生物拟态法合成硫组化合物纳米复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在综合生物模板、生物矿化和仿生学等生物拟态过程的思想和方法来探索硫组化合物半导体纳米复合材料的制备,实现了在生物蛋膜基体上原位合成系列硫化物和硒化物纳米结构材料,包括量子点,纳米团簇,纳米方块和多面体结构,并结合对材料的形态结构和形成过程进行分析,对其光学性质进行了较系统的研究。具体归纳如下:
     1、实现了在酸性体系中利用室温液相浸渍生物活性材料原位合成铅系纳米材料。以蛋壳薄膜作为生物活性载体,醋酸铅/醋酸混合液作为铅源前驱体,硒代硫酸钠作为硒源或硫化钠作为硫源,设计一种在蛋膜参与下室温原位合成硒化铅纳米团簇和纳米方块、硫化铅纳米花形团簇的新方法。通过对浸渍条件如:浸渍时间、硒代硫酸钠溶液的浓度及放置陈化时间等进行调整,可以对硒化铅和硫化铅纳米粒子在蛋膜纤维上的尺寸、形貌、分布和组装状况进行有效控制。
     2、建立了生物协同湿化学浸渍法,在碱性体系中引入蛋膜活性载体原位成功制备了CdS、ZnS纳米材料。以氯化镉和醋酸锌的稀氨溶液分别作为镉源和锌源,硫化钠作为硫源,通过蛋膜纤维表层活性大分子官能团与无机浸渍液成分之间的复杂物理化学作用,无机粒子在蛋膜上原位成核和生长,并在蛋膜表层氨基酸残基的包覆下组装,得到由硫化镉和硫化锌纳米小晶粒组成的松散团簇体,以及结晶完善的硫化镉多面体结构。
     3、对用生物拟态法所制备的产物进行光致发光性质分析,表明这些硫组化合物纳米粒子具有明显的量子尺寸效应。而且不同合成条件下如:浸渍前驱液浓度、浸渍反应时间、浸渍次数等的不同,所合成的具有不同尺寸、形貌和结构特点的纳米材料,其相应荧光发射光谱信号也出现变化。这些硫组化合物纳米结构材料将会在生物分子探针,生物标记,激光发射器,红外光谱仪等光电子和生物领域有着广阔的应用前景。
The aim of this paper is to explore novel routes for fabrication of chalcogenides nanocomposites by bio-inspired strategies integrating biotemplate, biomineralization, biomimetism. A series of chalcogenides nanomaterials including quantum dots, nanoclusters, nanocubes and nanopolyhedrons, were successfully prepared on the eggshell membrane (ESM) through different bio-inspired approaches, further their PL properties were investigated intentively. The details can be summarized as following:
     1、PbSe, PbS nanomaterials were successfully in-situ synthesized on ESM in acid impregnants at room-temperature. Herein, ESM was introduced as active biosubstrate to be infused into Pb(Ac)2-HAc medium, Na2SeSO3 or Na2S solution to carry out a novel bio-inspired synthesis of PbSe nanoclusters and nanocubes, PbS floriated nanoclusters. The dipping time, the precursor concentration and its preserving time, could affect the size, morphologies, distribution, and assembly of PbSe, PbS nanocrystallites on ESM fibers.
     2、CdS, ZnS nanostructures were successfully synthesized on active ESM fibers in alkaline media by dipping ESM into CdCl2-NH3·H2O or Zn(Ac)2-NH3·H2O solution, Na2S solution, respectively. CdS and ZnS nanocrystallites could be formed, and grown-up, further assembled into incompact nanoclusters or nanopolyhedrons. The nucleation, growth and assembly were under the direction of functional biomacromolecules of amino acid residues of ESM fibers.
     3、The samples were characterized by UV-Vis and PL analysis, the results indicate these chalcogenides nanostructures own obvious quantum size effect. Compared with bulk materials, there are clear blue shifts in PL. Moreover, the size, morphology and structure could be affected by precursor concentration, dipping period, and so on, then indirectly influenced the PL properties of as-prepared hybrid chalcogenides-ESM nanocomposites. They have great applications on biomarkers, laser emitter, near infrared spectroscopy, and so on.
