柔性芳香羧酸与含氮配体构筑的配位聚合物的合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计和合成新型功能配位聚合物已经成为配位化学、材料化学、生物化学、超分子化学、晶体工程学等领域的研究热点,这是因为新型功能配位聚合物不仅具有新颖的拓扑结构,而且在光电材料、磁性材料、分子开关、气体贮存、选择性催化、生物医药、分子识别与自组装等领域表现出巨大的应用潜力。本论文以构筑具有荧光性能的配位聚合物为研究目标,选用稀土离子(TbⅢ)、过渡金属离子(FeⅢ、CdⅡ、ZnⅡ)和主族金属离子(PbⅡ、BaⅡ)分别与两种柔性芳香多羧酸、三种含氮配体在水热条件下反应,成功合成出三个系列共八个不同维度的配合物,运用X-射线单晶衍射解析了晶体结构,并通过元素分析、红外光谱、热重分析、荧光等实验手段进行了表征。全文共分为四章,各章内容如下:
     第一章前言。简单介绍了配位聚合物的基本概念、主要合成方法、应用领域及研究热点。其次介绍了多吡啶类和柔性芳香多羧酸类配位聚合物的研究进展。最后介绍了本论文的选题依据及意义和研究成果。
     第二章利用3,3′,4,4′-氧化二苯四羧酸(H2odpa)和邻菲咯啉衍生物构筑了两个结构新颖的TbⅢ、FeⅢ配合物1-2。配位聚合物1为二维网络结构。配合物2为单核结构,但它可由氢键和π-π堆积的共同作用拓展为三维网络。系统研究了中心金属离子的改变对配合物结构的影响。
     第三章利用3,3′,4,4′-砜基二苯四羧酸(H4dpst)和两种含氮配体合成了四个d10过渡金属配位聚合物3-6。配合物3-5为二维平面结构,而配合物6为三维层状结构,这为探索金属离子和有机配体对配合物结构的影响提供了有益的信息。对配合物3-6的荧光和热重分析实验表明它们具有很高的热稳定性,而且可作为蓝色和绿色荧光材料而具有潜在的应用价值。
     第四章首次利用3,3′,4,4′-砜基二苯四羧酸(H4dpst)、1,10-邻菲咯啉、d10过渡金属和主族金属构筑了两个结构新颖的异金属配位聚合物7-8。配合物7借助μ3-OH-的桥联作用和平行的1,10-邻菲咯啉之间强烈的π-π堆积拓展为二维平面结构。而配合物8是一个含有一维Ba-O链的二维网络结构。两个配合物都具有优异的荧光性能和较高的热稳定性。
     论文最后总结了八个配合物的合成条件,如金属离子、有机配体、溶剂、投料比等因素对水热合成产物结构的影响。探讨配位聚合物结构对发光性质的影响。
Nowadays, design and synthesize of novel functional coordination polymers have been one of the hottest research topic in coordination chemistry, materials chemistry, biochemistry, supramolecular chemistry and crystal engineering. It not only due to their novel topological structures, but also for their huge potential applications in the optoelectronic materials, magnetic materials, molecular switches, gas storage, selective catalytic, bio-medical, molecular recognition and self-assembly fields. The aim of the research is to construct coordination polymers with excellent fluorescence through hydrothermal synthesis of rare earth ion (TbⅢ), transition metal ions (FeⅢ、CdⅡ、ZnⅡ) and main group metal ions (PbⅡ、BaⅡ) with two kinds of flexible aromatic carboxylic acids and three kinds of nitrogen-containing ligands, respectively. Finally, we have successfully synthesized three series, eight coordination polymers which are all roundly characterized by the method of X-ray single crystal diffraction, elemental analyses, IR spectra, thermal gravimetric analyses, and luminescence analyses. This dissertation includes four chapters as follows:
     (1) Chapter 1:Preface. Briefly introduced the basic concepts, leading methods of synthesize, application fields and research priorities. Then reviewed the research development of coordination polymers constructed by the muti-pyridine ligands and flexible aromatic carboxylic acids. The basis and significance of topic selection and research production with this dissertation were also briefly recommended at length.
     (2) Chapter 2:Two novel TbⅢ和FeⅢcoordination compounds based on 3,3',4,4'-oxydiphthalic acid (H4odpa) and ramification of 1,10-phenanthroline have been successfully synthesized. Complex 1 shows a 2D network, while 2 assumes a mononuclear structure which can be developed by the coaction of H-bond andπ-πstacking. The influence of the center metal ions effect on the structure of compounds is also systematically studied.
     (3) Chapter 3:Coordination polymers 3-6 are constructed by d10 transition metals, 3,3',4,4'-diphenylsulfonetetracarboxylic acid (H4dpst) and nitrogen-containing ligands. The compounds 3-5 are all 2D planar network structures, while compound 6 presented a different 3D stratiform structure. The different structures between 3-6 provide some useful information on studying the influence by metal ions and organic ligands. The result of luminescent and thermal gravimetric analyses indicates that they all take on high thermal stability. Further more, they all have potential application value as green and blue fluorescence materials.
     (4) Chapter 4:Based on d10 transition metal, main group metals, 3,3',4,4'-diphenylsulfonetetracarboxylic acid (H4dpst) and 1,10-phenanthroline, we have synthesized two novel heterobimetallic coordination polymers 7-8 for the first time. Compound 7 shapes a 2D planar network by function ofμ3-OH- bridging andπ-πstacking between parallel 1,10-phenanthroline ligands. While compound 8 is a 2D network containing 1D Ba-O chains. Two compounds both have excellent luminescent and high thermal stability.
     Summing up the conditions of hydrothermal synthesis, such as metal ions, organic ligands, solvent, rate of materials, and so on, which are the important effects on the structure of products. The impacts of the coordination polymer structure on luminous performance are also discussed.
引文
[1]Hoskins B. F., Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. Journal of the American Chemical Society, 1989,V111(15):5962-5964
    [2]孟庆金,戴安邦.配位化学的创始和现代化[M].北京:高等教育出版社,1998
    [3]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社,2000
    [4]游效曾.分子材料—光电功能化合物[M].上海:上海科学技术出版社,2001
    [5]洪茂椿,陈荣,梁文平.21世纪的无机化学[M].北京:科学出版社,2005
    [6]张礼和.化学学科进展[M].北京:化学工业出版社,2005
    [7]Chen C. T., Suslick K. S. One-dimensional coordination polymers:applications to material science[J]. Coordination Chemistry Reviews,1993,V128(1-2):293-322
    [8]Zaworotko M. J. Crystal engineering of diamondoid networks[J]. Chemical Society Reviews,1994,V23(4):283-288
    [9]Hoskins B. F., Robson R., Slizys D. A. A hexaimidazole ligand binding six octahedral metal ions to give an infinite 3D a-Po-like network through which two independent 2D hydrogen-bonded networks interweave [J]. Angewandte Chemie, International Edition, 1998,V36(24):2752-2755
    [10]Zaworotko M. J. From disymmetric molecules to chiral polymers:a new twist for supramolecular synthesis [J]? Angewandte Chemie, International Edition,1998,V37(9): 1211-1213
    [11]Baten S. R., Robson R. Interpenetrating nets:ordered, periodic entanglementp[J]. Angewandte Chemie, International Edition,1998,V37(11):1461-1494
    [12]Hagrman P. J., Hagram D., Zubieta J. Organic-inorganic hybrid materials:from "simple" coordination polymers to organodiamine-templated molybdenum oxides[J]. Angewandte Chemie, International Edition,1999,V38(18):2639-2684
    [13]Cheetham A. K., Ferey G., Loiseau T. Open-framework inorganic materials[J]. Angewandte Chemie, International Edition,1999,V38(22):3268-3292
    [14]Chui S. S. Y., Lo S. M. F., Charmant J. P. H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science,1999,V283(5405):1148-1150
    [15]Day P. Coordination complexes in two dimensional magnets and superconductors [J]. Coordination Chemistry Reviews,1999,V190-192:827-839
    [16]Rather B., Zaworotko M. J. A 3D metal-organic network, [Cu2(glutarate)2(4,4'-bipyridine)], that exhibits single-crystal to single-crystal dehydration and rehydration[J]. Chemical Communications,2003,(7):830-831
    [17]Moulton B., Abourahma H., Badner M. W., et al. A new 65.8 topology and a distorted 65.8 CdSO4 topology:two new supramolecular isomers of [M2(bdc)2(L)2]n coordination polymers[J]. Chemical Communications,2003,(12):1342-1343
    [18]Ozin G. A., Arsenault A. C. Nanochemistry:A Chemistry Approach to Nanomaterials[M]. London:RSC,2005
    [19]Fujita M., Kwon Y. J., Washizu S., et al. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(Ⅱ) and 4,4'-Bipyridine[J]. Journal of the American Chemical Society,1994,V116(3):1151-1152
    [20]Lin W. B., Evans O. R., Xiong R. G., et al. Supramolecular Engineering of Chiral and Acentric 2D Networks. Synthesis, Structures, and Second-Order Nonlinear Optical Properties of Bis(nicotinato)zinc and Bis{3-[2-(4-pyridyl)ethenyl]benzoato}cadmium[J]. Journal of the American Chemical Society,1998,V120(50):13272-13273
    [21]Ma L., Evans O. R., Foxman B. M., et al. Luminescent Lanthanide Coordination Polymers[J]. Inorganic Chemistry,1999,V38(25):5837-5840
    [22]Lin W. B., Wang Z.Y., Ma L. A Novel Octupolar Metal-Organic NLO Material Based on a Chiral 2D Coordination Network[J]. Journal of the American Chemical Society, 1999,V121(48):11249-11250
    [23]Li H. L., Eddaoudi M., O'Keeffe M., et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature,1999,V402(6759):276-279
    [24]Su W. P., Hong M. C., Weng J. B., et al. A semiconducting lamella polymer {Ag(C5H4NS)}n with a graphite-like array of silver(I) ions and its analogue with a layered structure[J]. Angewandte Chemie, International Edition,2000,V39(16):2911-2914
    [25]Seo J. S., Whang D., Lee H., et al. A homochiral metal-organic porous material for
    enantioselective separation and catalysis[J]. Nature,2000,V404(6781):982-986
    [26]Chen H. J., Mao Z. W., Gao S., et al. Ferrimagnetic-like ordering in a unique three dimensional coordination polymer featuring mixed azide/carboxylate-bridged trinuclear manganese(II) clusters as subunits[J]. Chemical Communications,2001,(22):2320-2321
    [27]Evans O. R., Lin W. B. Rational Design of Nonlinear Optical Materials Based on 2D Coordination Networks[J]. Chemistry of Materials,2001,V13(9):3009-3017
    [28]Chen B., Eddaoudi M., Hyde S. T., et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science,2001,V291(5506):1021-1023
