基于邻近表面杂交分析的电化学生物传感技术用于蛋白和核酸的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类基因组计划的完成和功能蛋白质组学、基因组学的研究进展,发展高灵敏的方法用于蛋白质和核酸的快速分子监测就成为后基因时代的主要研究领域。电化学传感器由于其仪器简单、灵敏、选择性高等优点吸引了许多研究人员的注意,并成为研究的热点。
     基于当前对蛋白质和核酸的检测技术提出的高灵敏、高选择、高特异性和简便、高通量的要求,本论文发展了一系列新的电化学生物传感方法用于检测蛋白质和核酸,为蛋白质和核酸分子检测提供高性能的技术平台。并通过对实际样品的分析以及与经典检测方法的结果对照,初步验证了这些技术的实用性。
     (1)在第2章,我们利用核酸适体这一种通过体外组合化学筛选技术所得到的对目标蛋白分子具有高亲和力的寡核苷酸探针,基于一对亲合性核酸适体探针同时识别目标分子而空间邻近导致与某一互补序列杂交使稳定性提高这一邻近效应,提出了一种高灵敏的检测模型分析物血小板衍生生长因子BB(PDGF-BB)的表面邻近杂交分析电化学适体传感方法。该法首先在金电极表面利用巯基自组装技术固定了巯基修饰的短链寡核苷酸探针,设计了一个尾端延伸序列与短链寡核苷酸探针互补的PDGF-B核酸适体探针。该适体探针尾端修饰电活性基团二茂铁,且单个尾端序列与表面固定的短链寡核苷酸探针的熔链温度较低。利用该核酸适体探针可成对地与二聚体目标蛋白PDGF-BB同时结合,由于邻近效应促进两尾端序列同时与电极表面固定的两条短链寡核苷酸杂交,使得适体探针末端二茂铁标记与电极充分接近而发生高效电子传递,产生了显著的氧化还原电流。我们运用循环伏安法、差示脉冲伏安法、阻抗谱对该法进行了系统的表征,证实了该传感机理。结果表明,该法可实现PDGF-BB的高特异性地检测,响应动态范围可从1.0 pg/mL到20 ng/mL,检测限可达1.0 pg/mL。
     (2)鉴于上述邻近表面杂交分析技术中涉及一对邻近探针同时与第三探针的杂交,我们在实验中发现这种邻近杂交对热稳定性的改善仍然不是充分大,不利于分析灵敏度的提高与探针的设计。第3章中,我们在此实验发现的基础上,基于一对不同的核酸适体探针与目标蛋白同时结合而彼此邻近的效应,进一步发展了相关模型蛋白PDGF-BB检测的电化学适体表面邻近杂交分析传感技术。该法首先在金电极表面利用巯基自组装技术固定了巯基修饰的短链寡核苷酸探针,设计了一个尾端延伸序列与短链寡核苷酸探针5’半片段互补的PDGF-B核酸适体探针,该适体探针尾端修饰电活性基团二茂铁,且单个尾端序列与表面固定的短链寡核苷酸探针的熔链温度较低。同样地,设计了另一个尾端延伸序列与短链寡核苷酸探针3’半片段互补且熔链温度较低的PDGF-B核酸适体探针,其识别位点与第一适体探针不同,并且尾端序列下游具有与第一核酸适体探针尾端上游有较短的互补序列,这一短互补序列熔链温度也较低。两条不同的核酸适体探针可同时识别PDGF不同位点由于邻近而相互杂交,杂交体两尾端序列可与电极表面固定的巯基短链寡核苷酸杂交,并使末端二茂铁标记与电极充分接近,产生了显著的氧化还原电流。结果表明,该方法检测范围更宽,从0.1 pg/mL到50 ng/mL,检测限降低了一个数量级,为0.1 pg/mL。
     (3)第4章中,鉴于表面邻近杂交分析的高特异性与高灵敏度,我们发展了目标核酸分子检测的表面邻近杂交电化学传感技术,进一步拓展了表面邻近杂交分析的应用范围。与蛋白分子表面邻近杂交不同的是,核酸分子邻近杂交可利用待测核酸序列本身构成一对邻近探针。为此,我们设计了一个寡核苷酸检测探针,其3’末端修饰二茂铁,5’半片段与目标核酸分子互补且具有较高熔链温度,若目标核酸分子存在,检测探针与其杂交形成稳定的杂交体,杂交体一侧检测探针与目标核酸分子其余序列邻近,促进与电极表面固定的巯基短链寡核苷酸杂交,并使末端二茂铁标记与电极充分接近,产生了显著的氧化还原电流。与传统夹心式杂交分析相比,该法保证了末端二茂铁标记与电极充分接近,电子转移效率提高,可望显著改善灵敏度。且由于邻近分析使用了更短的互补序列,可有效提高其选择性。结果表明,该方法检测的线性范围宽,为1 fM到1 nM,而且能够成功的识别不同碱基数错配的序列。
     (4)第5章中,鉴于目前核酸适体较为有限不能满足大量蛋白检测的需要,我们发展了目标蛋白分子检测的表面邻近杂交电化学免疫传感技术,用一对核酸探针修饰的抗体代替核酸适体探针,将表面邻近杂交分析拓展运用于蛋白质的免疫检测,为建立蛋白分子检测的通用技术平台提供技术依据。以前列腺特异性抗原PSA为模型分析物,提出了基于表面邻近杂交分析的高灵敏PSA的电化学免疫传感技术。此技术原理与第3章的电化学适体传感器类似,利用一对识别PSA不同抗原决定簇的单克隆抗体,设计了与这一对单克隆抗体共价交联的两个寡核苷酸探针,一个尾端延伸序列与巯基修饰短链寡核苷酸探针5’半片段互补且熔链温度较低,该探针3’端修饰二茂铁;另一个尾端延伸序列与巯基修饰短链寡核苷酸探针3’半片段互补且熔链温度较低,而且,第二探针尾端序列下游与与第一探针尾端上游有较短的互补序列,这一短互补序列熔链温度也较低。抗体对与抗原同时结合后,两核酸探针由于邻近而相互杂交,杂交体两尾端序列可与电极表面固定的巯基短链寡核苷酸杂交,并使末端二茂铁标记与电极充分接近,产生了显著的氧化还原电流。结果表明,该方法检测动态范围为25 pg到1 ng,检测下限为25 pg,且该免疫传感器可再生使用。
     (5)第6章中,提出了一种基于分子信标变构控制的电化学通道法检测目标核酸分子杂交反应的电化学DNA传感方法。该方法设计运用了一种发夹结构核酸探针分子,其一端标记有生物素作为阻塞源,另一端标记氨基并通过二硫杂环化合物共价固定于金电极表面,电极用巯基十一酸自组装膜封闭。由于发夹探针茎部核酸双链螺旋体空间位阻较大,生物素阻塞元与巯基十一酸疏水烷基链作用进一步提高空间位阻,不利于电活性分子表面扩散。当探针与目标核酸分子杂交时,探针发夹构象改变,茎部双链结构改变为柔性单链结构,阻塞物离开电极表面,在巯基十一酸自组装膜内形成电化学针孔通道,使得电活性分子可进行表面扩散,产生电化学氧化还原电流。使用该方法对包含第142位密码子的α地中海贫血基因片断进行了分析。浓度检测动态线性范围为2.8×10-18 - 8.7×10-8 M,检测限可达1.1×10-19 M。该方法灵敏、特异性好、无需标记、可再生,可以很好地用于单碱基错配的区分。
     (6)第7章中,建立了一种基于纳米金标记及金增强表面吸附伏安分析的新型电化学免疫传感技术。该方法以人免疫球蛋白G(h IgG)为模型分析物,将羊抗人免疫球蛋白G抗体固定于玻碳电极表面构成免疫传感器界面。固定化抗体与分析目标物h IgG发生免疫反应而将h IgG捕获,利用夹心法将纳米金标记的h IgG抗体结合于电极表面。通过纳米金自催化还原可在电极表面形成大粒径纳米金颗粒,增加电极表观面积与纳米金粒子与电极界面的电荷转移效率。利用电活性探针在金表面的自组装吸附,用差示脉冲伏安法对电极表面吸附量进行检测,可实现目标蛋白的高灵敏定量免疫分析。
With the implement of the Human Genome Project and the development of the functional genomics and proteomics research, it’s an important domain that high sensitive assay methods were developed for the fast detection of the proteins and DNA in real time in the after-genome age. Electochemical biosensors attract significant attention and become the research hotspot for their simple, sensitive, selective and compatible with microfabrication technologies, et al.
     In this thesis, a series of novel electrochemical biosensor methods were developed to satisfy and achieve the need of the high sensitivity, selectivity and affinity, as well as prove a high performance platform for the detection of proteins and DNA. The results primarily proved that the proposed technology is reasonably comparable with the classical detection method, indicating the practicability of using the proposed method in clinical diagnosis. The detailed content described as follows:
     (1)In chapter 2, we exploited aptamer that was short DNA or RNA oligonucleotides selected by SELEX with high affinity for the target proteins to developed a surface proximity-dependent hybridization electrochemical aptasensor method for the high sensitive detection of model analyte PDGF-BB based on the proximity effect, that is to say a pair of affinity aptamer probes simutineously recognize the target molecules and form the proximity probes so that some complementary sequence hybridization enhanced the stability. the aptasensor was constructed by self-assembly of a short thiolated DNA oligonucleotide 1 on the gold electrode via the alkanethiol moiety at the 5’-terminal. A DNA aptamer 2 to PDGF-BB with a sequence extension at the 3’-end is used as the affinity probe. The aptamer probe has a electroactive ferrocene-labeled tail sequence that is complementary to the surface-tethered DNA strands with a predesigned low melting temperature. When aptamer pairs simultaneously bind to the homodimer of PDGF-B, the tail sequence are brought into close proximity with their local concentration increased substantially to allow the pair of tail sequences to hybridize together with the surface-tethered DNA strands. Then the ferrocene labels of the tail sequence are drawn close to the electrode surface and produce a detectable redox current. CVs, DPVs and impedances were used to systemly characteristic this method, conforming the mechanism of the biosensor. In conclusion, this method can be implemented to the high affinity detection of PDGF-BB, dynamically increased DPV current with increasing PDGF-BB concentration ranging from 1.0 pg/mL to 20 ng/mL, with a readly achieved detection limit of 1.0 pg/mL.