引文
[1] Prins L J, Reinhoudt D N, Timmerman P. Angew Chem, 2001, 113: 2446 –2492.
    [2] Mann S, Davis S A, Hall S R, et al. J Chem Soc-Dalton Trans, 2000, 3753-3763.
    [3] a) Liu Z T, Fan T X, Zhang D. J Am Ceram Soc, 2006, 89 : 662-665; b) Liu Z T, Fan T X, Zhang W, et al. Micropor Mesopor Mater, 2005, 85 : 82-88; c) Fan T X, Sun B H, Gu J J, et al. Scripta Mater, 2005, 53 : 893-897; d) Wang T C, Fan T g, Zhang D, et al. Mater Trans, 2005, 46 : 1741-1744.
    [4] Zhang W, Zhang D, Fan T X, et al. Nanotechnology, 2006, 17 : 840-844.
    [5] a) Huang J G, Kunitake T. J Am Chem Soc, 2003, 125 : 11834; b) Huang J G, Kunitake T, Onoue S. Chem Commun, 2004, 1008-1009; c) Huang J, Matsunaga N, Shimanoe K, et al. Chem Mater, 2005, 17 : 3513.
    [6] Kim, Y. Biomacromolecules, 2003, 4 : 908-913.
    [7] a) Yang D, Qi L M, Ma J M. Adv Mater, 2002, 14 : 1543; b) Yang D, Qi L M, Ma J M. J Mater Chem, 2003, 13 : 1119.
    [8] 杨冬, 齐利民. 化学通报, 2002, 65 : 361-369.
    [9] Schafer T E , Ionescu-Zanetti C, Proksch R, et al. Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges. Chem. Mater., 1997, 9(8):1731-1740.
    [10] Bacuerlein E. Biominemlization of Unicellular Organisms: An Unusual Membrane Biochemistry for the Production of Inorganic Nano-and Microstructures. Angew. Chem. Int. Ed., 2003, 42 (6): 614-641.
    [11] Lowenstam H A. Minerals formed by organisms. Science, 1981, 211 (4487): 1126-1131.
    [12] 杨玉兰, 光晓元, 吴万成. 池州师专学报, 2005, 19 : 53-55.
    [13] 毛传斌, 李恒德, 崔福斋, 等. 化学进展, 1998, 10: 246-254.
    [14] Addadi L, Weiner S. Nature, 2001, 411: 753-755.
    [15] a) Aizenberg J, Black A J, Whitesides G M. Nature, 1999, 398 : 495 -498; b) Kamat S, Su X, Ballarini R, et al. Nature, 2000, 405: 1036-1040.
    [16] a) Mann S, J. Mater Chem, 1995, 5: 935—946; b) Heuer A H, Fink D J, Laraia V J, et al. Science, 1992, 255 : 1098.
    [17] Mann S., Biomimetic Materials Chemistry, VCH Publishers, New York, 1996.
    [18] 郭中满, 以生物细胞为模板矿化合成 SiO2 纳米材料的研究[D], 吉林大学博士学位论文, 2000, 6, 29.
    [19] Fritz M , Belcher A M, Radmacher M, et al. Nature, 1994, 371: 49- 51.
    [20] 王荔军, 郭中满, 李铁津, 等.化学进展, 1999, 11 : 119 - 128.
    [21] 于源华, 范丽颖, 郭锋, 等. 长春理工大学学报, 2005, 128 : 61-63.
    [22] Kresge C. T., Adv. Mater., 1996, 2: 181; b) Mann S., G. A. Ozin, Nature, 1996, 382: 313.
    [23] Walsh D., Mann S., Nature, 1995, 377:320
    [24] Aizenberg J, Black A J, Whiteside G M. Nature, 1999, 398 : 495 —498.
    [25] 王成毓, 赵敬哲, 刘艳华, 等. 高等学校化学学报, 2005, 26: 13-15.
    [26] Ishikawa M, Zhu P X, Koumoto K, et al. J. Ceram. Soc., 2000, 108: 714 —720.
    [27] a) Parkison J, Gordon R. Beyond micromachining: the potential of diatoms. Trends. Biotechnol.1999, 17:190-196; b) Sarikaya M. Biomimetics: materials fabrication through biology. Proc. Nad. Acad. Sci. USA.1999, 96:14183-14185.