    [29]Evans O. R., Lin W. B. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks [J]. Accounts of Chemical Research,2002,V35(7):511-522
    [30]Konar S., Mukherjee P. S., Eangrando E., et al. A three-dimensional homometallic molecular ferrimagnet[J]. Angewandte Chemie, International Edition,2002,V41(9): 1561-1563
    [31]Gomez-Lor B., Gutierrez-Puebla E., Iglesias M., et al. In2(OH)3(BDC)1.5 (BDC=1,4-Benzenedicarboxylate):An In(III) Supramolecular 3D Framework with Catalytic Activity[J]. Inorganic Chemistry,2002,V41(9):2429-2432
    [32]Hou H. W., Meng X., Song Y., et al. Two-Dimensional Rhombohedral Grid Coordination Polymers [M(bbbt)2(NCS)2]n (M=Co, Mn, or Cd; bbbt=1,1'-(1,4-butanediyl)bis-1H-benzotriazole):Synthesis, Crystal Structures, and Third-Order Nonlinear Optical Properties [J]. Inorganic Chemistry,2002, V41(15):4068-4075
    [33]Kagan H. B. Introduction:Frontiers in Lanthanide Chemistry[J]. Chemical Reviews, 2002,V 102(6):1805-1806
    [34]Eddaoudi M., Kim J., Rosi N., et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,V295(5554): 469-472
    [35]Kitaura R., Kitagawa S., Kubota Y., et al. Formation of a One-Dimensional Array of Oxygen in a Microporous Metal-Organic Solid[J]. Science,2002,V298(5602):2358-2361
    [36]Meng X., Song Y., Hou H. W., et al. Novel Pb and Zn Coordination Polymers:Synthesis, Molecular Structures, and Third-Order Nonlinear Optical Properties [J]. Inorganic Chemistry,2003,V42(4):1306-1315
    [37]Hou H. W., Wei Y. L., Song Y. L., et al. First Octameric Ellipsoid Lanthanide(III) Complexes:Crystal Structure and Nonlinear Optical Absorptive and Refractive Properties[J]. Inorganic Chemistry,2004, V43(4):1323-1327
    [38]Rosi N. L., Eckert J., Eddaoudi M., et al. Hydrogen Storage in Microporous Metal-Organic Frameworks[J]. Science,2003,V300(5622):1127-1130
    [39]Kitagawa S., Kitaura R., Noro S. Functional porous coordination polymers [J]. Angewandte Chemie, International Edition,2004,V43(18):2334-2375
    [40]Yaghi O. M., O'Keeffe M., Ockwig N. W., et al. Reticular synthesis and the design of new materials[J]. Nature,2003,V423(6941):705-714
    [41]Zhao B., Chen Y, Cheng P., et al. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes[J]. Journal of the American Chemical Society,2004, V126(47):15394-15395
    [42]Chae H. K., Kim J., Go Y B., et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,V427(6974):523-527
    [43]Sun H. L., Wang Z. M., Gao S. Synthesis, crystal structures, and magnetism of cobalt coordination polymers based on dicyanamide and pyrazine-dioxide derivatives [J]. Inorganic Chemistry,2005, V44(7):2169-2176
    [44]Colacio E., Maimoun I. B., Lloret F., et al. [Ni(cyclam)(1,3-dca)2Cu (1,5-dca)2]:A Genuine 3D Bimetallic Coordination Polymer Containing Both 1,3-and 1,5-Bidentate Dicyanamide Bridges and a Ferromagnetic Interaction Between Copper(II) and Nickel(II) Ions[J]. Inorganic Chemistry,2005,V44(11):3771-3773
    [45]Li J. T., Tao J., Huang R. B., et al. A Three-Dimensional Coordination Polymer Featuring Effective Ferrimagnetic Hydroxide-Bridged Manganese(II) Chains [J]. Inorganic Chemistry,2005,V44(13):4448-4450
    [46]Cingolani A., Galli S., Masciocchi N., et al. Sorption-Desorption Behavior of Bispyrazolato-Copper(II) 1D Coordination Polymers[J]. Journal of the American Chemical Society,2005,V127(17):6144-6145
    [47]Matsuda R., Kitaura R., Kitagawa S., et al. Highly controlled acetylene accommodation in a metal-organic microporous material [J]. Nature,2005,V436(7048):238-241
    [48]He J., Yin Y. G., Wu T., et al. Design and solvothermal synthesis of luminescent
    copper(I)-pyrazolate coordination oligomer and polymer frameworks [J]. Chemical Communications,2006,(27):2845-2847
    [49]Sun Y. Q., Zhang J., Yang G. Y. lanthanide-cadmium-organic frameworks with helical channels and tubes[J]. Chemical Communications,2006,(45):4700-4702
    [50]Tang Y. Z., Wang X. S., Zhou T., et al. A Novel 2D Manganese(II) Coordination Polymer Exhibiting Ferromagnetic Interaction[J]. Crystal Growth & Design,2006,V6(l):11-13
    [51]Liu F. C., Zeng Y. F., Jiao J., et al. First Metal Azide Complex with Isonicotinate as a Bridging Ligand Showing New Net Topology:Hydrothermal Synthesis, Structure, and Magnetic Properties [J]. Inorganic Chemistry,2006,V45(7):2776-2778
    [52]Li B., Gu W., Zhang L. Z., et al. [Ln2(C2O4)2(pyzc)2(H2O)2]n [Ln=Pr(1), Er (2)]:Novel Two-Dimensional Lanthanide Coordination Polymers with 2-Pyrazinecarboxylate and Oxalate[J]. Inorganic Chemistry,2006,V45(26):10425-10427
    [53]Fujita W., Awaga K., Kondo R., et al. A one-dimensional coordination polymer, BBDTA.InCl4:possible spin-Peierls transition with high critical temperature of 108 K[J]. Journal of the American Chemical Society,2006,V128(18):6016-6017
    [54]Xia J., Zhao B., Wang H. S., et al. Two-and Three-Dimensional Lanthanide Complexes: Synthesis, Crystal Structures, and Properties [J]. Inorganic Chemistry,2007,V46(9): 3450-3458
    [55]Fujita M., Kwon Y. J., Sasaki O., Yamaguchi K., Ogura K. Interpenetrating Molecular Ladders and Bricks[J]. Journal of the American Chemical Society,1995,V117(27): 7287-7288
    [56]Losier P., Zaworotko M. J. A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities[J]. Angewandte Chemie, International Edition in English,1996,V35(23/24): 2779-2782
    [57]Blake A. J., Champness N. R., Khlobystov A., et al. Developing Osmium(II) Tris(2,2'-bipyridyl)Derivatives as Reagents for Luminogenic Assays[J]. Chemical communications, 1997,(21):2027-2028
    [58]Yaghi O. M., Li H. L., Groy T. L. A Molecular Railroad with Large Pores:Synthesis and Structure of Ni(4,4'-bpy)2.5(H2O)2(ClO4)2·1.5(4,4'-bpy)-2H2O[J]. Inorganic chemistry, 1997,V36(20):4292-4293
    [59]Streubel R. L., Neumann C. Dual Reaction Behavior of an in Situ Generated Nitrilium Phosphineylide Complex Towards Carbon-Sulfur-Systems[J]. Chemical communications, 1999,(6):499-500
    [60]Plasseraud L., Maid·H., Hampel F., et al. A Meso-helical Coordination Polymer from Achiral Dinuclear [Cu2(H3CCN)2(μ-pydz)3][PF6]2 and 1,3-bis(diphenylphosphanyl) Propane-synthesis and Crystal Structure of{[Cu(μ-pydz)2][PF6]} (pydz=pyridazine)[J]. Chemistry--A European Journal,2001,V7(18):4007-4011
    [61]Fan J., Sui B., Olamura T. A., et al. Synthesis, Structures and Properties of Two-dimensional Honeycomb and Stepwise Networks from Self-assembly of Tripodal Ligand 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene with Metal Salts[J]. Journal of the Chemical Society, Dalton Transactions,2002,(20):3868-3873
    [62]Li X., Cao R., Sun Y. Q., et al. Syntheses and Characterizations of Coordination Polymers Constructed from 4-Pyridylacetic Acid[J]. Crystal Growth & Design,2004, V4(2):255-261
    [63]Huang X. C., Zhang J. P., Lin Y. Y., et al. Triple-stranded Helices and Zigzag Chains of Copper(I) 2-ethylimidazolate:Solvent Polarity-induced Supramolecular Isomerism[J]. Chemical Communications,2005,(17):2232-2334
    [64]Chen C. L., Goforth A. M., Smith M. D., et al. Non-Interpenetrated Square-Grid Coordination Polymers Synthesized Using an Extremely Long N,N'-Type Ligand[J]. Inorganic Chemistry,2005, V44(24):8762-8769
    [65]Zang S. Q., Su Y., Li Y. Z., et al. Interweaving of Triple-Helical and Extended Metal-O-Metal Single-Helical Chains with the Same Helix Axis in a 3D Metal-Organic Framework[J]. Inorganic Chemistry,2006,V45(10):3855-3857
    [66]Ruettimann S., Bernardinelli G., Williams A. F. A Trimeric Coordination Compound Obtained by Cyclopalladation and Containing a Hydrophobic Cavity [J]. Angewandte Chemie,1993,V105(3):432-434
    [67]Carina R. F., Williams A. F., Bernardinelli G. Cyclometallated Fragments as Building Blocks for Self-assembly Reactions[J]. Journal of Organometallic Chemistry,1997, V548(1):45-48
    [68]Cotton F. A., Lin C., Murillo C. A. Maximum Communication between Coupled Oxidations of Dimetal Units[J]. Journal of the American Chemical Society,2001,
    V123(11):2670-2671
    [69]Liu X. G, Stern C. L., Mirkin C. A. Chemical Origami:Formation of Flexible 52-Membered Tetranuclear Metallacycles via a Molecular Square Formed from a Hemilabile Ligand[J]. Organometallics,2002,V21 (6):1017-1019
    [70]Sun S. S., Anspach J. A., Lees A. J. Self-Assembly of Transition-Metal-Based Macrocycles Linked by Photoisomerizable Ligands:Examples of Photoinduced Conversion of Tetranuclear-Dinuclear Squares[J]. Inorganic Chemistry,2002,V41(7): 1862-1869
    [71]Cotton F. A., Daniels L. M., Lin C., et al. Supramolecular Squares with Rh24+ Corners[J]. Journal of the Chemical Society, Dalton Transactions,2001,(5):502-504
    [72]Lee S. J., Lin W. B. A Chiral Molecular Square with Metallo-Corners for Enantioselec-tive Sensing[J]. Journal of the American Chemical Society,2002,V124(17):4554-4555
    [73]Gable R. W., Hoskins B. F., Robson R. A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis(4,4'-bipyridine)zinc hexafluorosilicate[J]. Journal of the Chemical Society, Chemical Communications,1990, (23):1677-1678