     (2)Whereas the aforementioned technology refered pair of proximity probes simultineouly to hybridizing with the surface-tethered DNA, it was found from the experiment that the proximity-dependent surface hybridization could not sufficiently improved the thermal stability and favorably enhanced the sensitivity. In Chapter 3, based on the mentioned mechanism of proximity-dependent surface hybridization assay, an electrochemical aptasensor based on the proximity-dependent surface hybridization assay by pair of different aptamer probes simultaneously bind to the protein for the detection of the related model protein-PDGF-BB was ulteriorly developed. The aptasensor interface was fabricated by self-assembly of a short thiolated DNA oligonucleotide 1 on the gold electrode via the alkanethiol moiety at the 5’-terminal. DNA aptamer 3 and 4 to PDGF-BB with a sequence extension at the 3’-end and the 5’-end is used as a pair of affinity probes. One aptamer probe has a electroactive ferrocene-labeled tail sequence at the 5’-end that is complementary to the surface-tethered DNA strands with a predesigned low melting temperature. Samely, the other aptamer probe with different recognization location has a tail sequence at the 3’-end that is complementary to the surface-tethered DNA strands with a predesigned low melting temperature. These two different aptamer probes could simultaneously bind to the different location of PDGF-BB homodimer. The tail sequence are brought into close proximity with their local concentration increased substantially to hybridized each other and allow the pair of tail sequences to hybridize together with the surface-tethered DNA strands. Then the ferrocene labels of the tail sequence are drawn close to the electrode surface and produce a detectable redox current. As a result, this method was proved to be wider detection range from 0.1 pg to 50 ng and lower detection limit of 0.1 pg.
     (3)In chapter 4, proximity-dependent surface hybridization assay was developed to detect DNA by electrochemical biosensor method based on the high affinity and sensitivity of proximity-dependent surface hybridization assay in order to extending the application range. Different to the proteins, the nucleic acid detection based on proximity-dependent surface hybridization exploited the target DNA per se to construct a pair of proximity probes. So an oligonucleotide as the detection probe has a electroactive ferrocene-labeled tail at the 3’-end that is complementary to the target nucleic acid with a predesigned low melting temperature by 5’-end fragment. In the presense of target DNA, the detection probe and the target nucleic acid formed the hybridization complex. The hybridization one side was the detection probe that near to the other sequences of the target and make it hybridize to the surface-tethed oligonucleotide. This draw the ferrocene closed to the electrode surface and regenerated a readily detectable signal. Compare with the conventional sandwich hybridization assay, this approach ensured the ferrocene marker to enough close the electrode surface and increased the charge transport efficiency as well as improved the sensitivity remarkably. The detectable range dynamictally was from 1 fM to 1 nM and in the range the peak current exhibits a linear correlation to the log of target DNA concentration, the limit of the detection is 1 pM. This electrochemical DNA sensor can be regenerated and discriminate the mismatch with different bases sequences.
     (4)In chapter 5, because of the aptamer unsatisfied the need of plentiful proteins detection, electrochemical immunosensor based-on proximity-dependent surface hybridization assay was used to detect the proteins. Herein a pair of antibody- modified oligonucleotids replaced the aptamer probes extend proximity-dependent surface hybridization assay to the proteins immunoassay that might creat a universal methodology for developing high-performance biosensors in sensitive detection of proteins. Electrochemical immunosensor based on proximity-dependent surface hybridization assay for high sensitive PSA detection was proposed. Similarly to the electrochemical aptasensor mechanism in chapter 3, a pair of mono-antibodies recognized different antigenic determinants of PSA were used to covalently crosslink two oligonucleotides. One probe has a electroactive ferrocene-labeled tail sequence at the 3’-end that is complementary to the surface-tethered DNA strands at 5’-end with a predesigned low melting temperature. Samely, the other probe has a tail sequence at the 3’-end that is complementary to the surface-tethered DNA strands at 3’-end with a predesigned low melting temperature. Furthermore, the first probe at the backward tail sequence and the seconde probe at the foreward tail sequence have a short complementary region with a low melting temperature. Antibodies simultaneously bind to the antigene, two oligonucleotides tail sequences are brought into close proximity with their local concentration increased substantially to hybridized each other and allow the pair of tail sequences to hybridize together with the surface-tethered DNA strands. Then the ferrocene labels of the tail sequence are drawn close to the electrode surface and produce a detectable redox current. The PSA was determined in the range of 25 pg to 1 ng with the detection limit of 25 pg and the immunosensor could be reusable.
     (5) In chapter 6, a new sensitive, selective, reagentless and reusable electrochemical DNA sensor for detection of hybridization based on electrochemical channels switched by allosteric molecular beacon was described. This electrochemical DNA sensor employs hairpin oligonucleotide labeled with biotin as a block at one tail and labeled with NH2 at the other tail that interacted with disulfide heterocyclic compound to fix on the gold electrode surface. Because molecular beacon-like DNA stem duplex has the biggest space hindrance and the biotin as a block interacted with the 11-mercaptoundecanoic acid (MUA) increase the space hindrance, the electroactive molecules could not commendably diffuse on the electrode surface. When the probes hybridized with the target nucleic acid, the block was moved away from the electrode surface and thus formed an electrochemical pinhole channel in the 11-mercaptoundecanoic acid (MUA) self-assemble film. So the electroactive molecule can diffused, regenerated the electrochemical redox signal. The DNA target, associating with theα-thalassemia gene containing the codon 142, was determined in the range of 2.8×10-18~8.7×10-8 M, and the detection limit can be reached 1.1×10-19 M. This electrochemical sensor can be realized the high sensitive, selective, reagentless and reusable DNA biosensor and uses for indentication of SNPs.
     (6) In chapter 7, a novel electrochemical immunosensor was established to detect h IgG based on gold nanoparticles tag and enhancement by surface absorbtion voltaggram assay. h IgG as the model analyte, the immunosensor interface was fabricated by immobilized GAH IgG on the glass carbon electrode surface. The immobilized antibody reacted with the analyte target-the h IgG and form sandwich configuration by using the colloidal gold-label goat anti-human immunoglobulin G (GAH IgG) as the detection probe. The size of gold nanoparticles and the apparent area of the electrode was enhanced by nanogold catalyting the reduction of HAuCl4 on the electrode surface. The self-asseble absorption of electroactive probes on the gold nanoparticles surface was exploited to measure the absorption amount on the electrode surface by DPV. The developed method is expected to hold great promise in immunosensing due to the ease of implementation, high sensitivity and specificity.
