适配体Au、CdTe纳米粒子功能化修饰及凝血酶电化学传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸适配体(Aptamers)是人工合成的单链寡核苷酸片段—DNA或RNA,是从含大量自由序列的随机寡核苷酸文库中通过体外筛选分离出来的,它能以高的亲和力及特异性结合各种靶分子(蛋白质、小分子、金属离子、DNA,甚至整个细胞)。由于核酸适体合成简易、稳定性好且易于保存,而且对配体具有强的亲和力和高的结合特异性,在生化分析领域,已被视为一种富有应用前景的探针,可与抗体相媲美,甚至比传统的抗体更具有优势,受到越来越多的重视。凝血酶核酸适体是最早被筛选出来的,它有两条不同的碱基序列,能与凝血酶不同位点发生特异性结合,形成G-四重体结构。本论文以凝血酶适体为模型,发展了一系列凝血酶检测的新方法。主要内容如下:
     (1)建立结合Fe3O4/Au磁分离和CdTe纳米粒子核酸适体探针的电化学凝血酶检测新方法。水相法合成了Fe3O4/Au磁性复合微粒以及L-半胱氨酸修饰的CdTe纳米粒子,以前者作为DNA的固定和分离材料,修饰了凝血酶适体(15-mer)的CdTe纳米粒子作为检测探针。首先将巯基修饰的适体互补链通过金-硫键固定在Fe3O4/Au磁性复合微粒上,再让CdTe纳米粒子修饰的适体链与固定探针杂交即完成了凝血酶传感器的制备。凝血酶的存在使CdTe纳米粒子修饰的适体探针从磁性复合微粒上脱落,利用外加磁场分离,通过差分脉冲伏安法检测上清液中Cd2+的量即可达到定量检测凝血酶的目的。该方法简便,灵敏度高,选择性好,成本低,无有害物质,在蛋白质检测中有很大的应用前景。
     (2)以亚甲基蓝作为检测探针结合ZrO2/AuNPs构建凝血酶电化学生物传感器。利用亚甲基蓝与DNA分子的特殊性作用,让它作为检测探针,结合ZrO2/AuNPs膜修饰电极对检测信号的放大作用,构建一种简单灵敏的电化学生物传感器,用于凝血酶的检测。将巯基化的适体互补链固定到修饰电极表面作为固定探针,然后让凝血酶适体(29-mer)与其杂交,再让亚甲基蓝插入到双链DNA中或与鸟嘌呤特异性结合,制成凝血酶适体传感器。当电极浸入到凝血酶溶液中,适体即与凝血酶特异性结合成G-四重体结构,从而使亚甲基蓝从电极表面脱落,再检测电极表面亚甲基蓝峰电流的下降值(其降低幅度与凝血酶浓度成一定的比例关系),达到检测凝血酶的目的。本传感器有较宽的线性范围和很低的检测限,并且选择性高,再生能力强,可用于高灵敏检测蛋白质。
     (3)应用电化学阻抗法和杂交反应的增敏作用建立高灵敏检测凝血酶的方法。利用凝血酶与它的两条适体形成一种“三明治”夹心结构,以及DNA对电极表面电荷传递能力的影响,采用交流阻抗法,发展一种新的凝血酶的放大检测方法,实现对目标蛋白质的高灵敏检测,有效提高检测的响应性能。
Aptamers are synthetic oligonucleotides DNA or RNA, which are isolated from random-sequence nucleic acid bibraries by "in vitro selection". They can bind to molecular targets with high affinity and selectivity, such as proteins, small molecules, metal ion, DNA, even the whole cells. Owing to aptamer's relative ease of isolation and modification, good stability, the easier storage, the high binding affinity and simplicity of in vitro selection, it have attracted more and more attentions in the area of biochemical analysis. Thrombin aptamer has two kinds of nucleic acid sequence, which can bind to thrombin at different sites with binding affinity to form G-quartet structure. In this paper, thrombin used as a model protein to develop new thrombin detection methods using aptamers. The main work is summarized as follows:
     (1) We established a new method for electrochemical detection of thrombin combining Fe3O4/Au magnetic separation and CdTe-aptamer probe. Fe3O4/Au magnetic nanoparticles and L-cysteine modified CdTe nanoparticles were synthesized. Fe3O4/Au magnetic nanoparticles were used as DNA immobilization and separation material, while aptamer modified CdTe nanoparticles used as detection probe. Thiolated modified capture DNA which complementary with thrombin aptamer was anchored onto the surface of Au coated magnetic beads via sulfur-gold affinity. CdTe nanoparticles modified aptamer probe hybridized with capture DNA sequence modified on magnetic beads by hybridization reaction, and then the thrombin aptsensor was obtained. When thrombin added to the detection solution, CdTe nanoparticles modified aptamer was forced to dissociate from the magnetic beads. The thrombin was detected through current peak of Cd2+ in supernate of differential pulse anodic stripping voltammetry (DPV) after separation with an extermal magnetic field. This method is sensitive, no harmful reagents, requiring only a small sample volume and has a great potential for proteins detection.
