新型Ⅱ-Ⅵ族量子点的合成、应用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点是一种新型的无机半导体纳米材料。为改善发光性质,量子点通常为核壳结构,水相合成的新型核壳结构量子点由于其良好的光学性质和光化学稳定性,作为荧光探针在生物标记方面具有重要应用价值,相比有机相合成的量子点在生物标记方面有着独特的优势。另外,掺杂量子点更显出独特的发光性质,从而吸引许多研究者的目光。如何通过“绿色化学”方法,发展一种适合工业化生产的高效发光量子点的合成路线显得特别重要。本论文的主要工作是研究了新型核壳结构水相CdTe/CdSe量子点的合成方法,并作为荧光探针用于肿瘤细胞—HeLa的标记,以及用硒粉为硒源合成了高质量的Mn:ZnSe和Mn:CdSe量子点。系统研究了反应条件,优化了相关实验参数,并研究了其相关机理。希望能对以后量子点的研究等方面提供有益的借鉴。
     本论文的主要研究工作及研究成果如下:
     1.水性CdTe和Type-ⅡCdTe/CdSe(核壳)量子点的合成
     报道了通过一条新颖而简单的路线合成了水溶性高效发光的CdTe和type-ⅡCdTe/CdSe量子点。通过控制CdSe壳层厚度,CdTe/CdSe量子点的发光范围从510-640 nm连续可调。而且,具有最优化CdSe壳层厚度的CdTe/CdSe量子点量子效率可达40%以上。CdTe/CdSe量子点的结构和组成通过高分辨电子显微镜、x-射线粉末衍射仪和x光电子能谱进行了表征,对其形成机理进行了深入细致的讨论。
     2.叶酸介导的type-ⅡCdTe/CdSe量子点作为荧光探针标记肿瘤细胞
     采用稳定性和水溶性好、发光强度高的type-ⅡCdTe/CdSe量子点与叶酸偶联,利用叶酸与叶酸受体高度亲和的特性,使之成为一种高效的荧光探针来标记肿瘤细胞——HeLa细胞。通过荧光显微镜来观察在HeLa细胞里通过叶酸偶联的CdTe/CdSe量子点,结果表明叶酸偶联的CdTe/CdSe量子点有效地进入肿瘤细胞,在HeLa细胞内展现了良好的成像和示踪功能。这说明高质量量子点是细胞标记的一种很好的荧光探针,在生命科学领域有着重要的应用价值。
     3.高质量Mn:ZnSe量子点的合成及相关机理研究
     通过使用空气中稳定和易得原料,比如硬脂酸锌(锰)、相应的硬脂酸、硒粉、脂肪胺和十八烯,合成了高质量、纯杂质离子发光和量子效率高达40-60%的Mn掺杂的ZnSe量子点(Mn:ZnSe掺杂量子点)。在合成路线中,去除了易燃易爆、高毒性和价格昂贵的有机膦,因为脂肪胺的存在使得元素硒的反应活性增强,这也在很大程度上改变了反应的进程。对“成核掺杂”的两个关键步骤,即MnSe纳米簇的形成和ZnSe的包覆,进行了系统的讨论。通过前驱体“二次注射”模式调节了在掺杂量子点中的Mn离子“晶格扩散”的程度。获得的掺杂量子点为立方相晶体结构,具有优化的球形形貌,呈单分散分布以及可控的Mn:Zn比。
     4.Mn掺杂的CdSe量子点的合成及机理研究
     通过采用“成核掺杂”的路线将量子点成核过程和生长过程分离,采用硒粉为硒源,脂肪胺活化反应,合成了高质量的、纯杂质离子发光的Mn掺杂的CdSe量子点(Mn:CdSe)。系统研究了脂肪酸盐与脂肪酸的比例、壳层的包覆温度对Mn:CdSe掺杂量子点光学性质的影响;确定了Mn离子在CdSe量子点中“晶格扩散”的临界温度,提出了一种新的“晶格弹出”机理,对其他掺杂量子点的合成及机理研究具有重要的借鉴意义。
Quantum dots (QDs) are novel inorganic semiconductor nanocrystal materials. The new core-shell aqueous quantum dots own good optical characters and high optical and chemical stability, can be used to biolabeling as the fluorescence probe and have many relative advantages compared with bare quantum dots synthesized in organic solvents. Doped quantum dots developed new views of scientists on synthetic chemistry because doped quantum dots have many advantages compared with undoped semiconductor quantum dots. It is very important to use green chemistry routes to realize industry production of doped quantum dots. This dissertation focus on synthesis of novel core-shell aqueous quantum dots, labeling in tumor cells—HeLa as the fluorescence probe, and synthesis and investigation of mechanisms of doped quantum dots (Mn:ZnSe and Mn:CdSe QDs). We also investigated the reaction conditions, relative mechanism and optimized experiment parameters of quantum dot growth and hope that this research is useful to the investigation of quantum dots in the future.