引文
[1] Campanella L, Cubadda F, Sammartino M P, et al. An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Research, 2001, 35 (1): 69–76
    [2] Lee H O, Cheun B S, Yoo J S, et al. Application of a channel biosensor for toxicity measurements in cultured Alexandrium tamarense. Journal of Natural Toxins, 2000, 9(4): 341–348
    [3]冯德荣.生物传感器的研究现状和发展方向.山东科学,1999,12(4): 1–6
    [4]乔晓艳,贾莲凤.新型生物传感器在生物医学工程中的应用.传感器技术,2002,21(10): 62–64
    [5]韩树波,李新,郭光美等.伏安型细菌总数生物传感器的研究与应用.化学通报,2000,63(2): 49–51
    [6] Alexander D C, Costanzo M A, Guzzo J, et al. Blazing towards the next millennium: Luciferase fusions to identify genes responsive to environmental stress. Water, Air and Soil Pollution, 2000, 123(1-4): 81–94
    [7] Yamazaki T, Meng Z H, Mosbach K, et al. A novel amperometric sensor for organo-phosphotriester insecticides detection employing catalytic polymer mimicking phosphotriesterase catalytic center. Electrochemistry, 2001, 69(12): 969–972
    [8] Trosok S P, DriscollB T, Luong J H T. Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement. Applied Microbiology and Biotechnology, 2001, 56(3-4): 550–554
    [9]张悦,王建龙,李花子等.生物传感器快速测定BOD在海洋监测中的应用.海洋环境科学,2001,20(1): 50–54
    [10] Leth S, Maltoni S, Simkus R, et al. Engineered bacteria based biosensors for monitoring bioavailable heavy metal. Electroanalysis, 2002, 14(1): 35–42
    [11] Yoshida N, McNiven S J, Yoshida A, et al. A compact optical system for multi- determination of biochemical oxygen demand using disposable strips. Field analytical chemistry and technology, 2001, 5(5): 222–227
    [12] Wang J. Miniaturized DNA Biosensor for Detecting Cryptosporidium in Water Samples. Technical completion report-311, 2000, 26(3): 1–11
    [13] Arkhypova V N, Dzyadevych S V, Soldatkin A P, et al. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances.Talanta, 2001, 55(5): 919–927
    [14] Riether K B, Dollard M A, Billard P. Assessment of heavy metal bioavailability using Escherichia coli zntAp lux and copAp lux-based biosensors. Applied microbiology and biotechnology, 2001, 57(5-6): 712–716
    [15]司士辉.生物传感器.北京:化学工业出版社,2003,7–9
    [16]饶家声.生物传感器的研究现状和发展趋势.湖南冶金技术学院学报,2007,7(2): 21–23
    [17]田昭武,苏文煅.电化学基础研究的进展.电化学,1995,1(4): 375–383
    [18] Wang J. From DNA biosensors to gene chips. Nucleic Acids Research, 2000, 28(16): 3011–3016
    [19] Pandey P C, Aston R W, Weetall H H. Tetracyanoquinodimethane mediated glucose sensor based on a self-assembling alkanethiol/phospholipid bilayer. Biosensors and Bioelectronics, 1995, 10(8): 669–674
    [20] Vandenheuvel D J, Kooyman R P H, Drijfhout J W, et al. Synthetic peptides as receptors in affinity sensors: a feasibility study. Analytical Biochemistry, 1993, 215(2): 223–230
    [21] Hazel J, Fuchigami N, Gorbunov V, et al. Ultramicrostructure and microthermomechanics of biological IR detectors: materials properties from a biomimetic perspective. Biomacromolecules, 2001, 2(1): 304–312
    [22] Kuhr W G. Electrochemical DNA analysis comes of age. Nature Biotechnology, 2000, 18(10): 1042–1043
    [23]马丽,白燕,刘仲明.电化学DNA传感器研究进展.传感器技术,2002,21(3): 58–64
    [24]邹小勇,陈汇勇,李荫.电化学DNA传感器的研制及其医学应用.分析测试学报,2005,24(1):123–128
    [25] Shi W J, Ai S Y, Li J H, et al. Electrochemical Biosensor Based on Dendrimer Immobilized Deoxyribonucleic Acid. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2008, 36(3): 335–338
    [26]郭会时,李益恒.化学修饰碳糊电极在吸附伏安法中的应用.韶关学院学报(自然科学版), 2001, 22(3): 77–82
    [27]孙微,卢丹青,李一峻等. PVC-碳糊修饰电极的研制.分析试验室, 2003, 22(6): 40–43
    [28]胡舜钦,刘志国,沈国励.聚苯乙烯和聚乙烯醇作粘结剂的新型碳糊电极用于构建电化学免疫传感器的研究.湖南工业大学学报, 2008, 22(1): 99–103
    [29] Xu X H, Yang H C, Mallouk T E, et al. Immobilization of DNA on an` Aluminum(III) Alkanebisphosphonate Thin Film with Electrogenerated Chemiluminescent Detection. Journal of the American Chemical Society, 1994, 116(18): 8386–8387
    [30] Wang M J, Sun C Y, Wang L Y, et al. Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33(5): 1117–1125
    [31] Meric B, Kerman K, Ozkan D, et al. Indicator-free electrochemical DNA biosensor based on adenine and guanine signals. Electroanalysis, 2002, 14(18): 1245–1250
    [32] Pournaghi-Azar M H, Hejazi M S, Alipour E. Developing an electrochemical deoxyribonucleic acid (DNA) biosensor on the basis of human interleukine-2 gene using an electroactive label. Analytica Chimica Acta, 2006, 570(2): 144–150
    [33] Choi Y S, Lee K S, Park D H. Gene detection using Hoechst 33258 on a biochip. Current Applied Physics, 2006, 6(4): 777–780
    [34] Wang J, Cai X H, Jonsson C, et al. Adsorptive stripping potentiometry of DNA at electrochemically pretreated carbon paste electrodes. Electroanalysis, 1996, 8(1): 20–24
    [35] Athey D, Ball M, Calum J M, et al. A study of enzyme-catalyzed product deposition on planar gold electrodes using electrical impedance measurement. Electroanalysis, 1995, 7(3): 270–273
    [36]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社, 2002
    [37] Kharitonov A B, Alfonta L, Katz E, et al. Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry. Electroanalytical Chemistry, 2000, 487(2): 133–141
    [38] Laureyn W, Nelis D, van Gerwen P, et al. Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sensors and Actuators B Chemical, 2000, 68(1-3): 360–370
    [39] Peng H, Soeller C, Cannell MB, et al. Electrochemical detection of DNA hybridization amplified by nanoparticles. Biosensors and Bioelectronics, 2006, 21(9): 1727–1736
    [40] Sun Y, Yan F, Yang W, et al. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer by-layer covalent attachment. Biomaterials, 2006, 27(21): 4042–4049
    [41] Dufford R T, Nightingale D, Gaddum L W. LUMINESCENCE OF GRIGNARDCOMPOUNDS IN ELECTRIC AND MAGNETIC FIELDS, AND RELATED ELECTRICAL PHENOMENA. Journal of the American Chemical Society, 1927, 49(8): 1858–1864
    [42] Knight A W, Greenway G M. Occurrence, mechanisms and analytical applications of electrogenerated chemiluminescence. Analyst, 1994, 119(5): 879–890
    [43] Deaver D R. A new non-isotopic detection system for immunoassays. Nature, 1995, 377(6551): 758–760
    [44] F?hnrich K A, Pravda M, Guilbault G G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta, 2001, 54(4): 531–559
    [45]杜晓燕,陈文华,常东.电化学DNA传感器及其在环境和医学检验中的应用.传感技术学报,2002,15(4):347–352
    [46]高志贤,晁福寰.DNA生物传感器及其研究进展.生物技术通讯,2000,11(1):45–53
    [47]马心英.生命科学中的分析化学.菏泽师专学报,2002,4(2):51–53
    [48] Livache T, Roget A, Dejean E, et al. Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Research, 1994, 22(15): 2915–2921
    [49] Su H B, Kallury K M R, Thompson M, et al. Interfacial Nucleic Acid Hybridization Studied by Random Primer 32P Labeling and Liquid-Phase Acoustic Network Analysis. Analytical Chemistry, 1994, 66(6): 769–774
    [50] Okamoto A, Ichiba T, Saito I. Pyrene-Labeled Oligodeoxynucleotide Probe for Detecting Base Insertion by Excimer Fluorescence Emission. Journal of the American Chemical Society, 2004, 126(27): 8364–8365
    [51] Epstein J R, Biran I, Walt D R. Fluorescence-based nucleic acid detection and microarrays. Analytica Chimica Acta, 2002, 469(1): 3–36
    [52] Maruyama T, Takata T, Ichinose H, et al. Detection of Point Mutations in the HBV Polymerase Gene Using a Fluorescence Intercalator in Reverse Micelles. Biotechnology Progress, 2005, 21(2): 575–579
    [53] Ruiz-Ponte C, Carracedo A, Barros F. Duplication and deletion analysis by fluorescent real-time PCR-based genotyping. Clinica Chimica Acta, 2006, 363(1-2): 138–146
    [54] Oliveira-Brett A N M, Vivan M, Fernandes I R, et al. Electrochemical detection of in situ adriamycin oxidative damage to DNA. Talanta, 2002, 56(5): 959–970
    [55] Zhu Z W, Li C, Li N Q. Electrochemical studies of quercetin interacting with DNA. Microchemical Journal, 2002, 71(1): 57–63
    [56] La-Scalea M A, Serrano S H P, Ferreira E I, et al. Voltammetric behavior of benznidazole at a DNA-electrochemical biosensor. Pharmaceutical and Biomedical Analysis, 2002, 29(3): 561–568
    [57] Wang J. Towards genoelectronics: Electrochemical biosensing of DNA hybridization. Chemistry - A European Journal, 1999, 5(6): 1681–1685
    [58] Mikklesen S R. Electrochecmical biosensors for DNA sequence detection. Electroanalysis, 1996, 8(1): 15–19
    [59] Palecek E, Fojta M. Detecting DNA hybridization and damage. Analytical Chemistry, 2001, 73(3): 75A–83A
    [60] Steichen M, Decrem Y, Godfroid E, et al. Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru(NH3)6]3+ on gold electrodes. Biosensors and Bioelectronics, 2007, 22(9-10): 2237–2243
    [61] Teh H F, Gong H Q, Dong X D, et al. Electrochemical biosensing of DNA with capture probe covalently immobilized onto glassy carbon surface. Analytica Chimica Acta, 2005, 551(1-2): 23–29
    [62] Sun X Y, He P G, Liu S H, et al. Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. Talanta, 1998, 47(2): 487–495