    [28] a) Service R F. Building the small world of the future. Science 1999, 286: 2442-2444; b) Torres-Martinez C L, Nguyen L, Kho R, et al. Biomolecularly capped uniformly sized nanocrystalline materials: Glutathione-capped ZnS nanocrystals. Nanotechnology 1999, 10: 349-354.
    [29] Bigham S R, Coffer J L. Colloids Surfaces A, 1995, 95 : 211~219.
    [30] Fahlman R P, Sen D. J Am Chem Soc, 2002, 124 : 4610~4616.
    [31] Staii C, Johnson A T. Nano Lett, 2005 , 5 : 1774~1778.
    [32] Li J J, Tan W. Nano Lett, 2002 , 2 : 315~318.
    [33] Becerril H A, Stoltenberg R M, Wheeler D R, et al. J Am Chem Soc, 2005, 127 : 2828 ~2829.
    [34] Mirkin C., Letsinger R L. Nature, 1996, 382 : 607.
    [35] Meldrum, F C, Wade, V J, Nimmo, D L, et al. Nature, 1991, 349 : 684-685.
    [36] Mitsuhiro O, Yusaku K, Kazuomi S, et al. Nano Lett., 2005, 5 : 991-993.
    [37] Simon R H, et al. Physchem, 2001, 3:184-192.
    [38] Stephen M, Wayne S, Mei L, et al. Adv Mater, 2000, 12 : 147-150.
    [39] Kanaras A G, Wang Z X, Batges A D, et al. Angew Chem Int Ed, 2003, 42 : 191-194.
    [40] Belcher A M, Whaley S R, Gooch EE, Flynn C E. Biomolecular recognition and control of biological and non-biological inorganic materials from seashells to semiconductors. Proc. Symo. Mat. Res. Soc.1999, 599: 553-556.
    [41] Spreitzer G, Wright D W. Combinatorial approaches to peptide-encapsulated CdS nanoclusters. Proc. Symo. Mat. Res. Soc. 1999, 599:550-553.
    [42] Klaus T, Joeger R, Granqvist C G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Nad. Acad. Sci. USA. 1999, 96:13611-13614.
    [43] Douglas T, Young M. Host-guest encapsulation of materials by assembled virus protein cages. Nature. 1998, 393:152-155.
    [44] Shenton W, Douglas T, Young M, et al. Adv Mater,1999, 11 : 253-256.
    [45] Sikes C S, Wheeler A P, Wierzbicki A, et al. Biol Bull, 1998, 194 : 304-316.
    [46] Ogasawara W, Shenton W, Davis S A, et al. Chem Mater, 2000, 12 : 2835-2837.
    [47] a) Qun Dong, Huilan Su, Di Zhang, et al. Synthesis of hierarchical mesoporous titania with interwoven networks by eggshell membrane directed sol-gel technique, Microporous & Mesoporous Materials, accepted; b) Dong Q, Su H L, Zhang D, et al. Fabrication and gas sensitivity of SnO2 hierarchical films with interwoven tubular conformation by a biotemplate-directed sol–gel technique. Nanotechnology, 2006, 17, 3968–3972; c) Qun Dong, Huilan Su, Jiaqiang Xu, et al. Fabrication of hierarchical ZnO films with interwoven porous conformations by a bio-inspired aqueous technique, J Crystal Growth, accepted.
    [48] Alivisatos A P. Science, 1996, 271:933.
    [49] 徐海娥,闫翠娥。半导体纳米晶体制备及应用进展,胶体与聚合物,2005,23(3): 40-42.
    [50] 谢海燕,庞代文.Ⅱ-Ⅵ型量子点制备及其在生物检测中应用研究进展,分析化学(FENXI HUAXUE)研究报告,2004,32(8):1099-1103.
    [51] 舒磊, 俞书宏, 钱逸泰. 无机化学学报, 1999 , 15(1) : 1~7.
    [52] Wang Y, Herron N. J . Phys. Chem., 1987 , 91 :257~260
    [53] Lakowicz J R , Gryczynski I , Gryczynski Z , et al. J . Phys. Chem. B , 1999 , 103 : 7613~7620.