     The valuable results of this dissertation are following:
     1. Aqueous synthesis of CdTe and type-ⅡCdTe/CdSe core-shell quantum dots
     In this chapter, we report a two-step aqueous synthesis of highly luminescent CdTe and CdTe/CdSe core/shell quantum dots via a simple method. The emission range of CdTe/CdSe Quantum dots can be tuned from 510 to 640 nm by controlling the thickness of CdSe shell. Accordingly, the photoluminescence quantum yield (PL QY) of CdTe/CdSe quantum dots with an optimized thickness of the CdSe shell can reach up to 40%. The structure and compositions of the core/shell quantum dots were characterized by transmission electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy, and the formation mechanism of the core-shell structure was discussed in detail.
     2. Labeling of aqueous type-ⅡCdTe/CdSe quantum dots in tumor cells as fluorescence probe
     we successfully labeled tumor cells—HeLa using aqueous, high emissive, and folate conjugated type-ⅡCdTe/CdSe quantum dots as fluorescence probe which were assessed with a fluorescence microscope. The results showed that folate conjugated CdTe/CdSe quantum dots could enter tumor cells efficiently, which showed good tracing and labeling of quantum dots in HeLa cells. The results indicated that the type-ⅡCdTe/CdSe quantum dots are a excellent fluorescence probe and could be applied in biolabeling.
     3. Synthesis of highly emissive Mn-doped ZnSe quantum dots without pyrophoric reagents
     Manganese-doped zinc selenide quantum dots (Mn:ZnSe d-dots) with high optical quality, pure dopant emission with 40-60% photoluminescence quantum yield, were synthesized with air-stable and generic starting materials, namely zinc (manganese) fatty acid salts with corresponding free fatty acids, Se powder, fatty amine, and octadecene. The pyrophoric, highly toxic, and expensive organophospines were eliminated from the existing synthetic protocols for high quality Mn:ZnSe d-dots, which changed the reaction profile substantially, because of the enhanced reactivity of elemental Se with the presence of fatty amines. The reaction temperatures for two key processes involved in "nucleation-doping", namely, formation of MnSe nanoclusters and their overcoating by the host, were both reduced. Multiple injection techniques were employed to realize balanced diffusion of Mn ions in the doped quantum dots (d-dots). The resulting d-dots were found to be in zinc-blende crystal structure, with optimal spherical shape, nearly monodispersed, and controlled in their Mn:Zn ratio.
     4. Investigation of synthesis and doping mechanism of Mn doped CdSe quantum dots
     In this chapter, we used the "nucleation doping" route to combine dopants and host materials and synthesized high-quality Mn doped CdSe nanocrystal emitters with nearly pure Mn emission and efficient dopant photoluminescence using selenium power as selenium source and carboxylic amine as active reagent. We investigated the effect of the ratio of carboxylic acid salts to carboxylic acid and the overcoating temperature of shell on the optical property of Mn doped CdSe nanocrtstals. The critical temperature of "lattice diffusion" of Mn ions in CdSe lattice was defined and a new "lattice ejection" mechanism was proposed, which is very valuable and interesting to the investigation of synthesis and mechanism of other doped quantum dots.
引文
[1]Ryogo, K. Electronic Properties of Metallic Fine Particles. I.. Journal of the Physical Society of Japan,1962,17(6):975-986
    [2]Efros, A. L.; Efros, A. Interband Absorption of Light in a Semiconductor Sphere. Soviet Physical Semicond,1982,16(20):772
    [3]Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state. Journal of Chemical Physics,1984,80(9):4403-4409
    [4]Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996,271(5251):933-937
    [5]Batlle, X.; Labarta, A. Finite-size effects in fine particles:magnetic and transport properties Journal of Physics D:Applied Physics,2002,35(R):15
    [6]Herr, U.; Jing, J.; Birringer, R., et al. Investigation of nanocrystalline iron materials by Mossbauer spectroscopy. Applied Physics Letters,1987,50(16):472
    [7]Zou, J.; Xu, C.; Liu, X., et al. Study of the Raman spectrum of nanometer SnO. Journal of Applied Physics,1984,75(5):1835
    [8]Peng, Z. A.; Peng, X. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes:Nucleation and Growth. Journal of the American Chemical Society,2002,124(13):3343-3353
    [9]Henglein, A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemistry Reviews,1989,89(8): 1861-1873
