ZnS:Mn纳米颗粒的制备及在电致发光中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnS:Mn纳米颗粒是一种橘黄色发光材料,同时它也是一种稀磁、宽禁带半导体材料,在发光和电子自旋相结合光电器件方面有很好应用潜力。本文利用水溶液晶核掺杂的办法在水溶液中制备出水溶性的ZnS:Mn纳米颗粒,通过X射线衍射(XRD)、透射电子显微镜(TEM)、光致发光光谱,吸收光谱和瞬态发光测试对制备的ZnS:Mn纳米颗粒进行了表征。研究发现ZnS:Mn的发光包括Zn空位的发光和Mn的发光,Zn空位的发光峰在479nm左右的蓝光范围,而Mn的发光峰在600nm附近。Mn的发光相对强度随着Mn的含量的增加有显著的增加,Mn的含量为1%时,发光强度为最大值。继续增加Mn的含量,则ZnS:Mn中Mn的发光强度会下降。测试的Mn2+的发光寿命,证实了Mn2+的发光寿命为几百个微妙。处于纳米表面和内部的Mn离子的激发态寿命不同,由此导致发光衰减是双e指数衰减。
     利用合成的ZnS:Mn与聚乙烯基咔唑(PVK)制作了有机电致发光器件和有机-无机复合电致发光器件,通过扫描电子显微镜(SEM)、电致发光、吸收光谱进行了表征,通过对器件电流密度、发光亮度和发光效率等性能的测试,证明了掺杂ZnS:Mn的有机器件比未掺杂ZnS:Mn的有机器件在性能上有一定的提高:如发光亮度,发光效率。通过磁场作用下对有机-无机复合发光器件性能的测试,证明了磁场增加载流子的注入,提高了发光强度。
ZnS:Mn nanoparticles is an orange luminescent material, while it is also a magnetic semiconductor material with wide band gap. It have good potential applications in terms of combining light and electron spin optoelectronic devices. The water-soluble ZnS:Mn nanoparticles were synthesized through nucleation-doping strategy in aqueous solutions, and characterized by X-ray diffraction(XRD), transmission electron microscope(TEM), and photoluminescence (PL) spectra, and absorption spectra. It was found that the relative emission intensity of ZnS:Mn significantly increased with the increase of Mn concentration and got its Maximum when Mn concentration was 1.0%, and if Mn concentration continued to increase, the emission intensity of Mn would decrease. We found that absorption edge moved toward short wavelength with increase of ZnS:Mn nanoparticles by absorption spectra. It was proved that luminescence lifetime of Mn2+was hundreds of microseconds by testing.
     The electroluminescence devices based on synthetical ZnS:Mn and poly(N-vinylcarbazole), was fabricated and characterized by scanning electron microscope (SEM), electroluminescence, and absorption spectra. Chacteristics of current density, luminance, luminescent efficiency and so on that proved that the devices with the blend of PVK and ZnS:Mn nano particles as active layer showed more intense luminance and higher luminescent efficiency than that of the devices with PVK active layer. Testing property of organic-inorganic complex electroluminescence devices in magnetic field proved that magnetic field can enhance the electroluminescence.
引文
[1]张立德,牟季美,“纳米材料与纳米结构”科学出版社,2001.
    [2]R. Notzel, K.H.Ploog. Direct synthesis of semiconductor quantum-wire and quantum-dot structures. Adv. Mater.1993,5:22-29.
    [3]H. Weller. Quantized Semiconductor Particles:A novel state of matter for materials science. AdV.Mater.1993,5:88-95.
    [4]M. Ninnal, L. Brus. Luminescence Photophysics in Semiconductor Nanocrystals. Acc. Chem. Res.1999,32:407-414.
    [5]Z.L. Wang. Characterizing the Structure and Properties of Individual Wire-Like Nanoentities. Adv. Mater,2000,12:1295-1298.
    [6]C.B.Murray, D.J. Norris, M.G. Bawendi. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem Soc.1993, 115:8706-8715.
    [7]T. Vossmeyer, L. Katsikas, M. Giersig, L.G. Popovic, H. Weller. CdS Nanoclusters:Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift [J]. J.Phys.Chem.1994,98:7665-7673.
    [8]Andrew J S. Quantum dots as luminescent probes in biological systems [J]. Current. Opin. Solid. Mater. Sci.,2002,6:365-370.
    [9]孙宝全,徐咏蓝,衣光舜,陈德朴.半导体纳米晶体的光致发光特性及在生物材料荧光标记中的应用[J].分析化学,2002,30(9):1130-1136.
    [10]关柏鸥,韩关云.半导体纳米材料的光学性能及研究进展[J].光电子·激光,1998,9(3):260-263.
    [11]徐叙镕.发光学与发光材料[M].第一版,北京:化学工业出版社,2004,372-373.
    [12]樊美公,光化学基本原理与光子学材料科学,(科学出版社2001).
    [13]李向东,杨家德.有机电致发光显示器件的研制和产品开发现状[J].半导体光电,2000,21(3): 153-158.
    [14]郑亮,薛唯,钟生东.有机电致发光显示及其发展.现代显示,2002,34(4):17-22.
    [15]吴有智.有机薄膜电致发光器件特性及机理研究[D].上海:上海大学,2004.
    [16]赵东,耿卫东,吴春亚,等用FPGA实现OLED灰度级显示。光电了。激光,2002,13(6):554-558.