    [74]Hoskins B. F., Robson R. Design and Construction of a New Class of Scaffolding-Like Materials Comprising Infinite Polymeric Frameworks of 3D-Linked Molecular Rods. A Reappraisal of the Zinc Cyanide and Cadmium Cyanide Structures and the Synthesis and Structure of the Diamond-Related Frameworks [N(CH3)4][CuIZnⅡ(CN)4] and CuⅠ[4,4',4",4'"-tetracyanotetraphenylmethane]·xC6H5NO2 [J]. Journal of the American Chemical Society,1990,V112(4):1546-1554
    [75]MacGilliveray L. R., Groeneman R. H., Atwood J. L. Design and Self-assembly of Cavity-containing Rectangular Grids [J]. Journal of the American Chemical Society,1998, V120(11):2676-2677
    [76]Akeroy C. B., Beatty A. M., Leinen D. S. A Versatile Route to Porous Solids: Organic-inorganic Hybrid Materials Assembled through Hydrogen Bonds [J]. Angewandte Chemie, International Edition,1999,V38(12):1815-1819
    [77]Biradha K., Hong Y., Fujita M. Open square-grid coordination polymers of the dimensions 20x20.ANG.:Remarkably stable and crystalline solids even after guest removal [J]. Angewandte Chemie, International Edition,2000,V39(21):3843-3845
    [78]Ohmori O., Kawano M., Fujita M. A 24×24.ANG. square ladder[J]. CrystEngComm, 2004,V6:51-53
    [79]Pschirer N. G., Ciurtin D. M., Smith M. D., et al. Noninterpenetrating square-grid coordination polymers with dimensions of 25x25.ANG. prepared by using N,N'-type ligands:the first chiral square-grid coordination polymer[J]. Angewandte Chemie, International Edition,2002,V41(4):583-585
    [80]Campos-Fernandez C. S., Clerac R., Koomen J. M, et al. Fine-Tuning the Ring-Size of Metallacyclophanes:A Rational Approach to Molecular Pentagons[J]. Journal of the American Chemical Society,2001,V123(4):773-774
    [81]Hwang S. H., Wang P. S., Moorefield C. N., et al. Design, self-assembly, and photophysical properties of pentameric metallomacrocycles:[M5(N-hexyl[1,2-bis(2,2':6',2"-terpyridin-4-yl)]carbazole)5] [M= Fe(II), Ru(II), and Zn(II)][J]. Chemical Communications,2005,(37):4672-4674
    [82]Newkome G. R., Cho T. J., Moorefield C. N., et al. Self-and Directed Assembly of Hexaruthenium Macrocycles[J]. Angewandte Chemie, International Edition,1999, V38(24):3717-3721
    [83]Newkome G. R., Cho T. J., Moorefield C. N., et al. Hexagonal Terpyridine-ruthenium and-iron Macrocyclic Complexes by Stepwise and Self-assembly Procedures [J]. Chemistry--A European Journal,2002,V8(13):2946-2954
    [84]Newkome G. R., Cho T. J., Moorefield C. N., et al. Towards Ordered Architectures:Self-assembly and Stepwise Procedures to the Hexameric Metallomacrocycles [arylbis(terpyridinyl)6FeⅡ6-n-RuⅡn] (n=0,2,3,5)[J]. Chemistry--A European Journal, 2004,V10(6):1493-1500
    [85]Carlucci L., Ciani G, Proserpio D. M. Self-assembly of novel co-ordination polymers containing polycatenated molecular ladders and intertwined two-dimensional tilings [J]. Journal of the Chemical Society, Dalton Transactions:Inorganic Chemistry,1999,(11): 1799-1804
    [86]Choi H. J., Suh M. P. Self-assembly of Molecular Brick Wall and Molecular Honeycomb from Nickel(II) Macrocycle and 1,3,5-benzenetricarboxylate:Guest-dependent Host Structures[J]. Journal of the American Chemical Society,1998,V120(41):10622-10628
    [87]Dong Y. B., Layland R. C., Pschirer N. G, et al. New Crystalline Frameworks Formed
    from 1,2-bis(4-pyridyl)ethyne and Co(NO3)2:Interpenetrating Molecular Ladders and an Unexpected Molecular Parquet Pattern from T-shaped Building Blocks [J]. Chemistry of Materials,1999,V11(6):1413-1415
    [88]Blatov V. A., Carlucci L., Ciani G., et al. Interpenetrating Metalorganic and Inorganic 3D Networks:a Computer-aided Systematic Investigation. Part I. Analysis of the Cambridge Structural Database[J]. CrystEngComm,2004,V6:377-395
    [89]Muthu S., Yip J. H. K., Vittal J. J. Coordination networks of Ag(I) and N,N'-bis(3-pyridinecarboxamide)-1,6-hexane:structures and anion exchange[J]. Journal of the Chemical Society, Dalton Transactions,2002,(24):4561-4568
    [90]Mantel C., Baffert C., Romero I., et al. Structural Characterization and Electronic Properties Determination by High-Field and High-Frequency EPR of a Series of Five-Coordinated Mn(II) Complexes[J]. Inorganic Chemistry,2004,V43(20):6455-6463
    [91]Storrier G. D., Colbran, S. B., Craig D. C. Transition-metal Complexes of Terpyridine Ligands with Hydroquinone or Quinone Substituents[J]. Journal of the Chemical Society, Dalton Transactions:Inorganic Chemistry,1998,(8):1351-1364
    [92]Su C. Y., Liao S., Zhu H. L., et al. Silver(I) complexes with quinoline based linear multidentate ligands:self-assembly of sulfur-bridged tetrametallotricyclic boxes[J]. Dalton,2000,(13):1985-1993
    [93]Cooke M. W., Tremblay P. M., Hanan G. S. Polymeric Structures of a Pair of Linear, Dicarboxylate (tpy)2Ru2+ Analogues [J]. Inorganic Chemistry Communications,2007, V10(11):1365-1370
    [94]Davis A.V., Raymond K. N. The Big Squeeze:Guest Exchange in an M4L6 Supramolecular Host[J]. Journal of the American Chemical Society,2005,V127(21): 7912-7919
    [95]Yoshizawa M., Miyagi S., Kawano M., et al. Alkane Oxidation via Photochemical Excitation of a Self-Assembled Molecular Cage[J]. Journal of the American Chemical Society,2004,V126(30):9172-9173
    [96]Fan J., Zhu H. F., Okamura T. A., et al. Discrete and Infinite Cage-like Frameworks with Inclusion of Anionic and Neutral Species and with Interpenetration Phenomena[J]. Chemistry--A European Journal,2003,V9(19):4724-4731
    [97]Cooke M. W., Tremblay P. M., Hanan G. S. Carboxy-derived (tpy)2Ru2+ complexes as
    sub-units in Supramolecular Architectures:The Solubilized Ligand 4'-(4-carboxyphenyl)-4,4"-di-(tert-butyl)tpy and Its Homoleptic Ru(II) Complex[J]. Inorganica Chimica Acta, 2008,V361(8):2259-2269
    [98]Krohnke F. Syntheses using pyridinium salts. The specific synthesis of pyridines and oligopyridines[J]. Synthesis,1976,(1):1-24
    [99]Krohnke F. Syntheses by Michael Addition of Pyridinium Salts[J]. Angewandte Chemie, 1963,V75:181-194
    [100]Schmittel M., Kalsani V. Functional, Discrete, Nanoscale Supramolecular Assemblies[J]. Topics in Current Chemistry,2005,V245(Functional Molecular Nanostructures):1-53
    [101]Potts K. T., Cipullo M. J., Ralli P., et al. Synthesis of 2,6-disubstituted pyridines, polypyridinyls, and annulated pyridines[J]. Journal of Organic Chemistry,1982,V47(16): 3027-3038
    [102]Kato M., Tanase T. Tetranuclear Copper(II) Complex with Glucose-1-phosphate and Its Phosphate Ester Exchange with ATP[J]. Inorganic Chemistry,2005,V44(1):8-10
    [103]Harvey P. D., Gray H. B. Low-lying Singlet and Triplet Electronic Excited States of Binuclear (d10-d10) Palladium(0) and Platinum(0) Complexes[J]. Journal of the American Chemical Society,1988, V110(7):2145-2147
    [104]Yaghi 0. M., Li G. M. Mutually Interpenetrating Sheets and Channels in the Extended Structure of [Cu(4,4'-bpy)Cl][J]. Angewandte Chemie, International Edition in English, 1995,V34(2):207-209
    [105]Yaghi O. M., Li H. L. T-shaped Molecular Building Units in the Porous Structure of Ag(4,4'-bpy)·NO3[J]. Journal of the American Chemical Society, 1996,V118(1):295-296
    [106]Subramanian S., Zaworotko M. J. Porous Solids by Design:[Zn(4,4'-bpy)2(SiF6)]n·xDMF, a Single Framework Octahedral Coordination Polymer with Large Square Channels [J]. Angewandte Chemie, International Edition English,1995, V34(19):2127-2129
    [107]Rujiwatra A., Kepert C. J., Rosseisky M. J. The Organo-pillared Porous Magnetic Framework Co4(S04)(OH)6(H2NC2H4NH2)o.5·3H20[J]. Chemical Communications,1999, (22):2307-2308
    [108]Su C. Y., Smith M. D., Goforth A. M., et al. A Three-dimensional, Noninterpenetrating
    Metal-organic Framework with the Moganite Topology:A Simple (42.62.82)(4.64.8)2 Net Containing Two Kinds of Topologically Nonequivalent Points [J]. Inorganic chemistry,2004,V43(22):6881-6883
    [109]Baburin I. A., Blatov V. A., Carlucci L., et al. Interpenetrating Metalorganic and Inorganic 3D Networks:A Computer-aided Systematic Investigation. Part Ⅱ. Analysis of The Inorganic Crystal Structure Database(ICSD)[J]. Journal of Solid State Chemistry, 2005,V178(8):2452-2474
    [110]陈小明,蔡继文.单晶结构分析原理与实践[M].北京:科学出版社,2003
    [111]Blake A. J., Champness N. R., Chung S. S. M., et al. In Situ Ligand Synthesis and Construction of an Unprecedented Three-dimensional Array with Silver(I):a New Approach to Inorganic Crystal Engineering [J]. Chemical communications,1997,(17): 1675-1676
    [112]Xiong R. G., Zhang J., Chen Z. F., et al. In Situ Ligand Synthesis and the First Crystallographically Characterized Lanthanide 3-D Pillared Networks Containing Benzene-1,4-disulfonate as a Building Block[J]. Journal of the Chemical Society, Dalton Transactions,2001,(6):780-782
    [113]Evans O R, Lin W. Pillared,3D metal-organic frameworks with Rectangular Channels. Synthesis and Characterization of Coordination Polymers Based on Tricadmium Carboxylates[J]. Inorganic chemistry,2000,V39(10):2189-2198