    [54] Stuczynski S M , Brennan J G, Steigerwald M L. Inorg. Chem., 1989, 28:4431~4432
    [55] Hines M A , Guyot-Sionnest P. J. Phys. Chem. B., 1998, 102:3655~3657.
    [56] Ludolph B , Malik M A , O′Brien P , et al. Chem. Commun., 1998, 998 (17) : 1849~1850.
    [57] Brennan J G, Siegrist T , Carroll P J , et al. J . A m. Chem. Soc., 1989, 111 : 4141-4143.
    [58] 吴庆生, 郑能武, 丁亚平, 等. 高等学校化学学报, 2000, 21: 1471-1472.
    [59] 李丽, 吴庆生, 丁亚平, 等. 科学通报, 2006, 51: 129-132.
    [60] Dameron C T, Reese R N, Mehra R K, et al. Nature, 1989, 338 : 596-597.
    [61] Dameron C T, Winge D R. Inorg Chem, 1990, 29 : 1343-1348.
    [62] Speiser D M, Ortiz D F, Kreppel L, et al. Mol Cel Biol, 1992, 12 : 5301-5310.
    [63] Ortiz D F, Kreppel L, Speiser D M, et al. EMBO J, 1992, 11 : 3491-3499.
    [64] Holmes J D, Smith P R, Evans-Gowing R, et al. Klebsiella aerogenes Arch Microbial, 1995, 163 : 143-147.
    [65] Holmes J D, Richardson D J, Saed S, et al. Klebsiella pneumoniae Microbiogy-UK, 1997, 143 : 2521-2530.
    [66] Smith P R, Holmes J D, Richardson D J, et al. J Chem Soc-Faraday Trans, 1998, 94 : 1235-1241.
    [67] Wayne S, Trevor D, Mark Y, et al. Adv Mater, 1999, 11 : 253-256.
    [68] Absar A, Priyabrata M, Deendayal M, et al. J Am Chem Soc, 2002, 124 : 12108-12109.
    [69] 李湛, 模拟生物矿化制备壳聚糖(衍生物)/CdS纳米颗粒复合物及性能研究[D], 武汉大学博士学位论文, 2003, 5, 1.
    [70] Yang L, Shen Q M, Zhou J G, et al. Mater Lett, 2005, 59 : 2889 – 2892.
    [71] Mitsuhiro O, Yusaku K, Kazuomi S, et al. Nano Lett, 2005, 5 : 991-993.
    [72] 晏刚。硫化锌、硫化镉包覆的掺杂硫化锌纳米颗粒的制备与光学性质研究,上海大学硕士学位论文,20050301
    [73] Laura L. Beecroft, Christopher K. Ober. Chem. Mater., 1997, 9 (6): 1302—1317.
    [74] 姚卫棠. Ⅱ-Ⅵ族硫属半导体纳米材料的结构控制与性能调制,中国科学技术大学,博士学位论文,20051001.
    [75] a) Chan W C, Nie S. Science, 1998, 281, 2016; b) Bruchez M Jr, Moronne M, Gin P, et al. Science, 1998, 281, 2013.
    [76] Dubencet B, Skourides P, Norms D J, et al. Science, 2002, 298, 1759.
    [77] Wu X, Liu H, Liu J, et al. Nat. Biotechnot, 2003, 21, 41.
    [78] Jaiswal J K, Matttoussi H, Mauro J M, et al. Nat. Biotechnol., 2003, 21, 47.
    [79] 孟磊,宋增璇. 生物化学与生物物理进展,2004, 31,185.
    [80]. Meissner D, Memming R, Kastening B. Chem. Phys. Let.. 1983, 96, 34.
    [81] Krishan M, White J R, Fox M A, et al. J. Am. Chem. Soc.1983, 105, 7002.
    [82] a) Hofmann M, Rmartin S T. Chem. Rev. 1995, 96, 69; b) Andrew. M, Hunte L, Stephen. J. Photochem. Phototobiol. A.Chem.1997,108,1.
    [83] None H, Moriwaki H, Maeda K, et al.. J. Photochem. Phototobiol. A. Chem.1995, 86, 191.
    [84] Takayuki H, Masanori M, Tatsufumi W, et al. Chem Eng. Jpn. 1998, 31,1003.