    [10]Nirmal, M.; Murray, C. B. Fluorescence-line narrowing in CdSe quantum dots: Surface localization of the photogenerated exciton. Physical Review B,1994,50(4): 2293-2300
    [11]Reed, M. A. Realization of a three-terminal resonant tunneling device:The bipolar quantum resonant tunneling transistor. Applied Physics Letters,1989, 54(12):1034
    [12]Kekdysh, L. V. Theory of radio emission from pulsars Zh.Pis'ma Fiz. Eksp. Teor., 1979,29(2):716
    [13]Kumagai, M.; Takagahara, T. Excitonic and nonlinear-optical properties of dielectric quantum-well structures. Physical Review B,1989,40(18): 12359-12381
    [14]Banyai, L.; Galbraith, I.; Ell, C. Excitons and biexcitons in semiconductor quantum wires. Physical Review B,1987,36(11):6099-6104
    [15]Yoffe, A. D. Low-dimensional systems:quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Advances in physics,1993,42(20):173-262
    [16]Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. The Journal of Physical Chemistry,1996,100(31):13226-13239
    [17]Anikeeva, P. O.; Halpert, J. E.; Bawendi, M. G., et al. Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Letters,2009,9(7):2532-2536
    [18]Sun, W. T.; Yu, Y.; Pan, H. Y. CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes. Journal of the American Chemical Societyty, 2008,130(4):1124-1125
    [19]Coe, S.; Woo, W. K.; Bawendi, M., et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature,2002,420(6917): 800-803
    [20]Zhao, J.; Bardecker, J. A.; Munro, A. M., et al. Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer. Nano Letters,2006,6(3):463-467
    [21]Sun, Q.; Wang, Y. A.; Li, L. S., et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nature Photonics,2007,1(12):717-722
    [22]Tan, Z. N.; Zhang, F.; Zhu, T., et al. Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots. Nano Letters,2007,7(12):3803-3807
    [23]Ellingson, R. J.; Beard, M. C.; Johnson, J. C. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots. Nano Letters,2005,5(5): 865-871
    [24]Gratzel, M. Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics:Research and Applications,2000,8(1):171-185
    [25]Kongkanand, A.; Tvrdy, K.; Takechi, K., et al. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture. Journal of the American Chemical Society,2008,130(12):4007-4015
    [26]Farrow, B.; Kamat, P. V. CdSe Quantum Dot Sensitized Solar Cells. Shuttling Electrons Through Stacked Carbon Nanocups. Journal of the American Chemical Society,2009,131(31):11124-11131
    [27]Michalet, X.; Pinaud, F. F.; Bentolila, L. A., et al. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science,2005,28(5709):538-544
    [28]Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281(5385):2016-2018
    [29]Bruchez, M.; Moronne, M.; Gin, P., et al. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281(5385):2013-2016
    [30]Chan, W. C. W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281(5385):2016-2018
    [31]Lin, S.; Xie, X.; Patel, M. R., et al. Quantum dot imaging for embryonic stem cells. BMC Biotechnology,2007,7(5):67-77
    [32]Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology,2003,21(12): 47-51
    [33]Larson, D. R.; Zipfel, W. R.; Williams, R. M., et al. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science,2003,300(5624): 1434-1436
    [34]Smith, A. M.; Nie, S. Next-generation quantum dots. Nature Biotechnology,2009, 27:732-733
    [35]Gao, X.; Cui, Y.; Levenson, R. M., et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology,2004,22:969-976
    [36]Wang, H.-Z.; Wang, H.-Y.; Liang, R.-Q., et al. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochimica et Biophysica Sinica, 2004,36(10):681-686
    [37]Chen, C.; Peng, J.; Xia, H., et al. Quantum-dot-based immunofluorescent imaging of HER2 and ER provides new insights into breast cancer heterogeneity. Nanotechnology,2010,21(9):095101
    [38]Chen, C.; Peng, J.; Xia, H.-S., et al. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials,2009,30(15):2912-2918
    [39]Chen, L.; Liub, J.; Yu, X., et al. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials, 2008,29(31):4170-4176
    [40]Lei, Y.; Tang, H.; Yao, L., et al. Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjugate Chemistry,2008,19(2):421-427
    [41]Lei, Y.; Jiang, C.; Liu, S., et al. A clear route for preparation of CdTe nanocrystals and their conjugation with bacterium. Journal of Nanoscience and Nanotechnology, 2006,6(12):3784-3788