    [114]Yan Y., Wu C. D., Lu C. Z. Hydrothermal Synthesis of Two New Transition Metal Coordination Polymers with Mixed Ligands[J]. Zeitschrift fuer Anorganische und Allgemeine Chemie,2003, V629(11):1991-1995
    [115]Cheng J. K., Yao Y. G., Zhang J., et al. A Simultaneous Redox, Alkylation, Self-assembly Reaction under Solvothermal Conditions Afforded a Luminescent Copper(I) Chain Polymer Constructed of Cu3I4- and EtS-4-C5H4N+Et Components (Et=CH3CH2)[J]. Journal of the American Chemical Society,2004, V126(25):7796-7797
    [116]Hu X. X., Pan C. L., Xu J. Q., et al. One-and Three-dimensional Coordination Polymers Containing Organic Ligands Produced Through in Situ Hydrothermal Reactions [J]. European Journal of Inorganic Chemistry,2004,(7),1566-1569
    [117]Zhang X. M., Tong M. L., Chen X. M. Hydroxylation of N-heterocycle Ligands Observed in Two Unusual Mixed-valence CuⅠ/CuⅡ Complexes[J]. Angewandte Chemie,
    International Edition,2002, V41(6):1029-1031
    [118]Zhang X. M., Hou J. J., Wu H. S. In Situ Formation of Meso-2,2'-oxydisuccinate via Intermolecular Dehydration Coupling of D, L-malic Acid:First Coordination Polymer of 2,2'-oxydisuccinate Involving Ether Oxygen Coordination:[Cd2(meso-odsc)(H2O)][J]. Journal of the Chemical Society, Dalton Transactions,2004,(21),3437-3439
    [119]Zhang J. P., Zheng S. L., Huang X. C., et al. Two Unprecedented 3-connected 3D Networks of Copper(I) Triazolates:In-situ Formation of Ligands by Cycloaddition of Nitriles and Ammonia[J]. Angewandte Chemie, International Edition,2004,V43 (2): 206-209
    [120]Demko Z. P., Sharpless K. B. A click Chemistry Approach to Tetrazoles by Huisgen 1,3-dipolar Cycloaddition:Synthesis of 5-Sulfonyl Tetrazoles from Azides and Sulfonyl Cyanides[J]. Angewandte Chemie, International Edition,2002,V41(12):2110-2113
    [121]Zhang X. M., Wu H. S., Chen X. M. Linear and Helical Chains in Hydrothermally Synthesized Coordination Polymers [Co(bpdc)(H2O)2] and [Ni(bpdc)(H2O)3]·H2O Involving in Situ Ligand Synthesis[J]. European Journal of Inorganic Chemistry,2003, (16):2959-2964
    [122]Zhao C., Feng S. H., Xu R., et al. Hydrothermal Synthesis and Lanthanide Doping of Complex Fluorides, LiYF4, KYF4 and BaBeF4 under Mild Conditions [J]. Chemical communications,1997,(10):945-946
    [123]Dan M., Cheetham A. K., Rao C. N. R. Diverse Structures and Dimensionalities in Hybrid Frameworks of Strontium and Lanthanum with Isomeric Dihydroxybenzoates[J]. Inorganic chemistry,2006,V45(20):8227-8238
    [124]Feng S. H., Wang D., Yu R., et al. Org. Comm. Solvothermal Tech. Res[M]. Japan:Takamatsu,1997,12
    [125]Chen Q. W., Qian Y. T., Chen Z. Y., et al. Preparation of a Tl-based Superconductor by a Hydrothermal Method[J]. Physica C,1994,V224(3-4):228-230
    [126]Li G. S., Li L. P., Feng S. H., et al. An Effective Synthetic Route for a Novel Electrolyte. Nanocrystalline Solid Solutions of (CeO2)1-x(BiO1.5)x[J]. Advanced Materials,1999, V11(2):146-149
    [127]Wang B., Szu S., Greenblatt M., et al. Ionic Conductivity and Structure of Lithium Chloride-Alumina-silica Xerogels[J]. Chemistry of Materials,1992,V4(1):191-197
    [128]Feng S. H., Greenblatt M. Galvanic cell type humidity sensor with NASICON-based material operative at high temperature[J]. Chemistry of Materials,1992,V4(6):1257-1262
    [129]Mao Y. C., Li G. S., Xu W., et al. Hydrothermal Synthesis and Characterization of Nanocrystalline Pyrochlore Oxides M2Sn207 (M=La, Bi, Gd or Y)[J]. Journal of Materials Chemistry,2000,V10(2):479-482
    [130]Zhao C. Y., Feng S. H., Chao Z. C., et al. Hydrothermal Synthesis of the Complex Fluorides LiBaF3 and KMgF3 with Perovskite Structures under Mild Conditions [J]. Chemical communications,1996, (14):1641-1642
    [131]Zhao B., Yi L., Dai Y, et al. Systematic Investigation of the Hydrothermal Syntheses of Pr(III)-PDA (PDA=Pyridine-2,6-dicarboxylate anion) Metal-organic Frameworks[J]. Inorganic chemistry,2005, V44(4):911-920
    [132]Go Y. B., Wang X. Q., Anokhina E. V., et al. Influence of the Reaction Temperature and pH on the Coordination Modes of the 1,4-benzenedicarboxylate (BDC) Ligand:A Case Study of the NiⅡ(BDC)/2,2'-bipyridine System[J]. Inorganic chemistry,2005, V44(23):8265-8271
    [133]Wu B. L., Yuan D. Q., Hong M. C., et al. Metal-directed self-assembly:Two new metal-binicotinate grid polymeric networks and their fluorescence emission tuned by ligand configuration[J]. European Journal of Inorganic Chemistry,2004,(13):2695-2700
    [134]Hu M., Wang Q. L., Xu G. F., et al. Synthesis and characterization of a novel lanthanide coordination polymer with network structure based on [Er4(μ3-OH)4]8+ cluster and 2,2'-bipyridine-3,3'-dicarboxylate[J]. Inorganic Chemistry Communications,2007,V10(10): 1177-1180
    [135]Zhang C. Z., Mao H. Y., Wang J., et al. Hydrothermal self-organization of two 2,2'-bipyridine-3,3'-dicarboxylate bridged polymers of TbⅢ and NiⅡ involving in situ ligand synthesis[J]. Inorganica Chimica Acta,2007,V360(2):448-454
    [136]Chen X. L., Yao Y. J., Hu H. M., et al. Synthesis, structure, and characterization of a silver(Ⅰ) coordination polymer with μ6-bridging 2,2'-bipyridyl-3,3'-dicarboxylate[J]. Journal of Coordination Chemistry,2009,V62(13):2147-2154
    [137]Xu X. X., Liu X. X., Sun T., et al. Synthesis, structure, and photoluminescence of a series of lanthanide coordination polymers constructed from nitrogen containing organic ligands[J]. Journal of Coordination Chemistry,2009,V62(17):2755-2763
    [138]Chen X. L., Yao Y. J., Hu H. M., et al. A series of metal-organic frameworks constructed with 2,2'-bipyridine-3,3'-dicarboxylate:Syntheses, structures, and physical properties[J]. Inorganica Chimica Acta,2009,V362(8):2686-2697
    [139]Wei Y. Q., Yu Y. F., Wu K. C. Highly stable diamondoid network coordination polymer [Mn(NCP)2]n with notable NLO, magnetic, and luminescence properties[J]. Crystal Growth & Design,2007,V7(11):2262-2264
    [140]Neugebauer U., Pellegrin Y., Devocelle M., et al. Ruthenium polypyridyl peptide conjugates:membrane permeable probes for cellular imaging[J]. Chemical Communications,2008,(42):5307-5309
    [141]Pellegrin Y., Forster R. J., Keyes T. E. pH Dependent photophysics and role of medium on photoinduced electron transfer between ruthenium polypyridyl complex and anthraquinone[J]. Inorganica Chimica Acta,2009,V362(6):1715-1722
    [142]Chan S. C., Chan M. C. W., Wang Y, et al. Organic light-emitting materials based on bis-(arylacetylide)platinum(II) complexes bearing substituted bipyridine and phenanthroline ligands:photo-and electroluminescence from 3MLCT excited states[J]. Chemistry--A European Journal,2001, V7(19):4180-4190
    [143]Yu S. C., Kwok C. C., Chan W. K., et al. Self-assembled electroluminescent polymers derived from terpyridine-based moieties[J]. Advanced Materials,2003,V15(19): 1643-1647
    [144]Cardinaels T., Ramaekers J., Nockemann P., et al. Imidazo[4,5-f]-1,10-phenanthrolines: Versatile Ligands for the Design of Metallomesogens[J]. Chemistry of Materials, 2008,V20(4):1278-1291
    [145]Tan L. F., Chao H., Zhou Y. F., et al. Synthesis, characterization, DNA-binding and DNA-photocleavage studies of [Ru(bpy)2(BPIP)]2+ and [Ru(phen)2(BPIP)]2+ (BPIP=2-(4'-biphenyl)imidazo[4,5-f][1,10]phenanthroline) [J]. Polyhedron,2007,V26(13):3029-3036
    [146]Tan L. F., Chao H., Zhen K. C., et al. Effects of the ancillary ligands of polypyridyl ruthenium(II) complexes on the DNA-binding and photocleavage behaviors [J]. Polyhedron,2007,V26(18):5458-5468
    [147]Gao F., Chao H., Zhou F., et al. Synthesis, characterization, and DNA-binding properties of the chiral ruthenium(II) complexes Δ-and A-[Ru(bpy)2(dmppd)]2+ (dmppd= 10,12-dimethylpteridino[6,7-f] [1,10]phenanthroline-11,13(1 OH,12H)-dione; bpy
    =2,2'-bipyridine)[J]. Helvetica Chimica Acta,2007, V90(1):36-51
    [148]Tan L. F., Wang F., Chao H. Synthesis, DNA binding, and DNA photocleavage of the ruthenium(II) complexes [Ru(bpy)(btip)]2+ and [Ru(dmb)(btip)]2+ (bpy=2,2'-bipyridine; btip=2-benzo[b]thien-2-yl-1H-imidazo[4,5-f][1,10]phenanthroline; dmb=4,4'-dimethyl-2,2'-bipyridine)[J]. Helvetica Chimica Acta,2007,V90(1):205-215.
    [149]Tan L. F., Zhang S., Chao H., et al. Experimental and density-functional-theory (DFT) studies on the DNA-binding trend and spectral properties of the ruthenium complexes [Ru(4,7-dmp)(bdip)]2+ and [Ru(bpy)2(bdip)]2+ (4,7-dmp=4,7-dimethyl-1,10-phenanthroline, bdip=2-(1,3-benzodioxol-4-yl)-1H-imidazo-[4,5-f] [1,10]phenanthroline, bpy=2,2'-bipyridine)[J]. Helvetica Chimica Acta,2007,V90(9):1786-1801
    [150]Tan L. F., Chao H. DNA-binding and photocleavage studies of mixed polypyridyl ruthenium(II) complexes with calf thymus DNA[J]. Inorganica Chimica Acta,2007, V360(6):2016-2022
    [151]Gao F., Chao H., Wei Y. F., et al. Synthesis, DNA-binding and photocleavage studies of the ruthenium(II) complexes [Ru(phen)2(ppd)]2+ and [Ru(phen)(ppd)2]2+ (ppd= pteridino [6,7-f] [1,10]phenanthroline-11,13 (1OH,12H)-dione, phen=1,10-phenanthroline) [J]. Helvetica Chimica Acta,2008, V91(3):395-410.
