bell E, Mullet JE, Browse J. Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci., 1997, 94:5473_5477.
    [58] Memelink J, Verpoorte R, Kijne J W. ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. TRENDS in Plant Science, 2001, 6:212-219.
    [59] Menke F L H, Champion A, Kijne J W, Memelink J. A novel jasmonate-and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J, 1999, 18:4455-4463.
    [60] O'Donnell P.J., Jones J.B., Antoine F.R. Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J. 2001, 25:315-323.
    [61] Ohme-Takagi M, Suzuki K, Shinshi H. Regulation of Ethylene-Induced Transcription of Defense Genes. Plant Cell Physiol, 2000, 41:1187-1192.
    [62] Ohme-Takagi, M., and Shinshi, H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995, 7:173-182.
    [63] Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13:1959-68:
    [64] Ohta M, Ohme-Takagi M, Shinshi H. Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J, 2000, 22:29-38.
    [65] Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94:7076-81
    [66] Ofiate-S?inchez L,Singh K B. Identification of Arabidopsis Ethylene-Responsive Element Binding Factors with Distinct Induction Kinetics after Pathogen Infection. Plant Physiol, 2002, 128:1313-1322.
    [67] Ouaked F, Rozhon W, Lecourieux D, Hirt H. A MAPK pathway mediates ethylene signaling in plants. EMBO J, 2003, 22:1282-8.
    [68] Park J.M., Park C.J., Lee S.B., et al. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in Tobacco. Plant Cell, 2001, 13: 1035-1046.
    [69] Riechmann J L, Meyerowitz E M. The AP2/EREBP Family of Plant Transcription Factors. Biol. Chem., 1998, 379:633-646.
    [70] Riechmann J.L., Heard J., Martin G.. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science, 2000, 290:2105-2110.
    [71] Robatzek S., Somssich I.E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev, 2002, 16: 1139-1149.
    
    
    [72] Ross J and O'Neill D. New interactions between classical plant hormones. TRENDS in Plant Science, 2001, 6:1-3.
    [73] Rushton P J, Somssich I E. Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol., 1998, 1:311-315.
    [74] Ruth RF and Christopher DR.. Abscisic Acid Biosynthesis and Response.. America, American Society of Plant Biologists, 2002,
    [75] Sakihito K., Yomotsugu K., Massru O.T., et al. Characterization of gene expression of NsERFs, transcription factors of basic PR genes from Nicotiana sylvestris. Plant Cell Biol, 2000, 41:817-824.
    [76] Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13:61-72.
    [77] Shen Y G, Zhang W K, He S J, Zhang J S, Liu Q, Chen S Y. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet, 2003, 106:923-30.
    [78] Shinozaki K, Kazuko Yamaguchi-Shinozaki. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol., 2000, 3:217-223
    [79] Singh K, Foley RC, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol. 2002, 5:430-6.
    [80] Solano R, Stepanova A, Chao Q, Ecker J R. Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE- RESPONSE- FACTOR1. Genes Dev., 1998, 12:3703-3714.
    [81] Stockinger E.J., Gilmour S.J., Thomashow M.F. Arabidopses thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in reponse to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 1997, 94: 1035-1040.
    [82] Strpa K, Marianne BF. Structure and expression of Kin2, one of two cold-and ABA- induced genes of Arabidopsis thaliana. Molecular Biology, 1992, 19:689-692.
    [83] Thara V K, Tang X, Gu Y Q, Martin G B, Zhou J-M. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes pti4 and pti5 independent of ethylene, salicylate and jasmonate. Plant J, 1999, 20:475-483
    [84] Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, Latche A, Pech JC, Bouzayen M. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett, 2003, 550:149-54.
    [85] Van der Fits L, Memetink J. The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J, 2001, 25:43-53.
    [86] van Wees SC, de Swart EA, van Pelt JA, van Loon LC, Pieterse CM. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2000, 97:8711-8716
    [87] Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J. A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci, 1998, 95:7209~7214.
    [88] Wang H, Cutler A J. Promoters from kinl and cor6.6, two Arabidopsis thaliana
    
    low-temperature- and ABA-inducible genes, direct strong beta-glucuronidase expression in guard cells, pollen and young developing seeds. Plant Mol Biol., 1995, 28:619-634.
    [89] Wu K, Tian L. Hollingworth J, Brown D C W, Miki B. Functional Analysis of Tomato Pti4 in Arabidopsis. Plant Physiol., 2002, 128:30-37.
    [90] Xiong LZ and Yang YN. Disease Resistance and Abiotic Stress Tolerance in RiceAre Inversely Modulated by an Abscisic Acid-InducibleMitogen-Activated Protein Kinase. The Plant Cell, Vol. 2003, 15:745-759.
    [91] Xu E, Narasimhan M.L., Samson T. Nitrilase-like protein interacts with Gcc box DNA- binding proteins involved in ethylene and defense responses. Plant Physiol, 1998, 118: 867-874.
    [92] Yang H J, Shen H, Chen L, Xing Y Y, Wang Z Y, Zhang J L, Hong M M. The OsEBP-89 gene of rice encodes a putative EREBP transcription factor and is temporally expressed in developing endosperm and intercalary meristem. Plant Mol. Biol., 2002, 50:379-391.
    [93] Yang Y, Shah J, Klessig D E Signal perception and transduction in plant defense responses. Genes Dev, 1997, 11:1621-1639.
    [94] Yu XM, Griftith M, Wiseman SB. Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol., 2001, 126:1232-40.
    [95] Zhou J, Tang X, Martin G. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 1997, 16:3207-3232.
    [96] Zhu Q, Droge-Laser W, Dixon R A, Lamb C J. Transcriptional activation of plant defense genes. Curt. Opin. Genet, 1996, 6:624-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700