    [63] Patolsky F, Katz E, Willner I. Amplified DNA Detection by Electrogenerated Biochemiluminescence and by the Catalyzed Precipitation of an Insoluble Product on Electrodes in the Presence of the Doxorubicin Intercalator. Angewandte Chemie International Edition, 2002, 41(18): 3398–3402
    [64] Jin Y, Yao X, Liu Q, et al. Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator. Biosensors and Bioelectronics, 2007, 22(6): 1126–1130
    [65] Kara P, Meric B, Zeytinoglu A, et al. Electrochemical DNA biosensor for the detection and discrimination of herpes simplex Type I and Type II viruses from PCR amplified real samples. Analytica Chimica Acta, 2004, 518(1-2): 69–76
    [66] Liu S H, Ye J N, He P G, et al. Voltammetric determination of sequence-specific DNA by electroactive intercalator on graphite electrode. Analytica Chimica Acta, 1996, 335(3): 239–243
    [67] Millan K M, Mikkelsen S R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Analytical Chemistry, 1993, 65(17): 2317–2323
    [68] Yan F, Erdem A, Meric B, et al. Electrochemical DNA biosensor for the detection of specific gene related to Microcystis species. Electrochemistry Communications, 2001, 3(5): 224–228
    [69] Kelley S O, Boon E M, Barton J K, et al. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Research, 1999, 27(24): 4830–4837
    [70] Wu Z S, Jiang J H, Shen G L, et al. Highly sensitive DNA detection and point mutation identification: an electrochemical approach based on the combined use of ligase and reverse molecular beacon. Human mutation, 2007, 28(6): 630–637
    [71] Xiao Y, Lubin A A, Baker B R, et al. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proceedings of the National Academy of Sciences U S A, 2006, 103(45): 16677–16680
    [72] Takenaka S, Uto Y, Kondo H, et al. Electrochemically active DNA probes: Detection of target DNA sequences at femtomole level by hightperformance liquid chromatography with electrochemical detection. Analytical Biochemistry, 1994, 218(2): 436–443
    [73] Gao Z Q, Rafea S, Lim L H. Detection of Nucleic Acids Using Enzyme-Catalyzed Template-Guided Deposition of Polyaniline. Advanced Materials, 2007, 19(4): 602–606
    [74] Kavanagh P, Leech D. Redox Polymer and Probe DNA Tethered to Gold Electrodes for Enzyme-Amplified Amperometric Detection of DNA Hybridization. Analytical Chemistry, 2006, 78(8): 2710–2716
    [75] Miranda-Castro R, de-los-Santos-Alvarez P, Lobo-Castanon M J, et al. Hairpin-DNA Probe for Enzyme-Amplified Electrochemical Detection of Legionella pneumophila. Analytical Chemistry, 2007, 79(11): 4050–4055
    [76] Authier L, Grossiord C, Brossier P, et al. Gold Nanoparticle-Based Quantitative Electrochemical Detection of Amplified Human Cytomegalovirus DNA Using Disposable Microband Electrodes. Analytical Chemistry, 2001, 73(18): 4450–4456
    [77] Cai H, Xu Y, Zhu N N, et al. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst, 2002, 127(6): 803–808
    [78] Kawde A, Wang J. Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis, 2004, 16(1-2): 101–107
    [79] Wang J, Liu G, Merkoci A. Electrochemical Coding Technology for Simultaneous Detection of Multiple DNA Targets. Journal of the American Chemical Society, 2003, 125(11): 3214–3215
    [80] Wang J, Xu D, Polsky R. Magnetically-Induced Solid-State Electrochemical Detection of DNA Hybridization. Journal of the American Chemical Society, 2002, 124(16): 4208–4209
    [81] Ozsoz M, Erdem A, Kerman K. Electrochemical Genosensor Based on Colloidal Gold Nanoparticles for the Detection of Factor V Leiden Mutation Using Disposable Pencil Graphite Electrodes. Analytical Chemistry, 2003, 75(9): 2181–2187
    [82] Wang J, Xu D, Kawde A N, et al. Metal Nanoparticle-Based Electrochemical Stripping Potentiometric Detection of DNA Hybridization. Analytical Chemistry, 2001, 73(22): 5576–5581
    [83] Xu Y, Cai H, He P G, et al. Probing DNA Hybridization by Impedance Measurement Based on CdS-Oligonucleotide Nanoconjugates. Electroanalysis, 2004, 16(1-2): 150–155
    [84] Wang J, Cai X, Tian B, et al. Microfabricated thick-film electrochemical sensor for nucleic acid determination. Analyst, 1996, 121(7): 965–969
    [85] Palecek E. Oscillographic Polarography of Highly Polymerized Deoxyribonucleic Acid. Nature, 1960, 188(4751): 656–657
    [86] Wang J, Rivas G, Fernandes J R, et al. Indicator-free electrochemical DNA hybridization biosensor. Analytica Chimica Acta, 1998, 375(3): 197–203
    [87] Wang J, Kawde A N. Pencil-based renewable biosensor for label-free electrochemical detection of DNA hybridization. Analytica Chimica Acta, 2001, 431(2): 219–224
    [88] Komarova E, Aldissi M, Bogomolova A. Direct electrochemical sensor for fast reagent-free DNA detection. Biosensors and Bioelectronics, 2005, 21(1): 182–189
    [89] Peng H, Soeller C, Vigar N A, et al. Label-free detection of DNA hybridization based on a novel functionalized conducting polymer. Biosensors and Bioelectronics, 2007, 22(9-10): 1868–1873
    [90] Erdem A, Pividori M I, Lermo A, et al. Genomagnetic assay based on label-free electrochemical detection using magneto-composite electrodes. Sensors and Actuators B Chemical, 2006, 114(2): 591–598
    [91] Lemeshko S V, Powdrill T, Belosludtsev Y Y, et al. Oligonucleotides form a duplex with non-helical properties on a positively charged surface. Nucleic AcidsResearch, 2001, 29(14): 3051–3058
    [92] de la Escosura-Mu?iz A, González-García M B, Costa-García A. DNA hybridization sensor based on aurothiomalate electroactive label on glassy carbon electrodes. Biosensors and Bioelectronics, 2007, 22(6): 1048–1054
    [93] Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical sensor for hybridization detection. Biosensors and Bioelectronics, 1999, 14(1): 43–51
    [94] Sastrt M, Ramakrishnan V, Pattarkine M, et al. Hybridization of DNA by sequential immobilization of oligonucleotides at the air-water interface. Langmuir, 2000, 16(24): 9142–9146
    [95] Barhoumi H, Maaref A, Cosnier S, et al. Urease immobilization on biotinylated polypyrrole coated ChemFEC devices for urea biosensor development. ITBM-RBM, 2008, 29(2-3): 192–201
    [96] Cui X Q, Pei R J, Wang Z X, et al. Layer-by-layer assembly of multilayer films composed of avidin and biotin-labeled antibody for immunosensing. Biosensors and Bioelectronics, 2003, 18(1): 59–67
    [97] Yamasaki R, Ito M, Lee B, et al. Single probe nucleic acid immobilization on chemically modified single protein by controlling ionic strength and pH. Analytica Chimica Acta, 2007, 603 (1): 76–81
    [98] K’Owino I O, Mwilu S K, Sadik O A. Metal-enhanced biosensor for genetic mismatch detection. Analytical Biochemistry, 2007, 369(1): 8–17
    [99]王保珍,杜小燕,郑晶等.铂电极表面生物素-亲和素固载单链脱氧核糖核酸的电化学传感器.分析化学,2005,33(6):789–792
    [100] Yau H C M, Chan H L, Yang M S. Electrochemical properties of DNA-intercalating doxorubicin and methylene blue on n-hexadecyl mercaptan-doped 5′-thiol-labeled DNA- modified gold electrodes. Biosensors and Bioelectronics, 2003, 18(7): 873–879
    [101] Ozkan D, Erdem A, Kara P, et al. Electrochemical detection of hybridization using peptide nucleic acids and methylene blue on self-assembled alkanethiol monolayer modified gold electrodes. Electrochemistry Communications, 2002, 4(10): 796–802
    [102] Millan K M, Spurmanis A J, Mikkelsen S R. Covalent immobilization of DNA onto glassy carbon electrodes. Electroanalysis, 1992, 4(10): 929–932
    [103] Hashimoto K, Ito K, Ishimori Y. Sequence-Specific Gene Detection with a Gold Electrode Modified with DNA Probes and an Electrochemically Active Dye. Analytical Chemistry, 1994, 66(21): 3830–3833
    [104] Lucarelli F, Kicela A, Palchettti I, et al. Electrochemical DNA biosensor for analysis of wastewater samples. Bioelectrochemistry, 2002, 58(1): 113–118
    [105] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505–510
    [106] Ellingtion A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818–822
    [107] Kandimalla V B, Ju H X. New horizons with a multi dimensional tool for application in analytical chemistry-aptamer. Analytical Letters, 2004, 37(11): 2215–2233
    [108] Thomas H, Dinshaw J, Patel. Adaptive Recognition by Nucleic Acid Aptamers. Science, 2000, 287(5454): 820–825
    [109] Nguyen D H, DeFina S C, Fink W H, et al. Binding to an RNA aptamer changes the charge distribution and conformation of malachite green. Journal of the American Chemical Society, 2002, 124(50): 15081–15084
    [110] Jenison R D, Gill S C, Pardi A, et al. High-resolution molecular discrimination by RNA. Science, 1994, 263(5125): 1425–1429
    [111] Yang Y, Kochoyan M, Burgstaller P, et al. Structural Basis of Ligand Discrimination by Two Related RNA Aptamers Resolved by NMR Spectroscopy. Science, 1996, 272(5266): 1343–1346