    [42]Lei, Y.; Tang, H.; Feng, M., et al. Applications of Fluorescent Quantum Dots to Stem Cell Tracing In Vivo. Journal of Nanoscience and Nanotechnology,2009, 9(10):5726-5730
    [43]Han, M.; Gao, X.; su, J. Z., et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnology,2001,19:631
    [44]Xu, H.; Sha, M. Y.; Wong, a. E. Y., et al. Multiplexed SNP genotyping using the QbeadTM system:a quantum dot-encoded microsphere-based assay. Nucleic Acids Research,2003,31(8):e43
    [45]Liang, R.; Li, W.; Li, Y., et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe Nucleic Acids Research,2005,33(2):e17
    [46]Chen, J. L.; Zhu, C. Q. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Analytica Chimica Acta,2005, 546(2):147-153
    [47]Xia, Y. S.; Cao, C.; Zhu, C. Q. Two distinct photoluminescence responses of CdTe quantum dots to Ag (Ⅰ). Journal of Luminescence,2008,128(1):166-172
    [48]Myung, N.; Bae, Y.; Bard, A. Enhancement of the Photoluminescence of CdSe Nanocrystals Dispersed in CHC13 by Oxygen Passivation of Surface States. Nano Letters,2003,3(6):747-749
    [49]Vaeeiltsova, O. V.; Zhao, Z. Y.; petrukina, M. A. Sensors and Actuators B,2007: 522-529
    [50]Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society, 2001,123(1):183-184
    [51]Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. Journal of the American Chemical Society,2001,123(7):1389-1395
    [52]Peng, X. G.; Wilson, T. E.; Alivisatos, A. P., et al. Synthesis and isolation of a homodimer of cadmium selenide nanocrystals. Angewandte Chemie-International Edition English,1997,36(1-2):145-147
    [53]Murray C. B.; Norris D. J.; G., B. M. Synthesis and characterization of nearly monodisperse semiconductor nanocrystallites. Journal of the American Chemical Society,1993,115(19):8705-8715
    [54]Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review Material Science,2000,30:545-610
    [55]Zhang, W.; Chen, G.; Wang, J., et al. Design and Synthesis of Highly Luminescent Near-Infrared-Emitting Water-Soluble CdTe/CdSe/ZnS Core/Shell/Shell Quantum Dots. Inorganic Chemistry,2009,48(20):9723-9731
    [56]Yu, W. W.; Qu, L. H.; Guo, W. Z., et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials,2003,15(14):2854-2860
    [57]Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other Ⅱ-Ⅵ semiconductor nanocrystals in noncoordinating solvents:Tunable reactivity of monomers. Angewandte Chemie-International Edition,2002,41(13):2368-2371
    [58]Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V., et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemical Society,1997,119(30):7019-7029
    [59]Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth:"Focusing" of size distributions. Journal of the American Chemical Society,1998,120(21):5343-5344
    [60]Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of High-Quality Ⅰ-Ⅲ-Ⅵ Semiconductor Nanocrystals by Tuning Relative Reactivity of Cationic Precursors. Journal of the American Chemical Society,2009,131(15):5691-5697
    [61]Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Letters,2001,1(6):333-337
    [62]Peng, X. An essay on synthetic chemistry of colloidal nanocrystals Nano Research, 2009,2(6):425-447
    [63]Li, L. S.; Pradhan, N.; Wang, Y. J., et al. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Letters,2004,4(11): 2261-2264
    [64]Xie, R.; Battaglia, D.; Peng, X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. Journal of the American Chemical Society,2007, 129(50):15432-15433
    [65]Xie, R. G.; Peng, X. G. Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals. Angewandte Chemie-International Edition,2008,47(40):7677-7680
    [66]Yang, Y. A.; Wu, H. M.; Williams, K. R., et al. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angewandte Chemie-International Edition,2005,44(41):6712-6715
    [67]Cao, Y. C.; Wang, J. One-Pot Synthesis of High-Quality Zinc-Blende CdS Nanocrystals. Journal of the American Chemical Society,2004,126(44): 14336-14337
    [68]Deng, Z. T.; Cao, L.; Tang, F. Q., et al. A new route to zinc-blende CdSe nanocrystals:Mechanism and synthesis. Journal of Physical Chemistry B,2005, 109(35):16671-16675
    [69]Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Toward Greener Nanosynthesis. Chemical Reviews,2007,107(6):2228-2269
    [70]Allen, P. M.; Liu, W.; Chauhan, V. P., et al. The Productive Merger of Iodonium Salts and Organocatalysis:A Non-photolytic Approach to the Enantioselective α-Trifluoromethylation of Aldehydes. Journal of the American Chemical Society, 2010,132(14):470-471
    [71]Peterson, J. J.; Krauss, T. D. Fluorescence Spectroscopy of Single Lead Sulfide Quantum Dots. Nano Letters,2006,6(3):510-514