    [85] Amir B, Deborah C. Adv. Mater. 1999, 11, 296.
    [86] Ilic B, Yang, Y, Craighead H G.. Appl. Phys. Lett, 2004, 85, 2604.
    [87].Patolsky F, Zheng G F, Hayden O, et al.. Proc. Nat. Acad. Sci. 2004,101,14017.
    [88] a) Agarwal, R, Barrelet C J, Lieber C M. Nano Lett. 2005, 5, 917; b) B arrelet C J, Greytak A B, Lieber C M. Nano Lett. 2004, 4, 1981.
    [89] Yang D, Qi L M, Ma J M. J. Mater. Chem., 2003, 13 (5): 1119-1123.
    [1] 高明远, 杨毅, 张广灿,等. 聚合物对硫化铅纳米微粒的稳定作用. 高等学校化学学报, 1995, 16 (8) : 1311 - 1314.
    [2] 毛念新, 叶红娟, 沈学础. 天然 PbS(方铅矿)的远红外反射光谱. 红外与毫米波学报, 1994, 13 (2): 81—87.
    [3] 李彦, 张庆敏, 黄福志, 等. 模板法制备硫化物半导体纳米材料. 无机化学学报, 2002, 18 (1) : 79—81.
    [4] Xu C Q, Zhang Z C, Wang H L, et al. A Novel Way to Synthesize Lead Sulfide QDs via γ-ray Irradiation. Materials Science and Engineering B, 2003, 104 (1): 5—8.
    [5] Olshavsky M A, Goldstein A N, Alivisatos A P. Organometallic Synthesis of Gallium2arsenide Crystallites, Exhibiting Quantum Confinement. J Am Chem Soc, 1990, 112: 9438—9439.
    [6] Pan L J, Wu X S, Zou G, et al. PbS Nanocrystals Embedded in Microstructures Produced by Micromoulding in Capillaries. Materials Research Bulletin, 2004, 39 (3): 1—7.
    [7] Zhao Y, Liao X H, Hong J M, et al. Synthesis of Lead Sulfide Nanocrystals via Microwave and Sonochemical Methods. Materials Chemistry and Physics, 2004, 87 (1) : 149—153. [ 8 ] Pan L J, He P S, Zou G, et al. PbS/ epoxy Resin Nanocomposite Prepared by a Novel Method [J]. Materials Letters, 2004, 58 (2) : 176—178.
    [9] 柯昌美, 汪厚植, 金义凤, 等。聚丙烯酸酯基纳米 PbS 有机-无机纳米复合材料的制备与表征,武汉科技大学学报( 自然科学版),2005,28(1): 1-4
    [10] C?lfen H, Mann S. Angew. Chem. Int. Ed., 2003, 42: 2350.
    [11] Yang P, Zhao D, Margolese D I, et al. Nature, 1998, 396: 152.
    [12] Yi, F, Guo, Z X, Zhang, L X, et al. Biomaterials, 2004, 25, 4591.
    [13] Lee S M, Cho S N, Cheon J. Adv. Mater., 2003, 15 (5): 441-444.
    [14] Lu Wei-Gang, Fang, Ji-Ye, Stokes K L, et al. J. Am. Chem. Soc., 2004, 126, 11798-11799.
    [15] Klong H P. X-ray Diffraction Procedures for Crystalline and Amorphous Materials [M], New York: 1954, Wiley,
    [16] Sherwin R., Clark R. J. H., Lauck R., et al.. Solid State Commun. 2005, 134, 565.
    [17] Smith G. D., Firth S., Clark R. J. H., et al.. J. Appl. Phys. 2002, 92, 4375.
    [18] Nanda K. K., Sahu S. N., Soni R. K., et al.. Phys. Rev. B. 1998, 58, 15405.
    [19] Batonneau Y., Bremard C., Laureyns J., et al.. J. Raman Spectrosc. 2000, 31, 1113.
    [20] Krauss T. D.,. Wise F. W, Phys. Rev. B. 1997, 55, 9860.
    [21] Hayashi S., Sanda H., Agata M., et al.. Phys. Rev. B. 1989, 40, 5544.