    [152]Tan L. F., Wang F., Chao H., et al. DNA interactions of the functionalized (mixed polypyridine) ruthenium(II) complex bis(2,2'-bipyridine-N1,N1')(methyldipyrido[3,2-a:2',3'-c]phenazine-11-carboxylate-N4, N5)ruthenium(2+) ([Ru(bpy)2(dppz-11-CO2Me)]2+)[J]. Helvetica Chimica Acta,2008, V91(7):1251-1260
    [153]Tan L. F., Zhang S., Liu X. H., et al. Experimental and density functional theory (DFT) studies on the DNA-binding trend and spectral properties of two new Ru(II) complexes: [Ru(L)2(mip)](Cl04)2 (L=2,9-dmp and 4,7-dmp)[J]. Journal of Organometallic Chemistry,2008,V693(21-22):3387-3395
    [154]Gao F., Chao H., Zhou F., et al. Synthesis, GC selective DNA binding and topoisomerase inhibition activities of ruthenium(II) polypyridyl complex containing 11-aminopteridino[6,7-f][1,10] phenanthrolin-13(12H)-one[J]. Journal of Inorganic Biochemistry,2008,V102(5-6):1050-1059
    [155]Sun B., Guan J. X., Xu L., et al. DNA Condensation Induced by Ruthenium(II) Polypyridyl Complexes [Ru(bpy)2(PIPSH)]2+ and [Ru(bpy)2(PIPNH)]2+[J]. Inorganic Chemistry,2009,V48(11):4637-4639
    [156]Tan L. F., Liang X. L., Liu X. H. Synthesis, double stranded DNA-binding and photocleavage studies of a functionalized ruthenium(II) complex with 7,7'-methy-lenedioxyphenyldipyrido[3,2-a:2',3'-c]-phenazine[J]. Journal of Inorganic Biochemistry, 2009,V103(3):441-447
    [157]Tan L. F., Chen X. J., Shen J. L., et al. Synthesis, DNA-binding and photocleavage studies of Ru(II) complexes of phenyl-(4,5,9,14-tetraaza-benzo[b]triphenylen-1,1-yl)-methanone[J]. Journal of Chemical Sciences,2009,V121(4):397-405
    [158]Wang Xi. L., Bi Y. F., Lin H. Y., et al. Hydrothermal synthesis, crystal structures and fluorescence properties of three novel frameworks constructed with mixed ligands of isophthalic acid (1,3-BDC) and 2,3-di-2-pyridylquinoxaline (Dpdq):[M(1,3-BDC)(Dpdq)(H2O)m]-nH2O (M=CoⅡ, CdⅡ or ZnⅡ)[J]. Journal of Organometallic Chemistry,2007,V692(20):4353-4360
    [159]Shang X. F., Li J. W., Lin H., et al. Anion recognition and sensing of ruthenium(II) and cobalt(II) sulfonamido complexes[J]. Dalton Transactions,2009,(12):2096-2102
    [160]Yang J., Ma J. F., Liu Y. Y., et al. A Series of Lead(II) Complexes with π-π Stackings: Structural Diversities by Varying the Ligands[J]. Crystal Growth & Design,2009,V9(4): 1894-1911
    [161]Yaghi O. M., Li H. L., Groy T. L. Construction of Porous Solids from Hydrogen-bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid[J]. Journal of the American Chemical Society,1996, V118(38):9096-9101
    [162]Kumagai H., Kepert C. J., Kurmoo M. Construction of Hydrogen-bonded and Coordination-bonded Networks of Cobalt(II) with Pyromellitate:Synthesis, Structures, and Magnetic Properties [J]. Inorganic chemistry,2002,V41(13):3410-3422
    [163]He Z., He C., Gao E. Q., et al. Lanthanide-transition Heterometallic Extended Structures with Novel Orthogonal Metalloligand as Building Block[J]. Inorganic chemistry,2003, V42(7):2206-2208
    [164]Kim Y., Lee E., Jung D. Y. Mn2(H2O)[O2C(CH2)nCO2]2 (n=3-12):Replication of an Inorganic Monolayer in Three-dimensional (dicarboxylato)manganese(II)[J]. Chemistry of Materials,2001, V13(8):2684-2690
    [165]Yang S. Y., Long L. S., Jiang Y. B., et al. An Exceptionally Stable Metal-organic Framework Constructed from the Zng(SiO4) Core[J]. Chemistry of Materials,2002, V14(8):3229-3231
    [166]Xiao D. R., Wang E. B., An H. Y., et al. Rationally designed, polymeric, extended metal-ciprofloxacin complexes[J]. Chemistry--A European Journal,2005,V11(22): 6673-6686
    [167]Xiao D. R., Wang E. B., An H. Y., et al. A bridge between pillared-layer and helical structures:a series of three-dimensional pillared coordination polymers with multiform helical chains[J]. Chemistry--A European Journal,2006,V12(25):6528-6541
    [168]Xiao D. R., Wang E. B., An H. Y., et al. Syntheses and Structures of Three Unprecedented Metal-ciprofloxacin Complexes with Helical Character[J]. Crystal Growth & Design,2007,V7(3):506-512
    [169]Xiao D. R., Li Y. G., Wang E. B., et al. Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid,9-Fold Meso Helices, and 17-Fold Interwoven Helices[J]. Inorganic chemistry,2007,V46(10):4158-4166
    [170]Li S. L., Lan Y. Q., Ma J. F., et al. Structures and Luminescent Properties of Seven Coordination Polymers of Zinc(II) and Cadmium(II) with 3,3',4,4'-benzophenone Tetracarboxylate Anion and Bis(imidazole)[J]. Crystal Growth & Design,2008,V8(2): 675-684
    [171]Li S. L., Lan Y. Q., Ma J. F., et al. Structures and Luminescent properties of a series of zinc(II) and cadmium(II) 4,4'-oxydiphthalate coordination polymers with various ligands based on bis(pyridyl imidazole) under hydrothermal conditions [J]. Crystal Growth & Design,2008,V8(5):1610-1616
    [172]Li S. L., Lan Y. Q., Qin J. S., et al. Assembly of 3D Metal-Organic Frameworks Based on Different Helical Units:Chiral and Achiral Structures Constructed by Length-Modulated N-Donor Ligands[J]. Crystal Growth & Design,2009,V9(9):4142-4146
    [173]Zhang L. P., Ma J. F., Yang J., et al. 1D,2D, and 3D Metal-Organic Frameworks Based on Bis(imidazole) Ligands and Polycarboxylates:Syntheses, Structures, and Photoluminescent Properties [J]. Crystal Growth & Design,2009,V9(11):4660-4673
    [174]Gao X. M., Li D. S., Wang J. J., et al. A novel 1D armed-polyrotaxane chain constructed from a V-shaped tetracarboxylate ligand[J]. CrystEngComm,2008,V10(5): 479-482
    [175]Chen X. L., Zhang B., Hu H. M., et al. Three Novel Heterobimetallic Cd/Zn-Na Coordination Polymers:Syntheses, Crystal Structure, and Luminescence [J]. Crystal Growth & Design,2008,V8(10):3706-3712
    [1]Menon S., Rajaseljaran M. V. Bis chelate Cu(II) complexes of dafone-synthesis, structural, EPR and optical spectral studies[J]. Polyhedron,1998,V17(15):2463-2476
    [2]Lu Z. L., Duan C. Y., Tian Y. P., et al. Synthesis, Characterization, and Crystal Structure of a Novel Copper(II) Complex with an Asymmetric Coordinated 2,2'-Bipyridine Derivative:A Model for the Associative Complex in the Ligand-Substitution Reactions of [Cu(tren)L]2+[J]. Inorganic Chemistry,1996,V35(8):2253-2258
    [3]Wang Y. X., Perez W., Zheng G. Y., et al. Syntheses and Electrochemical, Photophysical, and Photochemical Properties of Ruthenium(II) 4,5-Diazafluorenone Complexes and Their Ketal Derivatives[J]. Inorganic Chemistry,1998,V37(8):2051-2059
    [4]Beer R. H., Jimenez J., Drago R. S. Syntheses of 2,9-bis(halomethyl-1,10-phenanthrolines:potential robust ligands for metal oxidation catalysts[J]. Journal of Organic Chemistry,1993,V58(7):1746-1747
    [5]Long E. C., Barton J. K. On demonstrating DNA intercalation[J]. Accounts of Chemical Research,1990,V23(9):271-273
    [6]Batten S. R., Hoskins B. F., Robson R. Two Interpenetrating 3D Networks Which Generate Spacious Sealed-Off Compartments Enclosing of the Order of 20 Solvent Molecules in the Structures of Zn(CN)(NO3)(tpt)2/3 solv (tpt=2,4,6-tri(4-pyridyl)-1,3,5-triazine, solv=.apprx.3/4C2H2Cl4 3/4CH3OH or.apprx.3/2CHCl3 1/3CH3OH)[J]. Journal of the American Chemical Society,1995,V117(19):5385-5386
    [7]Gillard R. D., Hill R. E. E. Optically active coordination compounds. XXXX. Modification of reaction paths in 1,10-phenanthroline and its derivatives by metal ions[J]. Journal of the Chemical Society, Dalton Transactions:Inorganic Chemistry,1974,(11): 1217-1236
    [8]Barton J. K., Danishefsky A. J., Goldberg J. M. Tris(phenanthroline)ruthenium(II): stereoselectivity in binding to DNA[J]. Journal of the American Chemical Society,1984, V106(7):2172-2176
    [9]Hennigar T., MacQuarrie D. C., Loiser P., et al. Supramolecular Isomerism in Coordination Polymers:Conformational Freedom of Ligands in [Co(NO3)2(1,2-bis(4-pyridyl)ethane)1.5]n[J]. Angewandte Chemie, International Edition in English,1997, V36(9):972-973
    [10]Carlucci L., Ciani G., Proserpio D. M., et al. Chiral Packing of Chiral Quintuple Layers Polycatenated to Give a Three-dimensional Network in the Coordination Polymer [Co5(bpe)9(H2O)8(SO4)4](SO4)·14H2O [bpe=1,2-bis(4-pyridyl)ethane][J]. Chemical communications 2000,(14):1319-1320
    [11]MoultonB. E., Rather B., Zaworotko M. J. Interpenetration of Covalent and Noncovalent Networks in the Crystal Structures of{[M(4,4'-bipyridine)2(NO3)2]2(p-nitroaniline)}n where M=Co (1), Ni (2), Zn (3)[J]. Crystal Engineering,2001,V4(4):309-317
    [12]Zaman M. B., Smith M. D., ZurLoye H. C. Two Different One-dimensional Structural Motifs in the Same Coordination Polymer:a Novel Interpenetration of Infinite Ladders by Bundles of Infinite Chains[J]. Chemical communications,2001,(21):2256-2257
    [13]Du M., Bu X. H., Guo Y. M., et al. First CuⅡ Diamondoid Net with 2-Fold Interpenetrating Frameworks. The Role of Anions in the Construction of the Supramolecular Arrays[J]. Inorganic chemistry,2002,V41(19):4904-4908
    [14]Tong M. L., Wu Y. M., Ru J., et al.. Pseudo-polyrotaxane and β-Sheet Layer-based Three-dimensional Coordination Polymers Constructed with Silver Salts and Flexible Pyridyl-Type Ligands[J]. Inorganic chemistry,2002,V41(19):4846-4848
    [15]Awaleh M.O., Badia A., Brisse F. Silver Coodination Polymers with Flexible Ligands. Syntheses, Crystal Structures, and Effect of the Counteranion and the Solvent on the Structure of Complexes [AgL1X]n of the Bis(Phenylthio)methane Ligand L1 with Silver(I) Salts, X=C104-, BF4-, CF3COO-, CF3SO3-, CF3CF2CF2COCO-, and -OCCF2CF2COO-[J]. Crystal Growth & Design,2005,V5(5):1897-1906