    [112] Jiang Y X, Zhu C F, Ling L S, et al. Specific Aptamer-Protein Interaction Studied by Atomic Force Microscopy. Analytical Chemistry, 2003, 75(9): 2112–2116
    [113] Clark S L, Remcho V T. Aptamers as analytical reagents. Electrophoresis, 2002, 23(9): 1335–1340
    [114] Lee J F, Hesselberth J R, Meyers L A, et al. Aptamer database. Nucleic Acids Research, 2004, 32(Database issue): D95–D100
    [115] Kirham P M, Neri D, Winter G. Towards the design of an antibody that recognises a given protein epitope. Journal of Molecular Biology, 1999, 285(3): 909–915
    [116] Mir M, Vreeke M, Katakis I. Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications, 2006, 8(3): 505–511
    [117] Polsky R, Gill R, Kaganovsky L. Nucleic Acid-Functionalized Pt Nanoparticles: Catalytic Labels for the Amplified Electrochemical Detection of Biomolecules. Analytical Chemistry, 2006, 78(7): 2268–2271
    [118] Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie International Edition, 2005, 44(34): 5456–5459
    [119] Xiao Y, Piorek B D, Plaxco KW, et al. A Reagentless Signal-On Architecture for Electronic, Aptamer-Based Sensors via Target-Induced Strand Displacement. Journal of the American Chemical Society, 2005, 127(51): 17990–17991
    [120] Hansen J A, Wang J, Kawde A N, et al. Quantum-Dot/Aptamer-Based Ultrasensitive Multi-Analyte Electrochemical Biosensor. Journal of the American Chemical Society, 2006, 128(7): 2228–2229
    [121] Le Floch F L, Ho H A, Leclerc M. Label-Free Electrochemical Detection of Protein Based on a Ferrocene-Bearing Cationic Polythiophene and Aptamer. Analytical Chemistry, 2006, 78(13): 4727–4731
    [122] Ho H A, Leclerc M. Optical Sensors Based on Hybrid Aptamer/Conjugated Polymer Complexes. Journal of the American Chemical Society, 2004, 126(5): 1384–1387
    [123] Ho H A, Dor Q K, Boissinot M, et al. Direct Molecular Detection of Nucleic Acids by Fluorescence Signal Amplification. Journal of the American Chemical Society, 2005, 127(36): 12673–12676
    [124] Zayats M, Huang Y, Gill R, et al. Label-Free and Reagentless Aptamer-Based Sensors for Small Molecules. Journal of the American Chemical Society, 2006, 128(42): 13666–13667
    [125] Saubrey G Z. Use of quartz vibrator for weighting thin films on a microbalanlce. Zeitschrift fur Physik, 1959, 155: 206–222
    [126] Liss M, Peterson B, Wolf H, et al. An Aptamer-Based Quartz Crystal Protein Biosensor. Analytical Chemistry, 2002, 74(17): 4488–4495
    [127] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-Functionalized Au Nanoparticles for the Amplified Optical Detection of Thrombin. Journal of the American Chemical Society, 2004, 126(38): 11768–11769
    [128] Yalow R S, Berson S A. Assay of plasma insulin in human subjects by immunological methods. Nature, 1959, 184(21): 1648–1649
    [129] Ekins R P. The estimation of thyroxine in human plasma by an electrophoretic technique. Clinica Chimica Acta, 1960, 5(4): 453–459
    [130] You H X, Lowe C R. Progress in the application of scanning probe microscopy to biology. Current opinion in biotechnology, 1996, 7(1): 78–84
    [131]汪尔康.生命分析科学.北京:科学出版社,2006,353
    [132] Luppa P B, Sokoll L J, Chan D W. Immunosensors–principles and applications to clinical chemistry. Clinica Chimica Acta, 2001, 314(1-2): 1–26
    [133] North J R. Immunosensors: Antibody-based biosensors. Trends in Biotechnology, 1985, 3(7): 180–186
    [134] Ozge M, Christopher J B. Stable sensor layer-assembled onto surfaces using azobenzene-containing polyelectrolytes. Analysts, 2001, 126(11): 1861–1865
    [135] Lei C H, Deng J Q. Hydrogen peroxide sensor on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite bovine serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface. Analytical Chemistry, 1996, 68(19): 3344–3349
    [136] Karyakin A A, Presnova G V, Rubtsova M Y, et al. Oriented immobilization of antibodies onto the gold surface via their thiol groups. Analytical Chemistry, 2000, 72(16): 3805–3811
    [137]周亚民,王永东,王桦等.Nafion膜修饰无分离步骤的IgM电化学免疫传感器研究.分析测试学报,2006,5(4):20–23
    [138] Santandreu M, Alegret S, Fàbregas E. Determination ofβ-HCG using amperometric immunosensors based on a conducting immunocomposite. Analytica Chimica Acta, 1999, 396(2-3): 181–188
    [139] Bordes A L, Limoges B, Brossier P, et al. Simultaneous homogeneous immunoassay of phenytoin and Phenobarbital using a Nafion-loaded carbon paste electrode and two redox cationic labels. Analytica Chimica Acta, 1997, 356(2-3): 195–203
    [140] Shons A, Dorman F, Najarian J. An immunospecific microbalance. Journal of biomedical materials research, 1972, 6(6): 565–570
    [141] Roeder J E, Bastians G J. Microgravimetric immuno assay with piezoelectric crystals. Analytical Chemistry, 1983, 55(14): 2333–2336
    [142]裴仁军,胡继明,胡毅等.蛋白A定向固定抗体的纤维蛋白压电免疫传感器的研究.高等学校化学学报,1998,19(3):363–366
    [143] Katz E, Willner I. Amperometric amplification of antigen-antibody association at monolayer interfaces: design of immunosensor electrodes. Journal of Electroanalytical Chemistry, 1996, 418(1-2): 67–72
    [144] Thévenot D R, Toth K, Durst R A, et al. Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics, 2001, 16(1-2): 121–131
    [145]霍群,蔡豪斌.电化学免疫传感器.临床检验杂志,2003,21(3):181–182
    [146] Alexander P W, Maltra C. Enzyme-linked immunoassay of human immune- globulin G with the fluoride ion selective electrode. Analytical Chemistry, 1982, 54(1): 68–71
    [147] Boitieux J F, Desmet G, Thomas D. An "antibody electrode," preliminary report on a new approach in enzyme immunoassay. Clinical Chemistry, 1979, 25(2): 318–321
    [148] Alexander P W, Rechnitz G A. Ion-electrode based immunoassay and antibody- antigen precipitin reaction monitoring. Analytical Chemistry, 1974, 46(9): 1253–1257
    [149] Solsky R L, Rechnitz G A. Automated immunoassay with a silver sulfide ion- selective electrode. Analytica Chimica Acta, 1978, 99(2): 241–246
    [150] Meyerhoff M E, Rechnitz G A. Antibody Binding Measurements with Hapten- Selective Membrane Electrodes. Science, 1977, 195(4277): 494–195
    [151] D′Orazlo P D, Rechnitz G A. Ion electrode measurements of complement and antibody levels using marker-loaded sheep red blood cell ghosts. Analytical Chemistry, 1977, 49(13): 2083–2086
    [152] Meyerhoff M E, Rechnitz G A. Electrode-based enzyme immunoassays using urease conjugates. Analytical Biochemistry, 1979, 95(2): 483–493
    [153]吕鸣祥,张杰,申群英等.测定人绒毛膜促性腺素(HCG)的酶免疫传感器的研制.中国生物医学工程学报,1992,11(3):174–179
    [154] Fonong T, Rechnitz G A. Homogeneous potentiometric enzyme immunoassay for human immunoglobulin G. Analytical Chemistry, 1984, 56(13): 2586–2590
    [155] Aizawa M, Morioka A, Suzuki S, et al. Enzyme immunosenser: III. Amperometric determination of human cherienic gonadotropin by membrane- bound antibody. Analytical Biochemistry, 1979, 94(1): 22–28
    [156] Ju H X, Yan G F, Chen F, et al. Enzyme-linked immunoassay ofα-1-fetoprotein in serum by differential pulse voltammetry. Electroanalysis, 1999, 11(2): 124–128
    [157] Duan C, Meyerhoff M E. Separation-Free Sandwich Enzyme Immunoassays Using Microporous Gold Electrodes and Self-Assembled Monolayer/Immobilized Capture Antibodies. Analytical Chemistry, 1994, 66(9): 1369–1377
    [158] Meyerhoff M E, Duan C, Meusel M. Novel nonseparation sandwich-type electrochemical enzyme immunoassay system for detecting marker proteins in undiluted blood. Clinical Chemistry, 1995, 41(9): 1378–1384
    [159] Dai Z, Yan F, Yu H, et al. Novel amperometric immunosensor for rapid separation-free immunoassay of carcinoembryonic antigen. Journal ofImmunological Methods, 2004, 287(1-2): 13–20
    [160] Yagiuda K, Hemmi A, Ito S, et al. Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosensensors and Bioelectronics, 1996, 11(8): 703–707
    [161] Penalva J, Puchandes R, Maquieira A. Analytical properties of immunosensors working in organic media. Analytical Chemistry, 1999, 71(2): 3862–3872
    [162] Santandreu M, Cespedes F, Alegret S, et al. Amperometric immunosensors based on rigid conducting immunocomposites. Analytical Chemistry, 1997, 69(11): 2080–2085
    [163] Kroger S, Setford S J, Turner A P. Immunosensor for 2,4-dichlorophenoxyacetic acid in aqueous/organic solvent soil extracts. Analytical Chemistry, 1998, 70(23): 5047–5053
    [164] Penalva J, Puchades R, Maquieira A, et al. Developmet of immunosensors for the analysis of 1-naphthol in organic media. Biosensors and Bioelectronics, 2000, 15(3-4): 99?106
    [165] Pritchard D J, Morgan H, Cooper J M. Simultaneous determination of follicle stimulating hormone and luteinising hormone using a multianalyte immunosensor. Analytica Chimica Acta, 1995, 310(2): 251?256