     (2) A new thrombin sensor was development by using methylene blue (MB) as electrochemical probe and ZrO2/AuNPs as signal amplification and magnetic separation material. MB is used as the external electroactive indicator owing to its special interaction with DNA. In this paper, A thiolated capture DNA is immobilized on the surface of modified electrode and then hybridized with thrombin aptamer (29-mer). MB intercalates into the double-strands of nucleic acids and binds specifically to guanine bases, after which the aptasensors were obtained. In the presence of thrombin, thrombin interacted with its aptamer to form G-quadruplex, while MB desorbed from electrode surface, resulting in a decrease in current. The decrement of current is proportional to the amount of thrombin. This aptasensor has wide concentration range, low detection limit, high selectivity and good reproducibility and this aptasensor was able to sensitively detect thrombin.
     (3) A highly sensitive detection method was developed by using hybridization amplification and electrochemical impedance technique. Since one thrombin molecule has two active sites for its two kinds of aptamer, the electrode-aptamerⅠ/thrombin/aptamerⅡ-AuNPs sandwich structure was fabricated as the sensing platform. Here, we reported a simple and highly sensitive label-free impedimetric aptasensor for thrombin detection based on the hybridized signal amplification. This strategy could not only improve the detection sensitivity but also provide a simple model for the signal amplification of the impedimetric sensors. Meanwhile, this method exhibits good selectivity.
引文
[1]姚春艳.适配子技术在生物传感器中的应用[J].国际检验医学杂志,2006,27(8):707-708.
    [2]Jiang, Y. X., Zhu, C. F., Ling, L. S., Wan, L. J., Fang, X. H., Bai, C. L. Specific aptamer-protein interaction studied by atomic force microscopy [J]. Analytical Chemistry,2003,75 (9):2112-2116.
    [3]Tuerk, C., Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J]. Science,1990,249 (4968): 505-510.
    [4]Ellington, A. D., Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature,1990,346 (6287):818-822.
    [5]Robertson, D. L., Joyce, G. E. Selection in vitro of an RNA enzyme that specically cleaves single-stranded DNA [J]. Nature,1990,344 (6265):467-468.
    [6]Proske, D., Blank, M., Buhmann, R., Resch, A. Aptamers-basic research, drug development and clinical applications [J]. Applied microbiology and biotechnology,2005,69 (3):367-374.
    [7]仲志鸿.核酸适体与分子信标技术用于凝血酶检测的研究[J].湖南大学,硕士学位论文.
    [8]穆传杰,韩佩珍.寡核苷酸适配子在核医学中的应用[J].华核医学杂志,2006,4(26):246-249.
    [9]Zhang, X. M., Shao, N. S., Chi, M. G., Sun, M. J. Screening of RNA molecules inhibiting human acetylcholinesterase by virtue of systematic evolution of ligands by exponential enrichment [J]. Acta pharmacologica Sinica,2003,24 (7): 711-714.
    [10]Pagratis, N. C., Bell, C., Chang, Y. F., Jennings, S., Fitzwater, T., Jellinek, D., Dang, C. Potent 2'-amino-,and 2'-fluoro-2'-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor [J]. Nature Biotechnology,1997,15 (1): 68-73.
    [11]Ruckman, J., Green, L. S-., Beeson, J. Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain [J]. The Journal of Biological Chemistry,1998,273 (32): 20556-20567.