    [16]Awaleh M. O., Badia A., Brisse F. Coordination Networks with Flexible Ligands Based on Silver(I) Salts:Complexes of 1,3-bis(phenylthio)propane with Silver(I) Salts of PF6-, CF3COO", CF3CF2COO-, CF3CF2CF2COO-, p-TsO-, and CF3SO3-[J]. Inorganic chemistry, 2005,V44(22):7833-7845
    [17]Du M., Li C. P., Zhao X. J. Metal-controlled Assembly of Coordination Polymers with the Flexible Building Block 4-pyridylacetic Acid (Hpya)[J]. Crystal Growth & Design, 2006,V6(1):335-341
    [18]Xiao D. R., Wang E. B., An H. Y., et al. Syntheses and Structures of Three Unprecedented Metal-ciprofloxacin Complexes with Helical Character[J]. Crystal Growth & Design,2007,V7(3):506-512
    [19]Chu Q., Liu G. X., Huang Y. Q., et al. Syntheses, structures, and optical properties of novel zinc(II) complexes with multicarboxylate and N-donor ligands [J]. Dalton Transactions,2007,(38):4302-4311
    [20]Li S. L., Lan Y. Q., Ma J. F., et al. Structures and Luminescent Properties of a Series of Zinc(II) and Cadmium(II) 4,4'-Oxydiphthalate Coordination Polymers with Various Ligands Based on Bis(pyridyl imidazole) under Hydrothermal Conditions [J]. Crystal Growth & Design,2008,V8(5):1610-1616
    [21]Chen X. L., Zhang B., Hu H. M., et al. Three Novel Heterobimetallic Cd/Zn-Na Coordination Polymers:Syntheses, Crystal Structure, and Luminescence[J]. Crystal Growth & Design,2008,V8(10):3706-3712
    [22]Hiort C., Lincoln P., Norden B. DNA binding of Δ-and A-[Ru(phen)2DPPZ]2+[J]. Journal of the American Chemical Society,1993,V115(9):3448-3454
    [23]Paw W., Eisenberg R. Synthesis, Characterization, and Spectroscopy of Dipyridocatecholate Complexes of Platinum[J]. Inorganic Chemistry,1997,V36(11):
    2287-2293
    [24]Yamada M., Tanaka Y., Yoshimoto Y., et al. Synthesis and properties of diamino-substituted dipyrido [3.2-a:2',3'-c]phenazine[J]. Bulletin of the Chemical Society of Japan,1992, V65 (4):1006-1011
    [25]Steck E. A., Day A. R. Reactions of phenanthraquinone and retenequinone with aldehydes and ammonium acetate in acetic acid solutions[J]. Journal of the American Chemical Society,1943,V65:452-456
    [26]Xu H., Zheng K. C., Deng H., et al. Effects of the ancillary ligands of polypyridyl ruthenium(ii) complexes on the DNA-binding behaviors[J]. New Journal of Chemistry, 2003,V27(8):1255-1263
    [27]Xu H., Liang Y., Zhang P., et al. Biophysical studies of a ruthenium(II) polypyridyl complex binding to DNA and RNA prove that nucleic acid structure has significant effects on binding behaviors [J]. Journal of Biological Inorganic Chemistry, 2005,V10(5):529-538
    [28]Sheldrick G. M. SHELXS-97 and SHELXL-97, Program for X-ray Crystal Structure Solution and Refinement[M], Germany:Gottingen University,1997
    [29]Wang Y. B., Zheng X. J., Zhuang W. J., et al. First examples of ternary lanthanide 2,2'-diphenyldi-carboxylate complexes:Hydrothermal syntheses and structures of lanthanide coordination polymers of 2,2'-diphenyldicarboxylic acid and 1,10-phenanthroline[J]. European Journal of Inorganic Chemistry,2003,(19):3572-3582
    [30]Yan B., Song Y. S., Chen Z. X. A novel quaternary dinuclear luminescent terbium complex Tb2(phth)2(Hphth)2(phen)2(H2O)4:hydrothermal synthesis, crystal structure and photophysics[J]. Journal of Molecular Structure,2004,V694(1-3):115-120
    [31]Wang S. P., Wang R. F., Zhang J. J. Crystal structure and properties of complex [Tb(p-ClBA)3(phen)]2 [J]. Wuji Huaxue Xuebao,2007,V23(5):862-866
    [32]Xu L. J., Wang S. P., Wang R. F., et al. Synthesis, structures and properties of ternary rare earth complexes with fluorobenzoic acid and 1,10-phenanthroline[J]. Journal of Coordination Chemistry,2008,V61(2):237-250
    [33]Baker J., Engelhardt L. M., Figgis B. N., et al. Crystal structure, electron spin resonance and magnetism of tris(o-phenanthroline)iron(III) perchlorate hydrate[J]. Journal of the Chemical Society, Dalton Transactions:Inorganic Chemistry,1975,(6):530-534
    [34]Ma F. X., Chen Y. G., Shi D. M., et al. Hydrothermal synthesis and characterization of two novel tungstovanadophosphate derivatives[J]. Transition Metal Chemistry,2008, V33(6):697-703
    [35]Wang J. P., Wang W., Niu J. Y. A novel sandwich polyoxometalate linked by mixed RE/TM interlayer:[Fe(phen)3]2[As2W18Fe2{Y(OH2)2}2O68]·6.5H2O[J]. Journal of Molecular Structure,2008, V873(1-3):29-34
    [1]Seo J. S., Whang D., Lee H., et al. A Homochiral Metal-organic Porous Material for Enantioselective Separation and Catalysis[J]. Nature,2000,V404(6781):982-986
    [2]Eddaoudi M., Moler D. B., Li H. L., et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-organic Carboxylate Frameworks [J]. Accounts of Chemical Research,2001,V34(4):319-330
    [3]Evans O. R., Lin W. B. Crystal Engineering of NLO Materials Based on Metal-organic Coordination Networks[J]. Accounts of Chemical Research,2002,V35(7):511-522
    [4]Benelli C., Gatteschi D. Magnetism of Lanthanides in Molecular Materials with Transition-metal Ions and Organic Radicals[J]. Chemical Reviews,2002,V102(6): 2369-2387
    [5]Gao E. Q., Bai S. Q., Wang Z. M., et al. Two-dimensional Homochiral Manganese(II)-azido Frameworks Incorporating an Achiral Ligand:Partial Spontaneous Resolution and Weak Ferromagnetism[J]. Journal of the American Chemical Society, 2003,V125(17):4984-4985
    [6]Janiak C. Engineering Coordination Polymers Towards Applications[J]. Dalton Transactions,2003, (14):2781-2804
    [7]Kitagawa S., Kitaura R., Noro S. I. Functional Porous Coordination Polymers[J]. Angewandte Chemie, International Edition,2004,V43(18):2334-2375
    [8]Ockwig N. W., Delgado F. O, O'Keeffe M., et al. Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks [J]. Accounts of Chemical Research,2005,V38(3):176-182
    [9]Bu X. H., Chen W., Hou W. F, et al. Controlling the Framework Formation of Silver(I) Coordination Polymers with 1,4-Bis(phenylthio)butane by Varying the Solvents, Metal-to-ligand Ratio, and Counteranions[J]. Inorganic chemistry,2002,V41(13): 3477-3482
    [10]Noro S., Kitaura R., Kondo M., et al. Framework Engineering by Anions and Porous Functionalities of Cu(II)/4,4'-bpy Coordination Polymers [J]. Journal of the American Chemical Society,2002, V124(11):2568-2583
    [11]Li H. H., Chen Z. R., Li J. Q, et al. Role of Spacers and Substituents in the Self-assembly Process:Syntheses and Characterization of Three Novel Silver(Ⅰ)/Iodine Polymers[J]. Crystal Growth & Design,2006,V6(8):1813-1820
    [12]Awaleh M. O., Badia A., Brisse F. Influence of the Anion on the Structure of Bis(methylthio) methane Supramolecular Coordination Complexes[J]. Crystal Growth & Design,2006,V6(12):2674-2685
    [13]Wang Y. H., Chu K. L., Chen H. C., et al. Adjusting the Frameworks of Polymeric Silver(I) Complexes with 2-aminopyrimidyl Ligands by Changing the Counterions[J]. CrystEngComm,2006, V8(1):84-93
    [14]Blake A. J., Champness N. R., Cooke P. A., et al. Multi-modal Bridging Ligands; Effects
    of Ligand Functionality, Anion and Crystallization Solvent in Silver(I) Coordination Polymers [J]. Dalton,2000,(21):3811-3819
    [15]Reger D. L., Wright T. D., Semeniuc R. F., et al. Supramolecular Structures of Cadmium(II) Coordination Polymers:A New Class of Ligands Formed by Linking Tripodal Tris (pyrazolyl) methane Units[J]. Inorganic chemistry,2001,V40(24): 6212-6219
    [16]Bu X. H., Chen W., Lu. S. L., et al. Flexible Meso-bis(sulfinyl) Ligands as Building Blocks for Copper(II) Coordination Polymers:Cavity Control by Varying the Chain Length of Ligands[J]. Angewandte Chemie, International Edition,2001,V40(17): 3201-3203
    [17]Kitaura R., Fujimoto K., Noro S., et al. A Pillared-layer Coordination Polymer Network Displaying Hysteretic Sorption:[Cu2(pzdc)2(dpyg)]n (pzdc=pyrazine-2,3-dicarboxylate; dpyg=1,2-di(4-pyridyl) glycol) [J]. Angewandte Chemie, International Edition,2002, V41(1):133-135
    [18]Kitaura R., Seki. K., Akiyama G., et al. Porous Coordination-polymer Crystals with Gated Channels Specific for Supercritical Gases[J]. Angewandte Chemie, International Edition,2003,V42(4):428-431
    [19]Sun D. F., Cao R., Sun Y. Q., et al. Novel silver-containing supramolecular frameworks constructed by combination of coordination bonds and supramolecular interactions[J]. Inorganic Chemistry,2003, V42(23):7512-7518
    [20]Gao X. M., Li D. S., Wang J. J., et al. A novel 1D armed-polyrotaxane chain constructed from a V-shaped tetracarboxylate ligand[J]. CrystEngComm,2008,V10(5):479-482
    [21]Chen X. M., Liu G. F. Double-stranded Helices and Molecular Zippers Assembled from Single-stranded Coordination Polymers Directed by Supramolecular Interactions [J]. Chemistry--A European Journal,2002,V8(20):4811-4817
    [22]Liu G. F., Ye B. H., Ling Y. H., et al. Interlocking of Molecular Rhombi into a 2D Polyrotaxane Network via π-π Interactions. Crystal Structure of [Cu2(bpa)2(phen)2(H2O)]2-2H2O (bpa2-=biphenyl-4,4'-dicarboxylate, phen= 1,10-phenanthroline)[J]. Chemical communications,2002,(14):1442-1443
    [23]Sheldrick G. M. SHELXS-97 and SHELXL-97, Program for X-ray Crystal Structure Solution and Refinement[M], Germany:Gottingen University,1997
    [24]Oh M., Carpenter G. B., Sweigart D. A. The 4-o-Benzoquinone Manganese Tricarbonyl Anion (o-QMTC) as an Organometalloligand in the Formation of M(o-QMTC)2(L-L) Complexes·(M=Mn, Co, Cd; L-L=bipy, phen):Generation of Neutral 2-D Networks Containing Two Types of Δ-A Stacking[J]. Organometallics,2003,V22(7):1437-1442