    [166] Rowe C A, Scruggs S B, Feldstein M J, et al. An array immunosensor for simultaneous detection of clinical analytes. Analytical Chemistry, 1999, 71(2): 433?439
    [167] Savran C A, Knudsen S M, Ellington A D, et al. Micromechanical Detection of Proteins Using Aptamer-Based Receptor Molecules. Analytical Chemistry, 2004, 76(11): 3194–3198
    [168] Bini A, Minunni M, Tombelli S, et al. Analytical Performances of Aptamer-Based Sensing for Thrombin Detection. Analytical Chemistry, 2007, 79(7): 3016–3019
    [169] Fredriksson S, Gullberg M, Jarvius J, et al. Protein detection using proximity-dependent DNA ligation assays. Nature Biotechnology, 2002, 20(5): 473–477
    [170] Nutiu R, Li Y. Structure-Switching Signaling Aptamers. Journal of the American Chemical Society, 2003, 125(16): 4771–4778
    [171] Yang L, Fang C W, Cho E J, et al. Real-Time Rolling Circle Amplification for Protein Detection. Analytical Chemistry, 2007, 79(9): 3320–3329
    [172] Willner I, Zayats M. Electronic Aptamer-Based Sensors. Angewandte ChemieInternational Edition, 2007, 46(34): 6408–6418
    [173] de-los-Santos-Alvarez N, Lobo-Castanon M J, Mirando-Ordieres A J, et al. Modified-RNA Aptamer-Based Sensor for Competitive Impedimetric Assay of Neomycin B. Journal of the American Chemical Society, 2007, 129(13): 3808–3809
    [174] So H M, Won K, Kim Y H, et al. Single-Walled Carbon Nanotube Biosensors Using Aptamers as Molecular Recognition Elements. Journal of the American Chemical Society, 2005, 127(34): 11906–11907
    [175] Radi A E, Acero Sanchez J L, Baldrich E, et al. Reusable Impedimetric Aptasensor. Analytical Chemistry, 2005, 77(19): 6320–6323
    [176] Maehashi K, Katsura T, Kerman K, et al. Label-Free Protein Biosensor Based on Aptamer-Modified Carbon Nanotube Field-Effect Transistors. Analytical Chemistry, 2007, 79(2): 782–787
    [177] Centi S, Tombelli S, Minunni M, et al. Aptamer-Based Detection of Plasma Proteins by an Electrochemical Assay Coupled to Magnetic Beads. Analytical Chemistry, 2007, 79(4): 1466–1473
    [178] Di Giusto D A, Wlassoff W A, Gooding J J, et al. Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Research, 2005, 33(6): e64
    [179] Zhou L, Ou L J, Chu X, et al. Aptamer-Based Rolling Circle Amplification: A Platform for Electrochemical Detection of Protein. Analytical Chemistry, 2007, 79(19): 7492–7500
    [180] Bang G S, Cho S, Kim B G. A novel electrochemical detection method for aptamer biosensors. Biosensors and Bioelectronics, 2005, 21(6): 863–870
    [181] Piganeau N, Jenne A, Thuillier V, et al. An Allosteric Ribozyme Regulated by Doxycyline. Angewandte Chemie International Edition, 2000, 39(23): 4369–4373
    [182] Radi A E, Acero Sánchez J L, Baldrich E, et al. Reagentless, Reusable, Ultrasensitive Electrochemical Molecular Beacon Aptasensor. Journal of the American Chemical Society, 2006, 128(1): 117–124
    [183] Baker B R, Lai R Y, Wood M S, et al. An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine in Adulterated Samples and Biological Fluids. Journal of the American Chemical Society, 2006, 128(10): 3138–3139
    [184] Lai R Y, Plaxo K W, Heeger A J. Aptamer-Based Electrochemical Detection of Picomolar Platelet-Derived Growth Factor Directly in Blood Serum. AnalyticalChemistry, 2007, 79(1): 229–233
    [185] Zuo X, Song S, Zhang J, et al. A Target-Responsive Electrochemical Aptamer Switch (TREAS) for Reagentless Detection of Nanomolar ATP. Journal of the American Chemical Society, 2007, 129(5): 1042–1043
    [186] Wu Z S, Guo M M, Zhang S B, et al. Reusable Electrochemical Sensing Platform for Highly Sensitive Detection of Small Molecules Based on Structure-Switching Signaling Aptamers. Analytical Chemistry, 2007, 79(7): 2933–2939
    [187] Gullberg M, Fredriksson S, Taussig M, et al. A sense of closeness: protein detection by proximity ligation. Current Opinion in Biotechnology, 2003, 14(1): 82–86
    [188] Oefner C, D'Arcy A, Winkler F K, et al. Crystal structure of human platelet- derived growth factor BB. The EMBO Journal, 1992, 11(11): 3921–3926
    [189] Green L S, Jellinek D, Jenison R, et al. Inhibitory DNA Ligands to Platelet-Derived Growth Factor B-Chain. Biochemistry, 1996, 35(45): 14413–14424
    [190] Heldin C H, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiological Reviews, 1999, 79(4): 1283–1316
    [191] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 2003, 31(13): 3406–3415
    [192] Fahlman R P, Sen D. DNA Conformational Switches as Sensitive Electronic Sensors of Analytes. Journal of the American Chemical Society, 2002, 124(17): 4610–4616
    [193] Steel A B, Levicky R L, Herne T M, et al. Immobilization of Nucleic Acids at Solid Surfaces: Effect of Oligonucleotide Length on Layer Assembly. Biophysical Journal, 2000, 79(2): 975–981
    [194] Fleming B D, Zhang J, Elton D, et al. Detailed Analysis of the Electron-Transfer Properties of Azurin Adsorbed on Graphite Electrodes Using dc and Large-Amplitude Fourier Transformed ac Voltammetry. Analytical Chemistry, 2007, 79(17): 6515–6526
    [195] Lee J O, So H M, Jeon E K, et al. Aptamers as molecular recognition elements for electrical nanobiosensors. Analytical and Bioanalytical Chemistry, 2008, 390(4): 1023–1032
    [196] Fields S. Proteomics in genomeland. Science, 2001, 291(5507): 1221–1224
    [197] Service R F. Searching for recipes for protein chips. Science, 2001, 294(5549): 2080–2082
    [198] Murphy M B, Fuller S T, Richardson P M, et al. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Research, 2003, 31(18): e110
    [199] Lubinus M, Meier K E, Smith E A, et al. Independent effects of platelet-derived growth factor isoforms on mitogen-activated protein kinase activation and mitogenesis in human dermal fibroblasts. Journal of Biological Chemistry, 1994, 269(13): 9822–9825
    [200] Hammacher A, Hellman U, Johnsson A, et al. A major part of platelet-derived growth factor purified from human platelets is a heterodimer of one A and one B chain. Journal of Biological Chemistry, 1988, 263(31): 16493–16498
    [201] Atkinson S, Fox S B. Vascular endothelial growth factor (VEGF)-A and platelet-derived growth factor (PDGF) play a central role in the pathogenesis of digital clubbing. The Journal of Pathology, 2004, 203(2): 721–728
    [202] Yeh H J, Silos-Santiago I, Wang Y X, et al. Developmental expression of the platelet-derived growth factor alpha-receptor gene in mammalian central nervous system. Proceedings of the National Academy of Sciences U S A, 1993, 90(5): 1952–1956
    [203] Hart C E, Bailey M, Curtis D A, et al. Purification of PDGF-AB and PDGF-BB from human platelet extracts and identification of all three PDGF dimers in human platelets. Biochemistry, 1990, 29(1): 166–172
    [204] Lai R Y, Plaxo K W, Heeger A J. Aptamer-Based Electrochemical Detection of Picomolar Platelet-Derived Growth Factor Directly in Blood Serum. Analytical Chemistry, 2007, 79(1): 229–233
    [205] Liao W, Cui X T. Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF. Biosensors and Bioelectronics, 2007, 23(2): 218–224
    [206] Fang X H, Cao Z, Beck T, et al. Molecular Aptamer for Real-Time Oncoprotein Platelet-Derived Growth Factor Monitoring by Fluorescence Anisotropy. Analytical chemistry, 2001, 73(23): 5752–5757
    [207] Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences U S A, 2005, 102(48): 17278–17283
    [208] Huang C C, Huang Y F, Cao Z, et al. Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors. Analytical Chemistry, 2005, 77(17): 5735–5741
    [209] Abbott A. A post-genomic challenge: learning to read patterns of protein synthesis. Nature, 1999, 402(6763): 715–720
    [210] Blobel G, Wozniak R W. Structural biology: proteomics for the pore. Nature, 2000, 403(6772): 835–836
    [211] Bullock T L, Sherlin L D, Perona J J. Tertiary core rearrangements in a tight binding transfer RNA aptamer. Nature Structural Biology, 2000, 7(6): 497–504
    [212] Bianchini M, Radrizzani M, Brocardo M G, et al. Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein. Journal of Immunological Methods, 2001, 252(1-2): 191–197
    [213] Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine. Journal of the American Chemical Society, 2002, 124(3): 9678–9679
    [214] Merino E J, Weeks K M. Fluorogenic resolution of ligand binding by a nucleic acid aptamer. Journal of the American Chemical Society, 2003, 125(41): 12370–12371
    [215] Xu D, Xu D, Yu X, et al. Label-free electrochemical detection for aptamer-based array electrodes. Analytical Chemistry, 2005, 77(16): 5107–5113
    [216] Ikebukuro K, Kiyohara C, Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosensors and Bioelectronics, 2005, 20(10): 2168–2172