    [12]Ellington, A. D., Szostak, J. W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures [J]. Nature,1992,355 (6363):850-852.
    [13]Robertson, D. L., Joyce, G. E. Selection in vitro of an RNA enzyme that specically cleaves single-stranded DNA [J]. Nature,1990,344 (6265):467-468.
    [14]Babendure, J. R., Adams, S. R., Tsien, R. Y. Aptamers Switch on Fluorescence of Triphenylmethane Dyes [J]. Journal of the American Chemical Society,2003, 125 (48):14716-14717.
    [15]Famulok, M. Molecular Recognition of Amino Acids by RNA-Aptamers:An L-Citrulline Binding RNA Motif and Its Evolution into an L-Arginine Binder [J]. Journal of the American Chemical Society,1994,116(5):1698-1706.
    [16]Sassanfar, M., Szostak, J. W. An RNA motif that binds ATP [J]. Nature,1993, 364 (6437):350-353.
    [1.7]Schneider, D. J., Hostomsky, Z., Gold, L., Feigon, J. High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus [J]. Biochemistry,1995,34 (29):9599-9610.
    [18]Kensch, O., Connolly, B. A., Steinhoff, H. J., McGregor, A., Goody, R. S., Restle, T. HIV-1 reverse transcriptase pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity [J]. The Journal of biological chemistry,2000,275 (24):18271-18278.
    [19]Cerchia, L., Duconge, F., Pestourie, C., Boulay, J., Aissouni, Y., Gombert, K., Tavitian, B., De Franciscis, V., Libri, D. Neutralizing Aptamers from Whole-Cell SELEX Inhibit the RET Receptor Tyrosine Kinase [J]. PLoS Biology, 2005,3 (4):e123-e123.
    [20]Golden, M. C., Collins, B. D., Willis, M. C., Koch, T. H. Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers [J]. Journal of Biotechnology,2000,81 (2-3):167-178.
    [21]Eulberg, D., Buchner, K., Maasch, C., Klussmann, S. Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist [J]. Nucleic Acids Research, 2005,33 (4):e45-e45.
    [22]Cox, J. C, Ellington, A. D. Automated selection of anti-protein aptamers [J]. Bioorganic and Medicinal Chemistry,2001,9 (10):2525-2531.
    [23]Mendonsa, S. D., Bowser, M. T. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis [J]. Analytical Chemistry,2004, 76 (18):5387-5392.
    [24]王成刚.核酸适体技术研究进展[J].生物医学工程学杂志,2006,23(2):463-466.
    [25]Tasset, D. M., Kubik, M. F., Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes [J]. Journal of Molecular Biology,1997,272 (5):688-698.
    [26]Huang, C. C., Huang, Y. F., Cao, Z. H., Tan, W. H., Chang, H. T. Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors [J]. Analytical Chemistry, 2005,77 (17):5735-5741.
    [27]Hansen, J. A., Wang, J., Kawde, A. N., Xiang, Y., Gothelf, K. V., Collins, G. Quantum-Dot/Aptamer-Based Ultrasensitive Multi-Analyte Electrochemical Biosensor [J]. Journal of the American Chemical Society,2006,128 (7): 2228-2229.
    [28]Wang, L. H., Liu, X. F., Hu, X. F., Song, S. P., Fan, C. H. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers [J]. Chemical Communication,2006,36:3780-3782.
    [29]Pavski, V., Le, X. C. Detection of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Using Aptamers as Probes in Affinity Capillary Electrophoresis [J]. Analytical Chemistry,2001,73 (24):6070-6076.
    [30]刘晓静,刘韧,顾长国,朱旭东.核酸适体的研究进展[J].生理科学进展,2004,35(4):374-378.
    [31]Michaud, M., Jourdan, E., Villet, A., Ravel, A., Grosset, C., Peyrin, E. A DNA aptamer as a new target-specific chiral selector for HPLC [J]. Journal of the American Chemical Society,2003,125 (28):8672~8679.
    [32]Padmanabhan, K. P., Ferrara, J. D., Sadler, J. E., Tulinsky, A. The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer [J]. Journal of Biological Chemistry,1993,268 (24):17651-17654.