    [25]Bi W. H., Cao R., Sun D. F., et al. Isomer separation, conformation control of flexible cyclohexanedi-carboxylate ligand in cadmium complexes [J]. Chemical Communications, 2004,(18):2104-2105
    [26]Shi X., Zhu G. S., Wang X. H., et al. Polymeric Frameworks Constructed from a Metal-Organic Coordination Compound, in 1-D and 2-D Systems:Synthesis, Crystal Structures, and Fluorescent Properties [J]. Crystal Growth & Design,2005,V5(1):341-346
    [27]Li G., Li Z. F., Wu J. X., et al. Syntheses, crystal structures and electrochemical properties of Zn(II) and Cd(II) complexes constructed from ferrocene-based carboxylate and N-containing ligands[J]. Wuji Huaxue Xuebao,2007,V23(6):975-980
    [28]Liu G. C., Chen Y. Q., Wang X. L., et al. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]-quinoxaline:From 0D+1D cocrystal,2D rectangular network (4,4), to 3D PtS-type architecture [J]. Journal of Solid State Chemistry,2009,V182(3):566-573
    [29]Zhao Q. H., Li H. F., Ma Y. P., et al. Syntheses and crystal structures of zinc(II) complexes with two kinds of benzoate derivatives [J]. Polish Journal of Chemistry,2002, V76(4):497-502
    [30]Lemoine P., Viossat B., Dung N. H., et al. Synthesis, crystal structures, and anti-convulsant activities of ternary [ZnⅡ(3,5-diisopropylsalicylate)2], [ZnII(salicylate)2] and [ZnⅡ(aspirinate)2] complexes[J]. Journal of Inorganic Biochemistry,2004,V98(11): 1734-1749
    [31]Viossat V., Lemoine P., Dayan E., et al. Synthesis, crystal structures and IR spectra of isotypic pseudopolymorphs complexes of Zn(II) by indole-2-carboxylic acid and 2,9-dimethyl-1,10-phenanthroline with different solvates (DMA, DMF or DMSO)[J]. Journal of Molecular Structure,2005,V741(1-3):45-52
    [32]Das S., Bharadwaj P. K. Supramolecular Host-Guest Systems of Luminescent Zn(II) Complexes with Benzene, Nitrobenzene, and Ethanol:Selectivity of Guest Inclusion and Solid-State Fluorescence Modulation Studies [J]. Crystal Growth & Design,2007, V7(6):
    1192-1197
    [33]Cao X. Y., Zhang J., Li Z. J., et al. Scorpion-shaped carboxylate ligand tailored molecular square, bilayer, self-threading and (3,6)-connected nets[J]. CrystEngComm,2007,V9(9): 806-814
    [34]Karmakar A., Bania K., Baruah A. M., et al. Role of nitro-substituent in pseudo-polymorphism and in synthesis of metal carboxylato complexes of copper, zinc and manganese[J]. Inorganic Chemistry Communications,2007,V10(8):959-964
    [35]Baruah A. M., Karmakar A., Baruah J. B. Ring opening reactions of pyromellitic dianhydride for the synthesis of first row transition metal dicarboxylate complexes[J]. Polyhedron,2007,V26(15):4479-4488
    [36]Wang X. W., Chen F. P., Chen L., et al. Crystal structures and fluorescent properties of two linear trinuclear zinc(II) complexes[J]. Journal of Molecular Structure,2007, V842(1-3):75-80
    [37]Li W., Tong M. L., Chen X. M., et al. Crystal structure of catena-(4,4'-bipyridine)-disalicylatozinc[J]. Main Group Metal Chemistry,2001,V24(11):799-800
    [38]Kongshaug K. O., Fjellvag H. Synthesis and characterization of the mixed ligand coordination polymer CPO-5[J]. Journal of Solid State Chemistry,2003,V175(2):182-187
    [39]Balasubramanian P. K.Relativistic Effects in Chemistry. Part A:Theory and Techniques[M], New York:Wiley,1997
    [40]Pyykko P. Relativistic effects in structural chemistry[J]. Chemical Reviews,1988,V88(3): 563-594
    [41]Kaltsoyannis N. Relativistic effects in inorganic and organometallic chemistry [J]. Journal of the Chemical Society, Dalton Transactions:Inorganic Chemistry,1997,(1):1-11
    [42]Pyykko P. Strong Closed-Shell Interactions in Inorganic Chemistry[J]. Chemical Reviews, 1997,V97(3):597-636
    [43]Dai J. C., Wu X. T., Fu Z. Y., et al. Synthesis, Structure, and Fluorescence of the Novel Cadmium(II)-Trimesate Coordination Polymers with Different Coordination Architectures[J]. Inorganic Chemistry,2002,V41(6):1391-1396
    [44]Chen W., Wang J. Y., Chen C., et al. Photoluminescent metal-organic polymer constructed from trimetallic clusters and mixed carboxylates[J]. Inorganic chemistry,
    2003,V42(4):944-6
    [45]Lu W. G., Jiang L., Feng X. L., et al. Three 3D Coordination Polymers Constructed by Cd(II) and Zn(II) with Imidazole-4,5-Dicarboxylate and 4,4'-Bipyridyl Building Blocks[J]. Crystal Growth & Design,2006,V6(2):564-571
    [46]Wang J. J., Gou L., Hu H. M., et al. Ligand and pH-Controlled ZnⅡ Bilayer Coordination Polymers Based on Biphenyl-3,3',4,4'-tetracarboxylate[J]. Crystal Growth & Design, 2007,V7(8):1514-1521
    [47]Chen X. L., Gou L., Hu H. M., et al. New examples of metal coordination architectures of 4,4'-sulfon-yldibenzoic acid:syntheses, crystal structure and luminescence[J]. European Journal of Inorganic Chemistry,2008,(2):239-250
    [48]Yam V. W. W., Lo K. K. W. Luminescent polynuclear d10 metal complexes[J]. Chemical Society Reviews,1999,V28(5):323-334
    [49]Wang X. L., Qin C., Wang E. B., et al. An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks[J]. Chemical Communications,2005,(38):4789-4791
    [50]Tong M. L., Chen X. M., Ye B. H., et al. Self-assembled three-dimensional coordination polymers with unusual ligand-unsupported AgAg bonds:syntheses, structures, and luminescent properties [J]. Angewandte Chemie, International Edition,1999,V38(15): 2237-2240
    [51]Xia, C. K., Lu, C. Z., Zhang, Q. Z., et al. Syntheses, Structures, and Photoluminescent Properties of Three Silver(I) Coordination Polymers with 2-(4-Pyridyl)benzimidazole[J]. Crystal Growth & Design,2005,V5(4):1569-1574
    [52]Peng R., Wu T., Li D. A chiral coordination polymer containing copper(I) iodide layer composed of intersecting [CuⅠ]n helices[J]. CrystEngComm,2005,V7:595-598
    [53]Tao, J., Yin, X., Wei, Z. B., et al. Hydrothermal syntheses, crystal structures and photoluminescent properties of three metal-cluster based coordination polymers containing mixed organic ligands[J]. European Journal of Inorganic Chemistry,2004, (1):125-133
    [54]Zhang J., Li Z. J., Kang Y., et al. Hydrothermal Syntheses, Crystal Structures, and Properties of a Novel Class of 3,3',4,4'-Benzophenone-tetracarboxylate (BPTC) Polymers[J]. Inorganic Chemistry,2004,V43(25):8085-8091
    [55]Zheng S. L., Chen X. M. Recent Advances in Luminescent Monomeric, Multinuclear, and Polymeric Zn(II) and Cd(II) Coordination Complexes[J]. Australian Journal of Chemistry,2004,V57(8):703-712
    [56]Hong Jun. [Zn2(BTDA)(bpy)(H2O)]·0.5bpy:a new three-dimensional metal-organic framework constructed from flexible and rigid mixed ligands[J]. Journal of Molecular Structure,2005,V752(1-3):166-169
    [57]Eddaoudi M., Moler D. B., Li H. L., et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Accounts of Chemical Research,2001,V34(4):319-330
    [58]Evans O. R., Lin W. B. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks [J]. Accounts of Chemical Research,2002,V35(7):511-522
    [59]Kitagawa S., Kitaura R., Noro S. Functional porous coordination polymers [J]. Angewandte Chemie, International Edition,2004,V43(18):2334-2375
    [60]Li S.L., Lan Y. Q., Ma J. F., et al. Structures and Luminescent properties of a series of zinc(II) and cadmium(II) 4,4'-oxydiphthalate coordination polymers with various ligands based on bis(pyridyl imidazole) under hydrothermal conditions [J]. Crystal Growth & Design,2008, V8(5):1610-1616
    [61]Gao X. M., Li D. S., Wang J. J., et al. A novel 1D armed-polyrotaxane chain constructed from a V-shaped tetracarboxylate ligand[J]. CrystEngComm,2008,V10(5):479-482
    [62]Xiao D. R., Wang E. B., An H. Y., et al. Rationally designed, polymeric, extended metal-ciprofloxacin complexes[J]. Chemistry--A European Journal,2005,V11(22): 6673-6686
    [63]Xiao D. R., Wang E. B., An H. Y., et al. A bridge between pillared-layer and helical structures:a series of three-dimensional pillared coordination polymers with multiform helical chains[J]. Chemistry--A European Journal,2006,V12(25):6528-6541
    [64]Xiao D. R., Wang E. B., An H. Y., et al. Syntheses and Structures of Three Unprecedented Metal-Ciprofloxacin Complexes with Helical Character [J]. Crystal Growth & Design,2007,V7(3):506-512
    [65]Zheng S. L., Chen X. M. Recent Advances in Luminescent Monomeric, Multinuclear, and Polymeric Zn(II) and Cd(II) Coordination Complexes [J]. Australian Journal of Chemistry,2004,V57(8):703-712
    [66]Qin C., Wang X. L., Carlucci L., et al. From arm-shaped layers to a new type of polythreaded array:a two fold interpenetrated three-dimensional network with a rutile topology[J]. Chemical Communications,2004,(16):1876-1877
    [67]Wang X. L., Qin C., Wang E. B., et al. Interlocked and interdigitated architectures from self-assembly of long flexible ligands and cadmium salts [J]. Angewandte Chemie, International Edition,2004, V43(38):5036-5040
    [68]Wang X. L., Qin C., Wang E. B., et al. Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting[J]. Angewandte Chemie, International Edition,2005, V44(36):5824-5827
    [69]Wang X. L., Qin C., Wang E. B., et al. An unprecedented fivefold interpenetrated lvt network containing the exceptional racemic motifs originated from nine interwoven helices[J]. Chemical Communications,2005,(43):5450-5452
    [70]Wang X. L., Qin C., Wang E. B., et al. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, bi-, and trimetallic cores as nodes[J]. Chemistry--A European Journal,2006,V12(10):2680-2691
    [71]Xiao D. R, Li Y. G., Wang E. B., et al. Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid,9-Fold Meso Helices, and 17-Fold Interwoven Helices[J]. Inorganic Chemistry,2007,V46(10):4158-4166.