    [72]Cademartiri, L.; Montanari, E.; Calestani, G., et al. Size-Dependent Extinction Coefficients of PbS Quantum Dots. Journal of the American Chemical Society, 2006,128(31):10337-10346
    [73]Wise, F. W. Lead Salt Quantum Dots:the Limit of Strong Quantum Confinement. Accounts of Chemical Research,2000,33(11):773-780
    [74]Bierman, M. J.; Lau, Y. K. A.; Jin, S. Hyperbranched PbS and PbSe Nanowires and the Effect of Hydrogen Gas on Their Synthesis. Nano Letters,2007,7(9): 2907-2912
    [75]Zhong, H.; Zhou, Y.; Ye, M., et al. Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS2 Nanocrystals. Chemistry of Materials, 20(20):6434-6443
    [76]Norris, D. J.; Yao, N.; Charnock, F. T., et al. High-Quality Manganese-Doped ZnSe Nanocrystals. Nano Letters,2001,1(1):3-7
    [77]Yang, Y.; Chen, O.; Angerhofer, A., et al. On Doping CdS/ZnS Core/Shell Nanocrystals with Mn. Journal of the American Chemical Society,2008,130(46): 15649-15661
    [78]Viswanatha, R.; Battaglia, D. M.; Curtis, M. E., et al. Shape control of doped semiconductor nanocrystals (d-dots). Nano Research,2008,1(2):138-144
    [79]Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319(5871):1776-1779
    [80]Pradhan, N.; Peng, X. G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters:Control of optical performance via greener synthetic chemistry. Journal of the American Chemical Society,2007,129(11):3339-3347
    [81]Pradhan, N.; Battaglia, D. M.; Liu, Y. C., et al. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Letters,2007,7(2):312-317
    [82]Yang, Y.; Chen, O.; Angerhofer, A., et al. Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals. Journal of the American Chemical Society,2006, 128(38):12428-12429
    [83]Nag, A.; Chakraborty, S.; Sarma, D. D. To Dope Mn2+ in a Semiconducting Nanocrystal. Journal of the American Chemical Society,2008,130(32): 10605-10611
    [84]Pradhan, N.; Goorskey, D.; Thessing, J., et al. An alternative of CdSe nanocrystal emitters:Pure and tunable impurity emissions in ZnSe nanocrystals. Journal of the American Chemical Society,2005,127(50):17586-17587
    [85]Mikulec, F. V.; Kuno, M.; Bennati, M., et al. Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals. Journal of the American Chemical Society,2000,122(11):2532-2540
    [86]Ehlert, O.; Osvet, A.; Batentschuk, M., et al. Synthesis and Spectroscopic Investigations of Cu-and Pb-Doped Colloidal ZnS Nanocrystals. Journal of Physical Chemistry B,2006,110(46):23175-23178
    [87]Norberg, N. S.; Parks, G. L.; Salley, G. M., et al. Giant Excitonic Zeeman Splittings in Colloidal Co2+-Doped ZnSe Quantum Dots. Journal of the American Chemical Society,2006,128(40):13195-13203
    [88]Xie, R. G.; Peng, X. G. Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. Journal of the American Chemical Society,2009,131(30):10645-10651
    [89]Erwin, S. C.; Zu, L.; Haftel, M. I., et al. Doping semiconductor nanocrystals. Nature,2005,436(7047):91-94
    [90]Chen, D. A.; Viswanatha, R.; Ong, G. L., et al. Temperature Dependence of "Elementary Processes" in Doping Semiconductor Nanocrystals. Journal of the American Chemical Society,2009,131(26):9333-9339
    [91]Zeng, R.; Rutherford, M.; Xie, R., et al. Synthesis of Highly Emissive Mn-Doped ZnSe Nanocrystals without Pyrophoric Reagents. Chemistry of Materials,2010, 22(6):2107-2113
    [92]Pradhan, N.; Reifsnyder, D.; Xie, R. G., et al. Surface ligand dynamics in growth of nanocrystals. Journal of the American Chemical Society,2007,129(30): 9500-9509
    [93]Turnbull, D. Formating of crystal nuclei in liquid metal. Journal of Applied Physics,1950,21(12):1022-1028
    [94]Xia, Y. S.; Zhu, C. Q. Aqueous synthesis of type-Ⅱ core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(Ⅱ). Analyst,2008,133(7): 928-932
    [95]Wang, C. L.; Zhang, H.; Zhang, J. H., et al. Ligand dynamics of aqueous CdTe nanocrystals at room temperature. Journal of Physical Chemistry C,2008,112(16): 6330-6336
    [96]Gu, Z. Y.; Zou, L.; Fang, Z., et al. One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase. Nanotechnology,2008,19(13): 135604
    [97]Rogach, A. L.; Franzl, T.; Klar, T. A., et al. Aqueous synthesis of thiol-capped CdTe nanocrystals:State-of-the-art. Journal of Physical Chemistry C,2007, 111(40):14628-14637
    [98]Cao, Y. W.; Banin, U. Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angewandte Chemie-International Edition,1999,38(24): 3692-3694