    [33]Jenison, R. D., Jennings, S. D., Walker, D. W. Oligonueleotide inhititors of P-selectin-dependent neutrophil-platelet adhesion [J]. Antisense Nucleic Acid Drug Development,1998,8 (4):265-279.
    [34]Yang, X. B., Bassett, S. E., Li, X., Luxon, B. A., Herzog, N. K., Shope, R. E., Aronson, J. Construction and selection of bead-bound combinatorial oligonucleoside phosphorothioate and phosphorodithioate aptamer bibraries designed for rapid PCR-based sequencing [J]. Nucleic Acids Reserch,2002,30 (23):e132.
    [35]Tyagi, S., Kramer, F. R. Molecular beacons probes that fluoresce upon hybridization [J]. Nature Biotechnology,1996,14 (3):303-308.
    [36]White, R. J., Phares, N., Lubin, A. A., Xiao, Y., Plaxco, K. W. Optimization of Electrochemical Aptamer-Based Sensors via Optimization of Probe Packing Density and Surface Chemistry [J]. Langmuir,2008,24 (18):10513-10518.
    [37]Tonya, M. H., Michael, J. T. Characterization of DNA Probes Immobilized on Gold Surfaces [J]. Journal of the American Chemical Society,1997,119 (38): 8916-8920.
    [38].Su, S. X., Nutiu, R., Filipe, C. D. M., Li, Y. F., Pelton, R. Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose [J]. Langmuir, 2007,23 (3):1300-1302.
    [39]Stadtherr, K., Wolf, H., Lindner, P. An aptamer-based protein biochip [J]. Analytical Chemistry,2005,77 (11):3437-3443.
    [40]Centi, S., Messina, G., Tombelli, S., Palchetti, I., Mascini, M. Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads [J]. Biosensors and Bioelectronics,2008,23 (11):1602-1609.
    [41]Wang, W. J., Chen, C. L., Qian, M. X., Zhao, X. S. Aptamer biosensor for protein detection based on guanine-quenching [J]. Sensors and Actuators B,2008, 129:211-217.
    [42]Tang, Z. W., Mallikaratchy, P., Yang, R.H., Kim, Y., Zhu, Z., Wang, H., Tan, W. H. Aptamer Switch Probe Based on Intramolecular Displacement [J]. Journal of the American Chemical Society,2008,130 (34),11268-11269.
    [43]Yoshida, W., Yokobayashi, Y. Photonic boolean logic gates based on DNA aptamers [J]. Chemical Communications,2007,2:195-197.
    [44]Xiao, Y., Piorek, B. D., Plaxco, K. W., Heeger, A. J. A Reagentless Signal-On Architecture for Electronic, Aptamer-Based Sensors via Target-Induced Strand Displacement [J]. Journal of the American Chemical Society,2005,127 (51): 17990-17991.
    [45]Wang, Y. Y., Liu, B. Conjugated Polyelectrolyte-Sensitized Fluorescent Detection of Thrombin in Blood Serum Using Aptamer-Immobilized Silica Nanoparticles as the Platform [J]. Langmuir,2009,25 (21):12787-12793.
    [46]Wang, J. L., Munir, A., Li, Z. H., Zhou, H. S. Aptamer-Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay [J]. Biosensors and Bioelectronics,2009,25:124-129.
    [47]Kang, Y., Feng, K. J., Chen, J. W., Jiang, J. H., Shen, G. L., Yu, R. Q. Electrochemical detection of thrombin by sandwich approach using antibody and aptamer [J]. Bioelectrochemistry,2008,73:76-81.
    [48]Feng, K. J., Kang, Y., Zhao, J. J., Liu, Y. L., Jiang, J. H., Shen, G. L., Yu, R. Q. Electrochemical immunosensor with aptamer-based enzymatic amplication [J]. Analytical Biochemistry,2008,378:38-42.
    [49]Pavlov, V., Shlyahoysky, B., Willner, I. Fluorescence detection of DNA by the catalytic activation of an aptamer/thrombin complex [J]. Journal of the American Chemical Society,2005,127 (18):6522-6523.