    [17]Young-Sun Na, Oh-K yong Kwon. A single chip driver system for 1.2-inch organic electro-luminescent display Source:IEEE Transactions on Consumer Electronics,2002,48 (2):220-228.
    [18]高丽,张步新,朱文清,等用液晶显示控制驱动器实现OLED的矩阵字符显示光电子.激光,2002,13(2):129-132.
    [19]谢伟良,熊绍珍,土宗畔,等.有机发光二极管矩阵显示屏的驱动电路的研究.光电子.激光,1999.10(3):199-202.
    [20]郭斌,吴春亚,熊绍珍,等.PM-OLED驱动中的分场显示问题研究.液晶与显示,2002,17(3):182-188.
    [21]黄锡珉.有源矩阵OLED.液晶与显示,2003,18(3):157-160.
    [22]司玉娟,李春星,刘式墉.有源两管TFT像素驱动电路的仿真研究发光学报2002,23(5)518-522.
    [23]杨虹,曹镛.基于HD66773的TFT OLED驱动电路的设计.液晶与显示,2004,19(1):30-36.
    [24]Soo Y L, Ming ZH, Huang S W, et al Local structures around Mn luminescent centers in Mn-doped nanocrystals of ZnS[J]. Phys Rev B,1994,50(11):7602-7607.
    [25]Kara N, Singh F, M ehta B R. Structure and photoluminescence studies on ZnS:Mn nanoparticles [J]. J Appl Phys 2004,95(2):656-66.
    [26]ChenW, SuFH, LiGH, et al Temperature and pressure dependences of the Mn2+and donor-acceptor emissions in ZnS:Mn2+nanoparticles [J]. J Appl Phys,2002,92(4):1950-1955.
    [27]Korotchenkov O A, Cantarero A, Shpak A P, et al Doped ZnS:Mn nanoparticles obtained by sonochemical synthesis[J]. Nanotechnology,2005,16(10):2033-2038.
    [28]BecherW G, Bard A J. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions [J]. J Phys Chem,1983,87(24):4888-4893.
    [29]R.N. Bhargava, D. Gallagher, X. Hong, A. Nurmikko, Phys. Rev. Lett.72 (1994) 416.
    [30]K. Sooklal, B.S. Cullum, S.M. Angel, C.J. Murphy, [J]. Phys. Chem.100 (1996) 4551.
    [31]A.A.Khosravi,M.Kundu,B.A.Kuruvilla,G.S.Shekhawat,R.P.Gupta,A.K.Sharma,P.D.Vyas,S.K.K ulkarni,Appl.Phys.Lett.67(1995)2506.
    [32]J. Leeb, V. Gebhardt, GMulller, D. Haarer, D. Su, M. Giersig, G. Mc Mahon, L. Spanhel, J. Phys. Chem. B 103(1999)7839.
    [33]N. Murase, R. Jagannathan, Y. Kanematsu, M. Watanabe, A. Kurita, K. Hirata, T. Yazawa, and T. Kushida J. Phys. Chem. B,1999,103 (5),754-760.
    [34]X. Bai, H, Song, G Pan, Z. Liu, S. Lu, W. Di, X. Ren, Y, Lei, Q. Bai, L. Fan Appl. Phys. Lett.2006,88,143104-8.
    [35]Ge Hongliang, Zhong Min, Magnetic Properties of Manganese-Incorporated Zinc Sulfide Nano wires Synthesized by a Hydro thermal Process [J].Rare Metal Materials and Engineering.2008,37,2-5.
    [36]V.L. Colvin, M.C. Schlamp, A P. Alivisatos. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting. Polymer [J]. Nature,1994,370:354-357.
    [37]N.D. Kumar, M.P. Joshi, C.S. Friend, P.N. Prasad, and R. Burzynski Organic-inorganic heterojunction light emitting diodes based on poly (p-phenylene vinylene)/cadmium sulfide thin fflms[J]. Appl. Phys. Lett,1997,71:1388-1390.
    [38]Y. Yang, S.H. Xue, S.Y. Liu, J.M. Huang, J. C. Shen. Fabrication and characteristics of ZnS nanocrystals/polymer composite doped with tetraphenylbnzidine single layer structure light-emitting diode[J]. Appl. Phys. Lett.1996,69 (3):377-379.
    [39]M.Y. Gao, J.Q. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, J. Feldmann. Lateral Patterning of CdTe Nanocrystal Films by the Electric Field Directed Layer-by-Layer Assembly Method [J]. Langmuir,2002,18:4098-4102。
    [40]Wolf S A, Awschalom D D, Buhrman R A, et al. Spin-tronics:a Spin-based Electronics Vision for the Future[J].Science,2001,294:1488-1495.
    [41]Matsukura F, Ohno H, Shen A, et al. Transport Properties and Origin of Ferromagnetism in(Ca, Mn)As[J].Physical, Review,1998,57 (4):2037-2040.
    [42]Hayashi T, Tanaka M, Nishinaga T. Magnetic and Magne-totransport Properties of New Ⅲ-V Diluted Magnetic Semiconductors:GaMnAs [J],Journal of Applied Physics,1997,81(8):4 865-4867.
    [43]rote of carbon nanotubes in a hole conducting polymer [J]. Synth. Met.2001,116:369-372.
    [44]Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1991 Nature 347 539.
    [45]Baldo A M A, O'brien D F, Thompson M E, Forrest S R 1999 Phys. Rev. B60 14422.
    [46]Wilson J S, Dhoot A S, Seeley A J A B, Khan M S,K hler A, Friend R H 2001 Nature 413 828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700