    [217] Kawde A N, Rodriguez M C, Lee T M H, et al. Label-free bioelectronic detection of aptamer-protein interactions. Electrochemistry Communications, 2005, 7(5): 537–540
    [218] Staudt L M. Gene expression physiology and pathophysiology of the immune system. Trends in Immunology, 2001, 22(1): 35–40
    [219] Rodriguez-Mozaz S, de Alda M J L, BarcelóD. Biosensors as useful tools for environmental analysis and monitoring. Analytical and Bioanalytical Chemistry, 2006, 386(4): 1025–1041
    [220] Debouck C, Goodfellow P N. DNA microarrays in drug discovery and development. Nature Genetics, 1999, 21(1): 48–50
    [221] Song L, Ahn S, Walt D R. Fiber-Optic Microsphere-Based Arrays for Multiplexed Biological Warfare Agent Detection. Analytical Chemistry, 2006, 78(4): 1023–1033
    [222] Fabris L, Dante M, Braun G, et al. A Heterogeneous PNA-Based SERS Method for DNA Detection. Journal of the American Chemical Society, 2007, 129(19): 6086–6087
    [223] Mallard F, Marchand G, Ginot F, et al. Opto-electronic DNA chip: high performance chip reading with an all-electric interface. Biosensors and Bioelectronics, 2005, 20(9): 1813–1820
    [224] Marquette C A, Blum L J. Conducting elastomer surface texturing: a path to electrode spotting: Application to the biochip production. Biosensors and Bioelectronics, 2004, 20(2): 197–203
    [225] Yao X, Li X, Toledo F, et al. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Analytical Biochemistry, 2006, 354(2): 220–228
    [226] Moller R, Powell R D, Hainfeld J F, et al. Enzymatic Control of Metal Deposition as Key Step for a Low-Background Electrical Detection for DNA Chips. Nano Letters, 2005, 5(7): 1475–1482
    [227] Cooper M A, Dultsev F N, Minson T, et al. Direct and sensitive detection of a human virus by rupture event scanning. Nature Biotechnology, 2001, 19(9): 833–837
    [228] Chiu C S, Gwo S. Quantitative Surface Acoustic Wave Detection Based on Colloidal Gold Nanoparticles and Their Bioconjugates. Analytical Chemistry, 2008, 80(9): 3318–3326
    [229] Su X D, Robelek R, Wu Y J, et al. Detection of Point Mutation and Insertion Mutations in DNA Using a Quartz Crystal Microbalance and MutS, a Mismatch Binding Protein. Analytical Chemistry, 2004, 76(2): 489–494
    [230] Hansen K M, Thundat T. Microcantilever biosensors. Methods, 2005, 37(1): 57–64
    [231] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosensors and Bioelectronics, 2005, 20(12): 2424–2434
    [232] Hansen J A, Mukhopadhyay R, Hansen J O, et al. Femtomolar Electrochemical Detection of DNA Targets Using Metal Sulfide Nanoparticles. Journal of the American Chemical Society, 2006, 128(12): 3860–3861
    [233] Lucarelli F, Tombelli S, Minunni M, et al. Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Analytica Chimica Acta, 2008, 609(2): 139–159
    [234] Bakker E, Qin Y. Electrochemical Sensors. Analytical Chemistry, 2006, 78(12): 3965–3984
    [235] Drummond T G, Hill M G, Barton J K. Electrochemical DNA sensors. NatureBiotechnology, 2003, 21(10): 1192–1199
    [236] Ren Y, Jiao K, Xu G Y, et al. An Electrochemical DNA Sensor Based on Electro-depositing Aluminum Ion Films on Stearic Acid-Modified Carbon Paste Electrode and Its Application for the Detection of Specific Sequences Related to Bar Gene and CP4 Epsps Gene. Electroanalysis, 2005, 17(23): 2182–2189
    [237] Travas-Sejdic J, Peng H, Cooney R P, et al. Amplification of a conducting polymer-based DNA sensor signal by CdS nanoparticles. Current Applied Physics, 2006, 6(3): 562–566
    [238] Anne A, Bouchardon A, Moiroux. J. 3'-Ferrocene-Labeled Oligonucleotide Chains End-Tethered to Gold Electrode Surfaces: Novel Model Systems for Exploring Flexibility of Short DNA Using Cyclic Voltammetry. Journal of the American Chemical Society, 2003, 125(5): 1112–1113
    [239] Fan C, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences U S A, 2003, 100(16): 9134–9137
    [240] Yu C J, Wan Y, Yowanto H, et al. Electronic Detection of Single-Base Mismatches in DNA with Ferrocene-Modified Probes. Journal of the American Chemical Society, 2001, 123(45): 11155–11161
    [241]李元宗,常文保.生化分析.北京:高等教育出版社,2003,71–144
    [242] Berson S A, Yalow R S. Quantitative aspects of the reaction between insulin and insulin-binding antibody. The Journal of Clinical Investigation, 1959, 38(11): 1996–2016
    [243] Yalow R S, Berson S A. Immunoassay of endogenous plasma insulin in man. The Journal of Clinical Investigation, 1960, 39(7): 1157–1175
    [244] Nakane P K, Pierce G B. Enzyme-labeled antibodies: preparation and localization of antigens. Journal of Histochemistry Cytochemistry, 1966, 14(12): 929–931
    [245] Avrameas S, Uriel J. Method of antigen and antibody labelling with enzymes and its immunodiffusion application. C R Acad Sci Hebd Seances Acad Sci D, 1966, 262(24): 2543–2545
    [246] Weeks I. Chemiluminescence immunoassay (Comprehensive analytical chemistry vol. XXIX). Amsterdam: Elsevier, 1992, 87–110
    [247] Jolley M E, Wang C J, Ekenberg S J, et al. Particle concentration fluorescence immunoassay (PCFIA): a new, rapid immunoassay technique with high sensitivity.Journal of Immunology, 1984, 67(1): 21–35
    [248] Baeyens W R, Schuiman S G, Calokerions A C. Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays. Journal of Pharmaceutical and Biomedical Analysis, 1998, 17(6-7): 941–953
    [249] Trau D, Yang W, Seydack M, et al. Nanoencapsulated Microcrystalline Particles for Superamplified Biochemical Assays. Analytical Chemistry, 2002, 74(21): 5480–5486
    [250] Nichkova M, Dosev D, Gee S J, et al. Microarray Immunoassay for Phenoxybenzoic Acid Using Polymer Encapsulated Eu:Gd2O3 Nanoparticles as Fluorescent Labels. Analytical Chemistry, 2005, 77(21): 6864–6873
    [251] Chan C P, Bruemmel Y, Seydack M, et al. Nanocrystal Biolabels with Releasable Fluorophores for Immunoassays. Analytical Chemistry, 2004, 76(13): 3638–3645
    [252] Beaurepaire E, Buissette V, Sauviat M, et al. Functionalized Fluorescent Oxide Nanoparticles: Artificial Toxins for Sodium Channel Targeting and Imaging at the Single-Molecule Level. Nano Letters, 2004, 4(11): 2079–2083
    [253] Matsuya T, Tashiro S, Hoshino N, et al. A Core-Shell-Type Fluorescent Nanosphere Possessing Reactive Poly(ethylene glycol) Tethered Chains on the Surface for Zeptomole Detection of Protein in Time-Resolved Fluorometric Immunoassay. Analytical Chemistry, 2003, 75(22): 6124–6132
    [254] Lao U L, Mulchandani A, Chen W. Simple Conjugation and Purification of Quantum Dot-Antibody Complexes Using a Thermally Responsive Elastin- Protein L Scaffold As Immunofluorescent Agents. Journal of the American Chemical Society, 2006, 128(25): 14756–14757
    [255] Famulok M. Bringing picomolar protein detection into proximity. Nature Biotechnology, 2002, 20(5): 448–449
    [256] Du H, Disney M D, Miller B L, et al. Hybridization-based unquenching of DNA hairpins on Au surfaces: Prototypical“Molecular Beacon”biosensors. Journal of the American Chemical Society, 2003, 125(14): 4012–4013
    [257] Yoo S M, Keum K C, Yoo S Y, et al. Development of DNA microarray for pathogen detection. Biotechnology and Bioprocess Engineering, 2004, 9(1): 93–99
    [258] Gracey A Y, Cossins A R. Application of microarray technology in environmental and comparative physiology. Annual Review of Physiology, 2003,65(2): 231–259
    [259] Guo Q M. DNA microarray and cancer. Current Opinion in Oncology, 2003, 15(1): 36–43
    [260] Fan J, Yang X, Wang W, et al. Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10611–10616
    [261] Fang Y, Frutos A G, Lahiri J. Ganglioside microarrays for toxin detection. Langmuir, 2003, 19(5): 1500–1505
    [262] Sch?ferling M, Kruschina M, Meerkamp M, et al. Smart sensor architectures: importance of micro-array sensor surface in conducting high quality functional genomic analysis. PharmaGenomics, 2002, 2: 36–44
    [263] Pirrung M C. How to Make a DNA Chip. Angewandte Chemie International Edition, 2002, 41(16): 1276–1289
    [264] Donovan D M, Becker K G. Double round hybridization of membrane based cDNA arrays: improved background reduction and data replication. Journal of Neuroscience Methods, 2002, 118(1): 59–62
    [265] Vainrub A, Pettitt B M. Sensitive quantitative nucleic acid detection using oligonucleotide microarrays. Journal of the American Chemical Society, 2003, 125(26): 7798–7799
    [266] Heller M J. DNA microarray technology: devices, systems and applications. Review of Biomedical Engineering, 2002, 4(1):129–153
    [267] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization. Nature biotechnology, 1996, 14(3): 303–308
    [268] Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allele discrimination. Nature biotechnology, 1998, 6(1): 49–53