    [50]Smith, J.E., Medley, C.D., Tang, Z.W., Shangguan, D., Lofton, C., Tan, W.H. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells [J]. Analytical Chemistry,2007,79 (8):3075-3082.
    [51]Centi, S., Tombelli, S., Minunni, M., Mascini, M. Aptamer-Based Detection of Plasma Proteins by an Electrochemical Assay Coupled to Magnetic Beads [J]. Analytical Chemistry,2007,79 (4):1466-1473.
    [52]Holland, C.A., Henry, A.T., Whinna, H.C., Church, F.C. Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor Ⅱ and antithrombin [J]. FEBS Letters,2000,484:87-91.
    [53]Lidke, D. S., Nagy, P., Heintzmann, R., Arndt-Jovin, D. J., Post, J. N., Grecco, H. E. Quantum dot ligands Provide new insight into erbB HER. receptor-mediated signal transduction [J]. Nature Biotechnology,2004,22 (2):198-203.
    [54]Wu, X. Y., Liu, H., Liu, J. Immunofluoreseent labeling of cancer marker Her2 and other cellular targets with semieonductor quantum dots [J]. Nature Biotechnology,2003,21:41-46.
    [55]Gao, X. H., Cui, Y. Y., Levenson, R. M.,Chung, L. W. K., Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nature Biotechnology,2004,22 (8):969-976.
    [56]Li, Y., Chen, J., Zhu, C., Wang, L., Zhao, D., Zhuo, S., Wu, Y. Preparation and application of cysteine-capped ZnS nanoparticles as fluorescence probe in the determination of nucleic acids [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2004,60 (8-9):1719-1724.
    [57]Wang, L. Y., Wang, L., Gao, F., Yu, Z. Y., Wu, Z. M. Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids [J]. Analyst,2002,127:977.
    [58]Matoussi, H., Mauro, J. M., Goldman, E. R., Anderson, G. P., Sundar, V. C., Mikulec, F. V., Bawendi, M. G. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein [J]. Journal of the American Chemical Society,2000,122 (49):12142-12150.
    [59]Crut, A. L., Geron-Landre, B., Bonnet, I., Bonneau, S., Desbiolles, P., Escude, C. Detection of single DNA molecules by multicolor quantum-dot end-labeling [J]. Nucleic Acids Reserch,2005,33 (11):e98.
    [60]Wang, L. Y., Zhou, Y. Y., Wang, L., Zhu, C. Q., Li, Y. X., Gao, F. Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe [J]. Analytica Chimica Acta,2002,466 (1):87-92.
    [61]Levy, M., Cater, S. F., Ellington, A. D. Quantum-dot aptamer beacon for the detection of protein [J]. ChemBioChem,2005,6 (2):2163-2166.
    [62]Bagalkot, V., Zhang, L.F., Nissenbaum, E. L., Jon, S.Y., Kantoff, P. W., Langer, R., Farokhzad, O. C. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer [J]. Nano Letters,2007,7 (10):3065-3070.
    [63]Son, A., Dosev, D., Nichkova, M., Ma, Z., Kennedy, I.M., Scow, K.M., Hristova, K.R. Quantitative DNA hybridization in solution using magnetic/luminescent core-shell nanoparticles [J]. Analytical Biochemistry,2007,370:186-194.
    [64]Kouassi, G. K., Irudayaraj, J. Magnetic and Gold-Coated Magnetic Nanoparticles as a DNA Sensor [J]. Analytical Chemistry,2006,78 (10):3234-3241.
    [65]Eastman, P.S., Ruan, W., Doctolero, M., Nuttall, R., Feo, G. D., Park, J. S., Chu, J. S. F., Cooke, P., Gray, J.W., Li, S., Chen, F.F. Qdot Nanobarcodes for Multiplexed Gene Expression Analysis [J]. Nano Letters,2006,6 (8):1059-1064.
    [66]Qian, H., Dong, C., Peng, J., Qiu, X., Xu, Y., Ren, J. High-Quality and Water-Soluble Near-Infrared Photoluminescent CdHgTe/CdS Quantum Dots Prepared by Adjusting Size and Composition [J]. Journal of Physical ChemistryC, 2007,111(45):16852-16857.
    [67]Zhang, H., Zhou, Z., Yang, B., Gao, M. The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles [J]. Journal of Physical Chemistry B,2002,107:8-13.