    [99]Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V., et al. Dynamic Distribution of Growth Rates within the Ensembles of Colloidal Ⅱ-Ⅵ and Ⅲ-Ⅴ Semiconductor Nanocrystals as a Factor Governing Their Photoluminescence Efficiency. Journal of the American Chemical Society,2002,124(20):5782-5790
    [100]Rogach, A. L.; Katsikas, L.; Kornowski, A., et al. Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber. Bunsen-Ges. Physical Chemistry Chemical Physics,1996,100(11):1772-1778
    [101]Rogach, A. L.; Kornowski, A.; Gao, M. Y., et al. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. Journal of Physical Chemistry B,1999,103(16):3065-3069
    [102]Gao, M. Y.; Kirstein, S.; Mohwald, H., et al. Strongly photoluminescent CdTe nanocrystals by proper surface modification. Journal of Physical Chemistry B, 1998,102(43):8360-8363
    [103]Deng, Z.; Schulz, O.; Lin, S., et al. Aqueous Synthesis of Zinc Blende CdTe/CdS Magic-Core/Thick-Shell Tetrahedral-Shaped Nanocrystals with Emission Tunable to Near-Infrared. Journal of the American Chemical Society,2010,132(16): 5592-5593
    [104]Lei, Y.; Tang, H.; Zhou, C., et al. Incorporating fluorescent quantum dots into water-soluble polymer. Journal of Luminescence,2008,128(3):277-281
    [105]Hines, M. A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. Journal of Physical Chemistry, 1996,100:468-471
    [106]Li, J. J.; Wang, Y. A.; Guo, W. Z., et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. Journal of the American Chemical Society,2003,125(41):12567-12575
    [107]Kim, S.; Fisher, B.; Eisler, H. J., et al. Type-Ⅱ quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. Journal of the American Chemical Society,2003,125(38):11466-11467
    [108]Zhong, X. H.; Xie, R. G.; Zhang, Y., et al. High-quality violet-to red-emitting ZnSe/CdSe core/shell nanocrystals. Chemistry of Materials,2005,17(16): 4038-4042
    [109]Xie, R. G.; Kolb, U.; Li, J. X., et al. Synthesis and'characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. Journal of the American Chemical Society,2005,127(20):7480-7488
    [110]Dube, D.; Francis, M.; Leroux, J. C., et al. Preparation and tumor cell uptake of poly(N-isopropylacrylamide) folate conjugates. Bioconjugate Chemistry,2002, 13(3):685-692
    [111]Talapin, D. V.; Rogach, A. L.; Kornowski, A., et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Letters, 2001,1(4):207-211
    [112]Bao, H. F.; Wang, E. K.; Dong, S. J. One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites. Small,2006,2(4): 476-480
    [113]. Murray, C. B.; Norris, D. J.; Bawendi, M. G. SYNTHESIS AND CHARACTERIZATION OF NEARLY MONODISPERSE CDE (E=S, SE, TE) SEMICONDUCTOR NANOCRYSTALLITES. Journal of the American Chemical Society,1993,115(19):8706-8715
    [114]Babu, P.; Sinha, S.; Surolia, A. Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjugate Chemistry,2007,18(1):146-151
    [115]Dabbousi, B. O.; RodriguezViejo, J.; Mikulec, F. V., et al. (CdSe)ZnS core-shell quantum dots:Synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B,1997,101(46): 9463-9475
    [116]Zeng, Q. H.; Kong, X. G.; Sun, Y. J., et al. Synthesis and optical properties of type ⅡCdTe/CdS core/shell quantum dots in aqueous solution via successive ion layer adsorption and reaction. Journal of Physical Chemistry C,2008,112(23): 8587-8593
    [117]Nemchinov, A.; Kirsanova, M.; Hewa-Kasakarage, N. N., et al. Synthesis and characterization of type ⅡZnSe/CdS core/shell nanocrystals. Journal of Physical Chemistry C,2008,112(25):9301-9307
    [118]Chen, C. Y.; Cheng, C. T.; Yu, J. K., et al. Spectroscopy and femtosecond dynamics of type-Ⅱ CdSe/ZnTe core-shell semiconductor synthesized via the CdO precursor. Journal of Physical Chemistry B,2004,108(30):10687-10691
    [119]Wei, G. D.; Forrest, S. R. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Nano Letters,2007,7(1):218-222
    [120]Hatami, F.; Grundmann, M.; Ledentsov, N. N., et al. Carrier dynamics in type-II GaSb/GaAs quantum dots. Physical Review B,1998,57(8):4635-4641
    [121]Halpert, J. E.; Porter, V. J.; Zimmer, J. P., et al. Synthesis of CdSe/CdTe nanobarbells. Journal of the American Chemical Society,2006,128(39): 12590-12591
    [122]Zhang, Y.; Mi, L.; Wang, P. N., et al. Photoluminescence decay dynamics of thiol-capped CdTe quantum dots in living cells under microexcitation. Small, 2008,4(6):777-780
    [123]He, Y.; Sai, L. M.; Lu, H. T., et al. Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chemistry of Materials,2007,19(3):359-365
    [124]Demas, J. N.; Crosby, G. A. MEASUREMENT OF PHOTOLUMINESCENCE QUANTUM YIELDS-REVIEW. Journal of Physical Chemistry,1971,75(8): 991-1024