    [22] Mlayah A., Brugman A. M., Carles R., et al.. Solid State Commun. 1994, 90, 567.
    [23] Su H L, Wang N, Dong Q, et al.. Incubating lead selenide nanoclusters and nanocubes on the eggshell membrane at room temperature. Journal of Membrane Science, 2006, 283, 7–12.
    [1] Xiong H M, Zhou Z, Wang Z Q, et al. A new approach to fabrication of a self-organizing film of heterostructured polymer/CdS nanoparticles. Supramolecular Science, 1998, 5 (526) ∶6 23-626.
    [2] Nandalumar P, Vijayan V, Dhanalakshmi K B, et al. Synthesis and characterization of CdS nanocrystals in aperfluorinated ionomer (Nafion). Mater Sci Engi, 2001, B83 ∶6 1-65.
    [3] Jungahn Kim, Sang Seob Kim, Keon Hyeong Kim, et al. Applications of telechelic polymers as compatibilizers and stabilizers in polymer blends and inorganic /organic nanohybrids. Polymer, 2004, 45 (10) ∶3 527-3533.
    [4] Qadri S B, Skelton E F, Hsu D, et al. Phys. Rew. B., 1999, 61: 9191.
    [5] Afanasiev P, Xia G F, Berhault G, et al. Surfactant-Assisted Synthesis of Highly Dispersed Molybdenum Sulfide, Chem. Mater., 1999, 11:3216-3219.
    [6] 牛新书, 刘艳丽, 徐甲强. 室温固相合成纳米 ZnS 及其气敏性能研究, 无机材料学报, 2002, 17 ( 04): 817-821.
    [7] 钟淮真, 李国强, 何晓云, 等. 有机溶剂热生长技术制备 CdS 及其与聚苯胺复合膜的光学性质. 发光学报, 2004, 25 (5) : 585-590.
    [8] 李平, 刘梅川, 张成林, 等. 聚乙烯吡咯烷酮/硫化镉量子点修饰电极的制备及其对血红蛋白的测定研究. 化学学报, 2005, 63 (12) : 1075-1080.
    [9] 王峰. 辐射法制备具有核壳结构的 CdS/PSt 纳米复合微球. 安徽建筑工业学院学报(自然科学版), 2005, 13(5): 81-83.
    [10] 丛日敏, 罗运军, 李国平, 等. PAMAM 树形分子与 Cd2 +的配位作用研究及CdS/PAMAM 纳米复合材料的制备与表征. 化学学报, 2005, 63 (5) : 421-426.
    [11] Xie Y, Li B, Qian Y, et al. Adv. Mater., 2000, 12:1523~1526.
    [12] Zhong Z, Yin Y, Gates B, et al. Adv. Mater., 2000, 12:206~209.
    [13] 孙冬梅,吴庆生,朱勇,丁亚平。化学学报,2005,63(16):1479-1482.
    [14] 沈伟丽,魏先文,赵广超. CdS/C60 纳米微粒的制备及光谱性质研究,安徽师范大学学报(自然科学版),2006,29(4) :360-363.
    [15] Mann S. Molecular Recognition in Biomineralization. Nature ,1988 , 332:119.
    [16] 陈宗高, 李冬梅, 桑文斌, 等. 人工晶体学报, 2001, 30(4) : 348-353.
    [17] Shaffer M S P, Fan X, Windle A H. Carbon, 1998, 36 (11): 1603-1612.
    [1] Brus L E. J Chem. Phys.. 1984, 80, 4403
    [2] Henglein A. Chem. Rev, 1989, 89, 1861.
    [3] Gaponik N P, Talapin D V, Rogach A L, et al. J Mater Chem [J] , 2000, 10: 2163.
    [4] Mattoussi H, Mauro J M, Goldman E R, et al. J Am Chem Soc [J], 2000, 122: 12142.
    [5] Murray Gibson J., Physics Today, 1997, 56.
    [6] Mendez E., et al., Physics Today, 1993, 34.
    [7] Weller H.. Angew Chem., 1993, 105, 43.
    [8] Welter H., Fojtik A., et al., Chem. Phys. Lett., 1985, 117, 485.
    [9] Brus L. E.. J. Phys. Chem., 1984, 80, 4403; 1986, 90, 2555.