    [68]Ye, M., Zhang, Y. Y., Li, H. T., Zhang, Y. Q., Tan, P., Tang, H., Yao, S. Z. A novel method for the detection of point mutation in DNA using single-base-coded CdS nanoprobes [J]. Biosensors and Bioelectronics,2009,24: 2339-2345.
    [69]Hianik, T., Ostatn, V., Sonlajtnerova, M., Grman, I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin [J]. Bioelectrochemistry,2007,70:127-133.
    [70]Huang, Y. C., Ge, B., Sen, D., Yu, H. Immobilized DNA Switches as Electronic Sensors for Picomolar Detection of Plasma Proteins [J]. Journal of the American Chemical Society,2008,130 (25):8023-8029.
    [71]Baldrich, E., Restrepo, A., O'Sullivan, C.K. Aptasensor Development: Elucidation of Critical Parameters for Optimal Aptamer Performance [J]. Analytical Chemistry,2004,76 (23):7053-7063.
    [72]Wei, H., Li, B. L., Dong, S. J. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch [J]. Chemical Communications,2007, 73-75.
    [73]Yang, H., Ji, J., Liu, Y., Kong, J., Liu, B. An aptamer-based biosensor for sensitive thrombin detection [J]. Electrochemistry Communication,2009,11: 38-40.
    [74]Bang, G. S., Cho, S., Kim, B. A novel electrochemical detection method for aptamer biosensors [J]. Biosensors and Bioelectronics,2005,21:863-870.
    [75]Teller, C., Shimron, S., Willner, I. Aptamer-DNAzyme hairpins for amplified biosensing [J]. Analytical Chemistry,2009,81 (21):9114-9119.
    [76]Zhao, Q., Lu, X. F., Yuan, C. G., Li, X. F., Le, X.C. Aptamer-Linked assay for thrombin using gold nanoparticle amplification and inductively coupled plasma-mass spectrometry detection [J]. Analytical Chemistry,2009,81 (17): 7484-7489.
    [77]Ho, D., Falter, K., Severin, P., Gaub, H.E. DNA as a Force Sensor in an Aptamer-Based Biochip for Adenosine [J]. Analytical Chemistry,2009,81 (8): 3159-3164.
    [78]Golub, E., Pelossof, G., Freeman, R., Zhang H., Willner, I. Electrochemical, Photoelectrochemical, and Surface Plasmon Resonance Detection of Cocaine Using Supramolecular Aptamer Complexes and Metallic or Semiconductor Nanoparticles [J]. Analytical Chemistry,2009,81 (22):9291-9298.
    [79]Lee, S.J., Youn, B.S., Park, J.W., Niazi, J.H., Kim, Y.S., Gu, M.B. ssDNA Aptamer-Based Surface Plasmon Resonance Biosensor for the Detection of Retinol Binding Protein 4 for the Early Diagnosis of Type 2 Diabetes [J]. Analytical Chemistry,2008,80 (8):2867-2873.
    [80]Savran, C.A., Knudsen, S.M., Ellington, A.D., Manalis, S.R. Micromechanical Detection of Proteins Using Aptamer-Based Receptor Molecules [J]. Analytical Chemistry,2004,76 (11):3194-319
    [81]Hu, J. Zheng, P.C., Jiang, J. H., Shen, G. L., Yu, R. Q., Liu, G. K. Electrostatic Interaction Based Approach to Thrombin Detection by Surface-Enhanced Raman Spectroscopy [J]. Analytical Chemistry,2009,81 (1):87-93.
    [82]Fialova', M. J. K., Vorlic Volicvkova, M. The thrombin binding aptamer GGTTGGTGTGGTTGG forms a bimolecular guanine tetraplex [J]. Biochemical and Biophysical Research Communications,2006,344:50-54.
    [83]Swensen, J. S., Xiao, Y., Ferguson, B.S., Lubin, A.A., Lai, R.Y., Heeger, A.J., Plaxco, K.W., Soh, H.T. Continuous, Real-Time Monitoring of Cocaine in Undiluted Blood Serum via a Microfluidic, Electrochemical Aptamer-Based Sensor [J]. Journal of the American Chemical Society,2009,131 (12): 4262-4266.