    [72]Rexit A. A. A 2D Zn(II) metal-organic framework constructed from 4,4'-(perfluoropropane-2,2-diyl) dibenzoic acid, synthesis, structure and photoluminescence[J]. Journal of Coordination Chemistry,2009,V62(8):1373-1378
    [73]赵藻藩,周性尧,张悟铭,等.仪器分析[M].北京:高等教育出版社,1990
    [74]Valeur B., Molecular Fluorescence:Principles and Applications[M]. Wiley-VCH: Weinheim,2002
    [75]Wang X. L., Qin C., Wang E. B., et al. Interlocked and Interdigitated Architectures from Self-assembly of Long Flexible Ligands and Cadmium Salts[J]. Angewandte Chemie, International Edition,2004,43(38):5036-5040
    [76]Ho K. Y., Yu W. Y., Cheung K. K., et al. A blue photoluminescent [Zn(L)(CN)2] (L= 2,2'-dipyridylamine) material with a supramolecular one-dimensional chain structure[J]. Chemical Communications,1998,(19):2101-2102
    [77]Ouyang X. M., Liu D. J., Okamura T., et al. Syntheses, structures and photoluminescent properties of cadmium(II), silver(I) and copper(Ⅰ) complexes with novel long chain tetradentate ligands[J]. Dalton Transactions,2003,(9):1836-1845
    [78]Wang X. W., Chen F. P., Chen L., et al. Crystal structures and fluorescent properties of two linear trinuclear zinc(II) complexes[J]. Journal of Molecular Structure,2007, V842(1-3):75-80
    [79]Wu W. P., Wang Y. Y., Wang C. J., et al. Structural characterization and luminescence behavior of a 2D silver(I) coordination polymer assembled from pyridine-2,6-dicarboxylic acid N-oxide[J]. Inorganic Chemistry Communications,2006,V9(6): 645-648
    [1]Braga D., Crystal Engineering, Where from? Where to?[J]. Chemical communications, 2003, (22):2751-2754
    [2]Braga D., Desiraju G. R., Miller J. S., et al. Innovation in Crystal Engineering[J]. CrystEngComm,2002,V4:500-509
    [3]Kitagawa S., Kitaura R., Noro S. Functional Porous Coordination Polymers [J]. Angewandte Chemie, International Edition,2004,V43(18):2334-2375
    [4]Bradshaw D., Claridge J. B., Cussen E. J., et al. Design, Chirality, and Flexibility in Nanoporous Molecule-based Materials[J]. Accounts of Chemical Research,2005,38(4): 273-282
    [5]Robin A. Y., Fromm K. M. Coordination Polymer Networks with O-and N-donors:What They Are, Why and How They Are Made[J]. Coordination Chemistry Reviews, 2006,V250(15+16):2127-2157
    [6]Rosseinsky M. J. Recent Developments in Metal-organic Framework Chemistry:Design, Discovery, Permanent Porosity and Flexibility [J]. Microporous and Mesoporous Materials,2004,V73(1-2):15-30
    [7]Mrozinski J. New Trends of Molecular Magnetism[J]. Coordination Chemistry Reviews, 2005,V249(21-22):2534-2548
    [8]Wang X. L., Qin C., Wang E. B., et al. Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting[J]. Angewandte Chemie, International Edition,2005,V44(36):5824-5827
    [9]Fearey G., Carolene M. D., Serre C., et al. Crystallized Frameworks with Giant Pores: Are There Limits to the Possible[J]? Accounts of Chemical Research,2005,V38(4): 217-225
    [10]Halper S. R., Cohen S. M., Heterometallic Metal-organic Frameworks Based on Tris (dipyrrinato) Coordination Complexes[J]. Inorganic chemistry,2005,V44(3):486-488
    [11]Doedens R. J., Yohannes E., Khan M. I., Novel Water Clusters in the Crystalline State: Structures of a Symmetrical, Cyclic Hexamer and an'opened-cube' Octamer[J]. Chemical communications,2002,(1):62-63
    [12]Deacon G. B., Forsyth C. M., Forsyth M. Crystal Structure of a CeⅢ/FeⅢ Heterobi-metallic Complex[J]. Zeitschrift fuer Anorganische und Allgemeine Chemie,2003, V629(9):1472-1474
    [13]Noro S., Kitagawa S., Yamashita M. New Microporous Coordination Polymer Affording Guest-coordination Sites at Channel Walls[J]. Chemical communications,2002,(3): 222-223
    [14]Noro S., Kitagawa S., Yamashita M., et al. Novel 2-dimensional Coordination Polymer Constructed from a Multi-functional Metalloligand[J]. CrystEngComm,2002,V4: 162-164
    [15]Buvaylo E. A., Kokozay V. N., Vassilyeva O. Y, et al. Novel Exo-binding Mode of an Amino Alcohol Producing a 2D Coordination Polymer with Heterometallic Tetranuclear Repeating Units [J]. Inorganic chemistry communications,2004,V7(9):1061-1064
    [16]Shi Z., Feng S. H., Gao S., et al. Inorganic-organic Hybrid Materials Constructed from [(VO2)(HPO4)]n Helical Chains and [M(4,4'-bpy)2]2+ (M=Co, Ni) Fragments[J]. Angewandte Chemie, International Edition,2000,V39(13):2325-2327
    [17]Chen X. L., Zhang B., Hu H. M., et al. Three Novel Heterobimetallic Cd/Zn-Na Coordination Polymers:Syntheses, Crystal Structure, and Luminescence [J]. Crystal Growth & Design,2008,V8(10):3706-3712
    [18]Sun D. F., Cao R., Sun Y. Q., et al. Novel silver-containing supramolecular frameworks constructed by combination of coordination bonds and supramolecular interactions [J]. Inorganic Chemistry,2003,V42(23):7512-7518
    [19]Gao X. M., Li D. S., Wang J. J., et al. A novel 1D armed-polyrotaxane chain constructed from a V-shaped tetracarboxylate ligand[J]. CrystEngComm,2008,V10(5):479-482
    [20]Sheldrick G. M. SHELXS-97 and SHELXL-97, Program for X-ray Crystal Structure Solution and Refinement[M], Germany:Gottingen University,1997
    [21]Zhao Y. H., Xu H. B., Fu Y. M., et al. A Series of Lead(II)-Organic Frameworks Based on Pyridyl Carboxylate Acid N-Oxide Derivatives:Syntheses, Structures, and Luminescent Properties [J]. Crystal Growth & Design,2008,V8(10):3566-3576
    [22]Brandt C. D., Plieger P. G., Kelly R. J., et al. Dinickel(II), dizinc(II) and dilead(II) complexes of a pyridazine-containing Schiff-base macrocycle[J]. Inorganica Chimica Acta,2004, V357(14):4265-4272
    [23]Zhao Y. H., Xu H. B., Shao K. Z., et al. Syntheses, Characterization, and Luminescent Properties of Three 3D Lead-Organic Frameworks with 1D Channels[J]. Crystal Growth & Design,2007,V7(3):513-520
    [24]Thirumurugan A., Sanguramath R. A., Rao C. N. R. Hybrid Structures Formed by Lead 1,3-Cyclohexanedicarboxylates[J]. Inorganic Chemistry,2008,V47(3):823-831
    [25]Sunatsuki Y., Shimada H., Matsuo T., et al. Synthesis, Magnetic Properties, and Incomplete Double-Cubane Structure of Manganese(III)-Metal(II) Complexes [Mn(MeOH)L(OH)M(bpy)]2(M=Zn,Cu,Ni, and Mn; H4L=1,2-Bis(2-hydroxybenzamido)-benzene; bpy=2,2'-Bipyridine)[J]. Inorganic Chemistry,1998,V37(21):5566-5574
    [26]Alexiou M., Dendrinou-Samara C., Raptopoulou C. P., et al. From Monomer Zinc-Oxamato Complexes to Tetranuclear Inverse 12-Membered and Octanuclear 12-Membered Metallacrowns[J]. Inorganic Chemistry,2002,V41(18):4732-4738
    [27]Song J. L., Mao J. G., Zeng H. Y., et al. Synthesis, crystal structures and properties of two new metal complexes of syn-2-pyridinealdoxime with a "metallocrown" unit and a 1D double chain structure[J]. Inorganic Chemistry Communications,2003,V6(7):891-895
    [28]Alexiou M., Katsoulakou E., Dendrinou-Samara C., et al. Di-2-pyridyl ketone oxime in zinc chemistry:Inverse 12-metallacrown-4 complexes and cationic pentanuclear clusters[J]. European Journal of Inorganic Chemistry,2005,(10):1964-1978
    [29]Zhang J. P., Lin Y. Y., Huang X. C., Chen X. M. Designed assembly and structures and photoluminescence of a new class of discrete ZnⅡ complexes of 1H-1,10-phenanthroline-2-one[J]. European Journal of Inorganic Chemistry,2006,(17):3407-3412
    [30]Zhang J. P., Lin Y. Y., Weng Y. Q., et al. Copper-mediated dihydroxylation of 2,2'-bipyridine-like ligands under solvothermal conditions [J]. Inorganica Chimica Acta,2006, V359(11):3666-3670
    [31]Fitzgerald W., Hathaway B., Simmons C. J. The crystal structure and electronic properties of the complexes acetatobis(1,10-phenanthroline)copper(II) perchlorate dihydrate, acetatobis(1,10-phenanthroline)copper(II) nitrate dihydrate, and acetatobis (1,10-phenanthroline)zinc(II) tetrafluoroborate dehydrate[J]. Journal of the Chemical
    Society, Dalton Transactions,1985,(1):141-149
    [32]Zhang X. J., Tian Y. P., Li S. L., et al. Zn(II) and Cd(II) N-carbazolylacetates with strong fluorescence [J]. Polyhedron,2003,V22(3):397-402
    [33]Yin H. D., Wang Q. B. Cis-[Zn(3,5-dinitrobenzoato)2(1,10-phenanthroline)2]-CH3CH2OH [J]. Applied Organometallic Chemistry,2005,V19(1):188
    [34]Yin H. D., Wang C. H., Xing Q. J.{[Zn(O2CC6H4NO2-m)(1,10-phenanthroline)2] O2CC6H4NO2-m}-2H2O·HO2CC6H4NO2-m[J]. Applied Organometallic Chemistry,2005, V19(3):402-403.
    [35]Bo Q. B., Sun Z. X., Song G. L., et al. Cooperative Effect of 3,3',4,4'-Benzophenonetetracarboxylic Acid and 1,10-Phenanthroline under Solvothermal Conditions to Afford Two Novel Zinc(II) and Cadmium(II) Complexes[J]. Journal of Inorganic and Organometallic Polymers and Materials,2007, V17(4):615-622
    [36]Drozdov A., Troyanov S. Synthesis and x-ray crystal structures of tetrakis (2,2,6,6-tetramethylheptane-3,5-dionato)bis(2,2'-bipyridyl)dibarium Ba2(thd)4(bipy)2 and catena-[dodecakis(2,2-dimethylpropanoato)bis(2,2,6,6-tetramethylheptane-3,5-dionato)tetra(pyri dine)tetra(aqua)heptabarium] pyridine solvate{[Ba7(piv)i2(thd)2(py)4(H2O)4]2py}[J]. Polyhedron,1993,V12(24):2973-2976
    [37]Hovnanian N., Galloy J., Miele P. A new barium complex based on "Ba(dpm)2": Ba6(dpm)1o(H20)6(02). An unexpected barium peroxo-β-diketonate structurally characterized[J]. Polyhedron,1995,V14(2):297-300
    [38]Drozdov A., Troyanov S. Peroxide ion incorporated inside hexanuclear complex. A new modification of [Ba6(thd)10(O2)(H2O)6][J]. Polyhedron,1996,V15(10):1747-1749
    [39]Guo D., Zhang B. G., Duan C. Y., et al. Novel three-dimensional framework based on Bag cores involving unprecedented 5-3:3-acetate anions[J]. Journal of the Chemical Society, Dalton Transactions,2002,(20):3783-3784
    [40]Zhang J. Y., Hubert L. G., Luneau D. Interplay between aminoalcohols and trifluoroacetate ligands:Ba-Cu heterometallics or cocrystallization of homometallics[J]? Inorganic Chemistry Communications,2004,V7(8):979-984
    [41]Falcao E. H. L., Naraso F. R. K., Wu G., et al. Hybrid Organic-Inorganic Framework Structures:Influence of Cation Size on Metal-Oxygen-Metal Connectivity in the Alkaline Earth Thiazolothiazole-dicarboxylates[J]. Inorganic Chemistry,2008,V47(18):8336-8342
    [42]Ho K. Y., Yu W. Y., Cheung K. K., et al. A blue photoluminescent [Zn(L)(CN)2] (L=2,2'-dipyridylamine) material with a supramolecular one-dimensional chain structure[J]. Chemical Communications,1998,(19):2101-2102
    [43]Ouyang X. M., Liu D. J., Okamura T., et al. Syntheses, structures and photoluminescent properties of cadmium(II), silver(Ⅰ) and copper(I) complexes with novel long chain tetradentate ligands[J]. Dalton Transactions,2003,(9):1836-1845
    [44]Wang X. W., Chen F. P., Chen L., et al. Crystal structures and fluorescent properties of two linear trinuclear zinc(II) complexes[J]. Journal of Molecular Structure,2007, V842(1-3):75-80
    [45]Wu W. P., Wang Y. Y., Wang C. J., et al. Structural characterization and luminescence behavior of a 2D silver(I) coordination polymer assembled from pyridine-2,6-dicarboxylic acid N-oxide[J]. Inorganic Chemistry Communications,2006,V9(6): 645-648
    [46]赵藻藩,周性尧,张悟铭,等.仪器分析[M].北京:高等教育出版社,1990
    [47]Valeur B., Molecular Fluorescence:Principles and Applications[M]. Wiley-VCH: Weinheim,2002
    [48]Wang X. L., Qin C., Wang E. B., et al. Interlocked and Interdigitated Architectures from Self-assembly of Long Flexible Ligands and Cadmium Salts[J]. Angewandte Chemie, International Edition,2004,43(38):5036-5040

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700