    [125]Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society,2002,124(9): 2049-2055
    [126]Wei, S. H.; Zunger, A. Calculated natural band offsets of all Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductors:Chemical trends and the role of cation d orbitals. Applied Physics Letters,1998,72(16):2011-2013
    [127]Yu, K.; Zaman, B.; Romanova, S., et al. Sequential synthesis of type Ⅱ colloidal CdTe/CdSe core-shell nanocrystals. Small,2005,1(3):332-338
    [128]Kapitonov, A. M.; Stupak, A. P.; Gaponenko, S. V., et al. Luminescence properties of thiol-stabilized CdTe nanocrystals. Journal of Physical Chemistry B, 1999,103(46):10109-10113
    [129]Xie, R. G.; Zhong, X. H.; Basche, T. Synthesis, characterization, and spectroscopy of type-Ⅱ core/shell semiconductor nanocrystals with ZnTe cores. Advanced Materials,2005,17(22):2741-2745
    [130]Laheld, U. E. H.; Pedersen, F. B.; Hemmers, P. C. EXCITONS IN TYPE-II QUANTUM DOTS-FINITE OFFSETS. Physical Review B,1995,52(4): 2697-2703
    [131]Liu, F. C.; Cheng, T. L.; Shen, C. C., et al. Synthesis of cysteine-capped ZnxCdl-xSe alloyed quantum dots emitting in the blue-green spectral range. Langmuir,2008,24(5):2162-2167
    [132]Zhong, X. H.; Han, M. Y.; Dong, Z. L., et al. Composition-tunable ZnxCdl-xSe nanocrystals with high luminescence and stability. Journal of the American Chemical Society,2003,125(28):8589-8594
    [133]Wang, C. L.; Zhang, H.; Zhang, J. H., et al. Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shell nanocrystals. Journal of Physical Chemistry C,2007,111(6):2465-2469
    [134]Harrison, M. T.; Kershaw, S. V.; Rogach, A. L., et al. Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals. Advanced Materials,2000, 12(2):123-125
    [135]Vargas-Hernandez, C.; Lara, V. C.; Vallejo, J. E., et al. XPS, SEM and XRD investigations of CdSe films prepared by chemical bath deposition. Physical Status Solidi B-Basic Solid State Physics,2005,242(9):1897-1901
    [136]Babu, P.; Sinha, S.; Surolia, A. Sugar-Quantum Dot Conjugates for a Selective and Sensitive Detection of Lectins. Bioconjugate Chemistry,2007,18(146-151):
    [137]Bernardin, A.; Cazet, A.; Guyon, L., et al. Copper-Free Click Chemistry for Highly Luminescent Quantum Dot Conjugates:Application to in Vivo Metabolic Imaging. Bioconjugate Chemistry,2010,21(4):583-588
    [138]Barat, B.; Sirk, S. J.; McCabe, K. E., et al. Cys-diabody Quantum Dot Conjugates (ImmunoQdots) for Cancer Marker Detection. Bioconjugate Chemistry,2009,20(8):1474-1481
    [139]Jiang, X.; Ahmed, M.; Deng, Z., et al. Biotinylated Glyco-Functionalized Quantum Dots:Synthesis, Characterization, and Cytotoxicity Studies. Bioconjugate Chemistry,2009,20(5):994-1001
    [140]Walther, C.; Meyer, K.; Rennert, R., et al. Quantum Dot-Carrier Peptide Conjugates Suitable for Imaging and Delivery Applications. Bioconjugate Chemistry,2008,19(12):2346-2356
    [141]Tortiglione, C.; Quarta, A.; Tino, A., et al. Synthesis and Biological Assay of GSH Functionalized Fluorescent Quantum Dots for Staining Hydra vulgaris. Bioconjugate Chemistry,2007,18(3):829-835
    [142]Zhou, M.; Nakatani, E.; Gronenberg, L. S., et al. Peptide-Labeled Quantum Dots for Imaging GPCRs in Whole Cells and as Single Molecules. Bioconjugate Chemistry,2007,18(2):323-332
    [143]Muro, E.; Pons, T.; Lequeux, N., et al. Small and Stable Sulfobetaine Zwitterionic Quantum Dots for Functional Live-Cell Imaging. Journal of the American Chemical Society,2010,132(13):4556-4557
    [144]Dif, A.; Boulmedais, F.; Pinot, M., et al. Small and Stable Peptidic PEGylated Quantum Dots to Target Polyhistidine-Tagged Proteins with Controlled Stoichiometry. Journal of the American Chemical Society,2009,131(41): 14738-14746
    [145]Ruan, G.; Agrawal, A.; Marcus, A. I., et al. Imaging and Tracking of Tat Peptide-Conjugated Quantum Dots in Living Cells:New Insights into Nanoparticle Uptake, Intracellular Transport, and Vesicle Shedding. Journal of the American Chemical Society,2007,129(47):14759-14766
    [146]Chen, I.; Choi, Y.-A.; Ting, A. Y. Phage Display Evolution of a Peptide Substrate for Yeast Biotin Ligase and Application to Two-Color Quantum Dot Labeling of Cell Surface Proteins. Journal of the American Chemical Society,2007,129(20): 6619-6625
    [147]Bharali, D. J.; Lucey, D. W.; Jayakumar, H., et al. Folate-Receptor-Mediated Delivery of InP Quantum Dots for Bioimaging Using Confocal and Two-Photon Microscopy. Journal of the American Chemical Society,2005,127(32): 11364-11371