    [269] Fang X H, Li J, Perlette J, et al. Molecular beacons: novel DNA probes for biomolecular recognition. Analytical Chemistry, 2000, 72(23): 747A–753A
    [270] Brown L J, Brown T, Cummins J, et al. Molecular beacons attached to glass beads fluoresce upon hybridisation to target DNA. Chemical Communications, 2000, 7: 621–622
    [271] Chen W, Martinez G, Mulchandani A. Molecular Beacons: A Real-Time Polymerase Chain Reaction Assay for Detecting Salmonella. Analytical Biochemistry, 2000, 280(1): 166–172
    [272] Fortin N Y, Mulchandani A, Chen W. Use of Real-Time Polymerase Chain Reaction and Molecular Beacons for the Detection of Escherichia coli O157:H7.Analytical Biochemistry, 2001, 289(2): 281–288
    [273] Thelwell N, Millington S, Solinas A, et al. Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Research, 2000, 28(19): 3752–3761
    [274] Van Schie R C, Marras S A, Conroy J M, et al. Semiautomated clone verification by real-time PCR using molecular beacons. Biotechniques, 2000, 29(6): 1296–1300
    [275] Pierce K E, Rice J E, Sanchez J A, et al. Real-time PCR using molecular beacons for accurate detection of the Y chromosome in single human blastomeres. Molecular Human Reproduction, 2000, 6(12): 1155–1164
    [276] Arnold S F, Tims E, Mcgrath B E. IDENTIFICATION OF BONE MORPHOGENETIC PROTEINS AND THEIR RECEPTORS IN HUMAN BREAST CANCER CELL LINES: IMPORTANCE OF BMP2. Cytokine, 1999, 11(12): 1031–1037
    [277] Saha B K, Tian B, Bucy R P. Quantitation of HIV-1 by real-time PCR with a unique fluorogenic probe. Journal of Virological Methods, 2001, 93(1-2): 33–42
    [278] Li Q G, Liang J X, Luan G Y, et al. Molecular beacon-based homogeneous fluorescence PCR assay for the diagnosis of infectious diseases. Analytical Sciences, 2000, 16(2): 245–248
    [279] Smit M L, Giesendorf B A J, Vet J A M, et al. Semiautomated DNA Mutation Analysis Using a Robotic Workstation and Molecular Beacons. Clinical Chemistry, 2001, 47(4): 739–744
    [280] Kostrikis L G, Tyagi S, Mhlanga M M, et al. MOLECULAR BEACONS: Spectral Genotyping of Human Alleles. Science, 1998, 279 (5354): 1228–1229
    [281] Giesendorf B A J, Vet J A M, Tyagi S, et al. Molecular beacons: a new approach for semiautomated mutation analysis. Clinical Chemistry, 1998, 44(3): 482–486
    [282] Piatek A S, Tyagi S, Pol A C, et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nature Biotechnology, 1998, 16(4): 359–363
    [283] Fluit A C, Visser M R, Schmitz F J. Molecular detection of antimicrobial resistance. Clinical Microbiology Reviews, 2001, 14(4): 836–871
    [284] El-Hajj H H, Marras S A E, Tyagi S, et al. Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. Journal of Clinical Microbiology, 2001, 39(11): 4131–4137
    [285] Heil S G, Lievers K J A, Boers G H, et al. Betaine-HomocysteineMethyltransferase (BHMT): Genomic Sequencing and Relevance to Hyperhomocysteinemia and Vascular Disease in Humans. Molecular Genetics and Metabolism, 2000, 71(3): 511–519
    [286] Szuhai K, van den Ouweland J M, Dirks R W, et al. Simultaneous A8344G heteroplasmy and mitochondrial DNA copy number quantification in Myoclonus Epilepsy and Ragged-Red Fibers (MERRF) syndrome by a multiplex Molecular Beacon based real-time fluorescence PCR. Nucleic Acids Research, 2001, 29(3): e13
    [287] Durand R, Eslahpazire J, Jafari S, et al. Use of Molecular Beacons To Detect an Antifolate Resistance-Associated Mutation in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2000, 44(12): 3461–3464
    [288] Ferguson J A, Boles T C, Adams C P, et al. A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nature Biotechnology, 1996, 14(13): 1681–1684
    [289] Sokol D L, Zhang X L, Lu P Z, et al. Real time detection of DNA:RNA hybridization in living cells. Proceedings of the National Academy of Sciences U S A, 1998, 95(20): 11538–11543
    [290] Perlette J, Tan W. Real-Time Monitoring of Intracellular mRNA Hybridization Inside Single Living Cells. Analytical Chemistry, 2001, 73(22): 5544–5550
    [291] Li J J, Fang X H, Schuster S M, et al. Molecular beacons: A novel approach to detect protein-DNA interactions. Angewandte Chemie International Edition, 2000, 39(6): 1049–1052
    [292] Fang X, Li J J, Tan W. Using Molecular Beacons To Probe Molecular Interactions between Lactate Dehydrogenase and Single-Stranded DNA. Analytical Chemistry, 2000, 72(14): 3280–3285
    [293] Sanjay T, Salvatore A E M, Fred R K. Wavelength-shifting molecular beacons. Nature Biotechnology, 2000, 18(11): 1191–1196
    [294] Zhang P, Beck T, Tan W H. Design of a molecular beacon DNA probe with two fluorophores. Angewandte Chemie International Edition, 2001, 40(2): 402–405
    [295]江雅新,方晓红,万立骏等.一种新型荧光探针––分子信标的研究及应用进展.分析化学,2004,32(5):668–672
    [296] Du H, Strohsahl C M, Camera J, et al. Sensitivity and specificity of metal surface-immobilized“Molecular Beacon”biosensors. Journal of the American Chemical Society, 2005, 127(21): 7932–7940
    [297] Steemers F J, Ferguson J A, Walt D R. Screening unlabeled DNA targets withrandomly ordered fiber-optic gene arrays. Nature Biotechnology, 2000, 18(1): 91–95
    [298] Liu X, Tan W. A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Analytical Chemistry, 1999, 71(22): 5054–5059
    [299] Piestert O, Barsch H, Buschmann V, et al. A single-molecule sensitive DNA hairpin system based on intramolecular electron transfer. Nano Letters, 2003, 3(7): 979–982
    [300] Bowtell D D L. Options available--from start to finish--for obtaining expression data by microarray. Nature Genetics, 1999, 21(1): 25–32
    [301] Winzeler E A, Schena M, Davis R W. Flourescence-based expression monitoring using microarrays. Methods in Enzymology, 1999, 309(1): 3–18
    [302] Willner I. Biomaterials for Sensors, Fuel Cells, and Circuitry. Science, 2002, 298(20): 2407–2408
    [303] Immoos C E, Lee S J, Grinstaff M W. DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. Journal of the American Chemical Society, 2004, 126(35): 10814–10815
    [304] Spadavecchia J, Prete P, Lovergine N, et al. Au Nanoparticles Prepared by Physical Method on Si and Sapphire Substrates for Biosensor Applications. The Journal of Physical Chemistry B, 2005, 109(37): 17347–17349
    [305] Kunkely H, Vogler A. Dismutation of Hg22+ catalyzed by colloidal gold. Inorganica Chimica Acta, 2005, 358(2): 429–430
    [306] Zhao J, Bradbury C R, Huclova S, et al. Nanoparticle-Mediated Electron Transfer Across Ultrathin Self-Assembled Films. The Journal of Physical Chemistry B, 2005, 109(48): 22985–22994
    [307] Takeda Y, Plaksin O A, Lu J, et al. Optical switching performance of metal nanoparticles fabricated by negative ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 242(1-2): 194–197
    [308] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemical, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293–346
    [309] Faulk W, Taylor G M. An immunocolloid method for the electron microscope. Immunochemistry, 1971, 8(11): 1081–1083
    [310] Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA Array Detection with Nanoparticle Probes. Science, 2000, 289(5485): 1757–1760
    [311] Kneipp J, Kneipp H, Rice W L, et al. Optical Probes for Biological Applications Based on Surface-Enhanced Raman Scattering from Indocyanine Green on Gold Nanoparticles. Analytical Chemistry, 2005, 77(8): 2381–2385
    [312]吕伸,王杉,常文保.胶体金免疫分析方法的进展.武汉大学学报(自然科学版),2000,46(4):393–399
    [313] Roth J, Bendayan M, Orci L. Ultrastructural Localization of Intracellular Antigens by the Use of Protein A-gold Complex. Journal of Histochemistry and Cytochemistry, 1978, 26(12): 1074–1081
    [314] Holgate C S, Jackson P, Cowen P N, et al. Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. Journal of Histochemistry and Cytochemistry, 1983, 31(7): 938–944
    [315] Viswanathan S, Wu L C, Huang M R, et al. Electrochemical Immunosensor for Cholera Toxin Using Liposomes and Poly(3,4-ethylenedioxythiophene)-Coated Carbon Nanotubes. Analytical Chemistry, 2006, 78(4): 1115–1121
    [316] Wang J, Li J, Baca A J, et al. Amplified Voltammetric Detection of DNA Hybridization via Oxidation of Ferrocene Caps on Gold Nanoparticle/Streptavidin Conjugates. Analytical Chemistry, 2003, 75(15): 3941–3945
    [317] Chu X, Fu X, Chen K, et al. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosensors and Bioelectronics, 2005, 20(19): 1805–1812
    [318] Wang J, Polsky R, Xu D. Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization. Langmuir, 2001, 17(19): 5739–5741
    [319] Liao K T, Huang H J. Femtomolar immunoassay based on coupling gold nanoparticle enlargement with square wave stripping voltammetry. Analytica Chimica Acta, 2005, 538(1-2): 159–164
    [320]赵子龙,楚霞.基于蛋白质修饰的纳米金探针的石英晶体微天平分析.化学传感器,2004,12(4):53–54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700