    [84]Chen, J., Zhang, J., Li, J., Yang, H. H., Fu, F., Chen, G. An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments [J]. Biosensors and Bioelectronics,2010,25:996-1000.
    [85]Degefa, T. H., Hwang, S., Kwon, D., Park, J.H., Kwak, J. Aptamer-based electrochemical detection of protein using enzymatic silver deposition [J]. Electrochimica Acta,2009,54:6788-6791.
    [86]Zuo, X., Song, S., Zhang, J., Pan, D., Wang, Fan, L. C. A Target-Responsive Electrochemical Aptamer Switch (TREAS) for Reagentless Detection of Nanomolar ATP [J]. Journal of the American Chemical Society,2007,129 (5): 1042-1043.
    [87]Kerman, K., Ozkan, Kara, D. P., Meric, B., Gooding, J.J., Ozsoz, M. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes [J]. Analytica Chimica Acta,2002,462:39-47.
    [88]Kara, P., Kerman, K., Ozkan, D., Meric, B., Erdem, A., Ozkan, Z., Ozsoz, M. Electrochemical genosensor for the detection of interaction between methylene blue and DNA [J]. Electrochemistry Communications,2002,4:705-709.
    [89]Zhang, W., Yang, T., Jiang, C., Jiao, K. DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode [J]. Applied Surface Science,2008,254:4750-4756.
    [90]Baker, B. R., Lai, R. Y., Wood, M. S., Doctor, E. H., Heeger, A. J., Plaxco, K. W. An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine in Adulterated Samples and Biological Fluids [J]. Journal of the American Chemical Society,2006,128 (10):3138-3139.
    [91]Zuo, X. L., Xiao, Y., Plaxco, K. W. High Specificity, Electrochemical Sandwich Assays Based on Single Aptamer Sequences and Suitable for the Direct Detection of Small-Molecule Targets in Blood and Other Complex Matrices [J]. Journal of the American Chemical Society,2009,131 (20):6944-6945.
    [92]Dobson, K. D., McQuillan, A. J. An Infrared Spectroscopic Study of Carbonate Adsorption to Zirconium Dioxide Sol-Gel Films from Aqueous Solutions [J]. Langmuir,1997,13 (13):3392-3396.
    [93]Fang, M., Kaschak, D.M., Sutorik, A.C., Mallouk, T.E. A "Mix and Match" Ionic-Covalent Strategy for Self-Assembly of Inorganic Multilayer Films [J]. Journal of the American Chemical Society,1997,119(50):12184-12191.
    [94]Feng, K., Sun, C., Kang, Y., Chen, J., Jiang, J. H., Shen, G. L., Yu, R. Q. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement [J]. Electrochemistry Communications, 2008,10:531-535.
    [95]Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., Lin, Y. EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation [J]. Biosensors and Bioelectronics,2009,24:2377-2383.
    [96]Grabar, K. C., Freeman, R.G., Hommer, M.B., Natan, M.J. Preparation and Characterization of Au Colloid Monolayers [J]. Analytical Chemistry,1995,67 (4):735-743.
    [97]Zhu, N., Zhang, A., Wang, Q., He, P., Fang, Y. Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes [J]. Analytica Chimica Acta,2004,510:163-168.
    [98]Maeda, Y.M. M., Nakano, K., Takagi, M. Analytical Sciences,1992,8:83-91.
    [99]Wang, W., Chen, C., Qian, M., Zhao, X.S. Aptamer biosensor for protein detection using gold nanoparticles [J]. Analytical Biochemistry,2008,373: 213-219.
    [100]Wang, J., Dong, F. S. Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch [J]. Journal of Electroanalytical Chemistry,2009,626:1-5.
    [101]Rahman, M.A., Son, J. I., Won, M. S., Shim, Y. B. Gold Nanoparticles Doped Conducting Polymer Nanorod Electrodes:Ferrocene Catalyzed Aptamer-Based Thrombin Immunosensor [J]. Analytical Chemistry,2009,81 (16):6604-6611.
    [102]Wei, H., Li, B. L., Li, J., Wang, E., Dong, S. J. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes [J]. Chemical Communications,2007,36:3735-3737.