    [10] Henglein A. Chem. R ev., 1989, 89, 1861.
    [11] Reynolds D. C., Collins T. C. Excitons, Their Properties and Uses, Academic Press, 1981, 274.
    [12] Yoffe A. D. Advances in Phys., 1993, 42, 173.
    [13] Gallardo D S, Gutierrez M, Henglein A, et al.. Ber. Bunsenges. Phys. Chem., 1989, 93, 1080.
    [14] Wang Y, Harron N N. J. Phys. Chem., 1991, 95, 525
    [15] Wang Y., Herron N. J. Phys. Chem., 1991, 95, 525.
    [16] 唐爱伟, 滕枫, 王元敏,等。II-VI 族半导体量子点的发光特性及其应用研究进展,液晶与显示,2005,20(4):302-308.
    [17] Liang Y., Zhai L., Zhao S., Xu D. S., J. Phys. Chem. B, 2005, 109, 7120.
    [18] 王强,赵军钗,蒋世春,等.模板法室温合成 CdS 纳米棒,应用化学,2006,23(1):7-11.
    [19] 闫云辉,章伟光,范军,等。一种 Q 态纳米 CdS 的新型制备法—聚合物分散法,化学学报,2005,63(14):1303-1306.
    [20] 艾汉华, 万淼, 任璐,等。多孔氧化铝模板制备 ZnS 纳米线阵列及其光致发光谱,发光学报,2005,26(5):631-635.
    [21] Meng X M, Liu J, Jiang Y, et al. Structure- and size-controlled ultrafine ZnS nanowires [J]. Chem. Phys. Lett., 2003,382: 434-438.
    [22] Wang Y W, Zhang L D, Wang G Z, etc. Catalytic growth and photoluminescenceproperties of semiconductor single-crystal ZnS nanowires [J]. Chem. Phys. Lett., 2002, 357: 314-318.
    [23] Liu J K, Wu Q S, Ding Y P, etc. Synthesis and properties of ZnS quasi-nanorods by celloidin membrane template [J]. Chin. J. Inorg. Chem.(无机化学学报), 2003,19(12): 1322-1326 (in English).
    [24] 余保龙,顾玉宗,毛艳丽,等。半导体 PbS 纳米微粒的三阶非线性光学特性,物理学报,2000,49(2):324-327.
    [25] 李前树, 易朝阳,吕玉珍,等。液相合成方形 PbS 纳米晶的光学特性,分子科学学报,2005,21(2):1-5.
    [26] 晏刚。硫化锌、硫化镉包覆的掺杂硫化锌纳米颗粒的制备与光学性质研究,上海大学硕士学位论文,20050301.
    [27] Guha S, Leppert V J, Risbud S H, et al. Solid State Commun., 1998, 105, 695-699.
    [28] Liu Yuan-fang, Cao Jin-bo, Zeng Jing-hui, et al. Eur. J. Inorg. Chem., 2003, 644-647.
    [29] 吴晓春,汤国庆,张桂兰,等. 科学通报,1996, 41, 95.
    [30] 张宇,付德刚,蔡建东,等. 物理化学学报,2000, 16, 431.
    [31] Nanda K.K., Sahu S.N., Solid State Comm. 1999, 111, 671.
    [32] 马国宏, 张兴堂, 刘长春等. 聚乙烯烷酮修饰 CdS 纳米微粒的制备及其光电转移特性. 化学研究, 1997, 8 (4): 31~35.
    [33] Zhu J J, Zhou M G, Xu J Z, et al. Preparation of CdS and ZnS Nanoparticles Using Microwave Irradiation. Mater Lett, 2001, 47: 25~29.
    [34] Brus L E. On the development of bulk optical properties in small semiconductor crystallites, Journal of Luminescence, 1984, 31-32: 381-384.
    [35] Bhargava R N, Gallagher D, et al. Optical Properties of Manganese-Doped Nanocrystals of ZnS. Phys . Rev. Lett . ,1994,72 (3): 416.
    [36] 陈宗高, 李冬梅, 桑文斌, 等. 高分子凝胶法蓝色发光 ZnS 微晶的制备及形成机理, 人工晶体学报, 2001, 30(4) : 348-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700