    [148]Dube', D.; Francis, M.; Leroux, J.-C., et al. Preparation and Tumor Cell Uptake of Poly(N-isopropylacrylamide) Folate Conjugates. Bioconjugate Chemistry,2002, 13(3):685-692
    [149]STELLA, B.; ARPICCO, S.; PERACCHIA, M. T., et al. Design of Folic Acid-Conjugated Nanoparticles for Drug Targeting. JOURNAL OF PHARMACEUTICAL SCIENCES,2000,89(11):1452
    [150]Xie, H.-Y.; Zuo, C.; Yi Liu, Z.-L. Z., et al. Cell-Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism. Small,2005,1(5):506-509
    [151]Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews,2000,41(2):147-162
    [152]Salmaso, S.; Semenzato, A.; Caliceti, P. Specific Antitumor Targetable a-Cyclodextrin-Poly(ethyleneGlycol)-Folic Acid Drug Delivery Bioconjugate. Bioconjugate Chemistry,2004,15(5):997-1004
    [153]Brus, L. E. ELECTRON ELECTRON AND ELECTRON-HOLE INTERACTIONS IN SMALL SEMICONDUCTOR CRYSTALLITES-THE SIZE DEPENDENCE OF THE LOWEST EXCITED ELECTRONIC STATE. Journal of Chemical Physics,1984,80(9):4403-4409
    [154]Weller, H. COLLOIDAL SEMICONDUCTOR Q-PARTICLES-CHEMISTRY IN THE TRANSITION REGION BETWEEN SOLID-STATE AND MOLECULES. Angewandte Chemie-International Edition in English,1993,32(1):41-53
    [155]Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry,1996,100(31):13226-13239
    [156]Graf, C.; Hofmann, A.; Ackermann, T., et al. Magnetic and Structural Investigation of ZnSe Semiconductor Nanoparticles Doped With Isolated and Core-Concentrated Mn2+ Ions. Advanced Functional Materials,2009,19(15): 2501-2510
    [157]Bhargava, R. N.; Gallagher, D.; Hong, X., et al. OPTICAL-PROPERTIES OF MANGANESE-DOPED NANOCRYSTALS OF ZNS. Physical Review Letters, 1994,72(3):416-419
    [158]Chamarro, M. A.; Voliotis, V.; Grousson, R., et al. Optical properties of Mn-doped CdS nanocrystals. Journal of Crystal Growth,1996,159(1-4):853-856
    [159]Yang, P.; Lu, M. K.; Xu, D., et al. Photoluminescence properties of ZnS nanoparticles co-doped with Pb2+ and Cu2+. Chemical Physics Letters,2001, 336(1-2):76-80
    [160]Hanif, K. M.; Meulenberg, R. W.; Strouse, G. F. Magnetic ordering in doped Cdl-xCoxSe diluted magnetic quantum dots. Journal of the American Chemical Society,2002,124(38):11495-11502
    [161]Radovanovic, P. V.; Norberg, N. S.; McNally, K. E., et al. Colloidal transition-metal-doped ZnO quantum dots. Journal of the American Chemical Society,2002,124(51):15192-15193
    [162]Yang, Y. A.; Chen,O.; Angerhofer, A., et al. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. Journal of the American Chemical Society,2006, 128(38):12428-12429
    [163]Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science,2008, 319(5871):1776-1779
    [164]Pradhan, N.; Battaglia, D. M.; Liu, Y. C., et al. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Letters,2007,7:312-317
    [165]Zheng, J. J.; Yuan, X.; Ikezawa, M., et al. Efficient Photoluminescence of Mn2+ Ions in MnS/ZnS Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2009,113(39):16969-16974
    [166]Wood, V.; Halpert, J. E.; Panzer, M. J., et al. Alternating Current Driven Electroluminescence from ZnSe/ZnS:Mn/ZnS Nanocrystals. Nano Letters,2009, 9(6):2367-2371
    [167]Norberg, N. S.; Kittilstved, K. R.; Amonette, J. E., et al. Synthesis of colloidal Mn2+:ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films. Journal of the American Chemical Society,2004,126(30):9387-9398
    [168]Erwin, S. C.; Zu, L. J.; Haftel, M. I., et al. Doping semiconductor nanocrystals. Nature,2005,436(7047):91-94
    [169]Cotton, F. A.; Wilkinson, G.; Bochmann, M., et al. Advanced Inorganic Chemistry,6th Edition.,1998:p 1248 pp.
    [170]Battaglia, D.; Li, J. J.; Wang, Y. J., et al. Colloidal two-dimensional systems: CdSe quantum shells and wells. Angewandte Chemie-International Edition,2003, 42(41):5035-5039
    [171]Battaglia, D.; Blackman, B.; Peng, X. G. Coupled and decoupled dual quantum systems in one semiconductor nanocrystal. Journal of the American Chemical Society,2005,127(31):10889-10897
    [172]Hines, M. A.; Guyot-Sionnest, P. Bright UV-blue luminescent colloidal ZnSe nanocrystals. Journal of Physical Chemistry B,1998,102(19):3655-3657
    [173]Lin, S. L.; Pradhan, N.; Wang, Y. J., et al. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Letters,2004, 4(11):2261-2264
    [174]Du, M. H.; Erwin, S. C.; Efros, A. L. Trapped-Dopant Model of Doping in Semiconductor Nanocrystals. Nano Letters,2008,8(9):2878-2882
    [175]Yang, Y. A.; Chen,O.; Angerhofer, A., et al. On Doping CdS/ZnS Core/Shell Nanocrystals with Mn. Journal of the American Chemical Society,2008,130(46): 15649-15661

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700