    [103]曹楚南,张鉴清.电化学阻抗谱导论[M].科学出版社,2002.
    [104]王丰,府伟灵.电化学阻抗谱在生物传感器研究中的应用进展[J].生物技术通讯,2007,18(3):549-552.
    [105]Laureyn, W., Nelis, D., Gerwen, P. V., Baert, K., Hermans, L., Magnee, R., Pireaux, J. J., Maes, G. Nanoscaled interdigitated titanium electrodes for impedimetric biosensing [J]. Sens Actuat,2000,68:360-370.
    [106]Peng, H., Soeller, C., Cannell, M. B., Bowmaker, G. A., Cooney, R. P., Sejdic, J. T. Electrochemical detection of DNA hybridization amplified by nanoparticles [J]. Biosensors and Bioelectronics,2006,21 (9):1727-1736.
    [107]Sun,Y. Q., Yan, F., Yang, W. S. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layerby-layer covalent attachment [J]. Biomaterials,2006,27 (21):4042-4049.
    [108]Radi, A. E., Sanchez, J. L. A., Baldrich, E., O'Sullivan, C. K. Reusable Impedimetric Aptasensor [J]. Analytical Chemistry,2005,77 (19):6320-6323.
    [109]Xu, D., Xu, D., Yu, X., Liu, Z., He, W., Ma, Z. Label-Free Electrochemical Detection for Aptamer-Based Array Electrodes [J]. Analytical Chemistry,2005, 77(16):5107-5113.
    [110]Rodriguez, M. C., Kawde, A. N., Joseph, W. Aptamer Biosensor For Label Free Impedance Spectroscopy Detection of Proteins Based on Recognition Induced Switching of the Surface Charge [J]. Chemical Communications,2005,34: 4267-4269.
    [111]Lia, B. L., Wanga, Y. L., Weia, H., Dong, S. J. Amplified Electrochemical Aptasensor Taking AuNPs Based Sandwich Sensing Platform as a Model [J]. Biosensors and Bioelectronics,2008,23 (7):965-970.
    [112]Deng, C. Y., Chen, J. H., Nie, Z., Wang, M. D., Chu, X. C., Chen, X. L., Xiao, X. L., Lei, C. Y., Yao, S. Z. Impedimetric Aptasensor with Femtomolar Sensitivity Based on the Enlargement of Surface-Charged Gold Nanoparticles [J]. Analytical Chemistry,2009,81 (2):739-745.
    [113]Du, Y., Li, B. L., Wei, H., Wang, Y. L., Wang, E. K. Multifunctional Label-Free Electrochemical Biosensor Based on an Integrated Aptamer [J]. Analytical Chemistry,2008,80 (13):5110-5117.
    [114]Huang, H. P., Zhu, J. J. DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin [J]. Biosensors and Bioelectronics,2009, 25:927-930.
    [115]Huang, M. F., Kuo, Y. C., Huang, C. C., Chang, H. T. Separation of long double-stranded DNA by nanoparticle-filled capillary electrophoresis [J]. Analytical Chemistry,2004,76 (1):192-196.
    [116]Huang, C. C., Chiu, S. H., Huang, Y. F., Chang, H. T. Aptamer-Functionalized gold nanoparticles for turn-on light switch detection of platelet-dericved growth factor [J]. Analytical Chemistry,2007,79 (13):4798-4804.
    [117]Li, B., Wang, Y., Wei, H., Dong, S. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model [J]. Biosensors and Bioelectronics,2007,23:965-970.
    [118]Cai, H., Lee, T. M., Hsing, I. M. Label-free protein recognition using an aptamer-based impedance measurement assay [J]. Sensors Actuators B,2006, 114:433-437.
    [119]Cheng, A. K. H., Ge, B., Yu, H. Z. Aptamer-Based Biosensors for Label-Free Voltammetric Detection of Lysozyme [J]. Analytical Chemistry,2007,79 (14): 5158-5164.
    [120]Willner, I., Patolsky, F., Wasserman, J. Photoelectrochemistry with Controlled DNA-Cross-Linked CdS Nanoparticle [J]. Angewandte Chemie International Edition,2001,40, (10):1861-1864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700