药物及生物大分子的共振瑞利散射和共振非线性散射法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共振瑞利散射(resonance Rayleigh scattering, RRS)和共振非线性散射(resonance non-linear scattering, RNLS)作为一类新的光散射分析技术兴起并发展于20世纪90年代。RRS分析技术是1993年由Pasternack等在普通的荧光光度计上所建立的,并率先将RRS作为一种分析技术用于核酸的研究和检测;1995年国内刘绍璞教授等在研究离子缔合物RRS的过程中,发现当不同波长的平行单色光通过某些溶液时,在入射光波长的2倍和1/2处也能产生强烈的光散射,首次将它们作为一种光谱分析技术进行研究,并认为这是由于RRS而产生了RNLS,基于此建立了新的痕量分析方法。由于它们灵敏度高,且操作简便快捷而引起了人们的关注,并已成为化学研究中的新的手段,在当前分析化学研究中具有广泛应用前景。
     本文首次提出以茜素红及其稀土配合物为光散射探针,研究了其与四环素类药物及生物大分子牛血清白蛋白相互作用的RRS和RNLS光谱,发现稀土离子的加入,使得体系的RRS及RNLS同步增强,据此建立了新的用于痕量药物及生物大分子的分析检测的RRS法和RNLS法,该方法不仅灵敏度高,且分析的线性范围宽;同时以RRS法研究了甲基蓝(MB)与血红蛋白(Hb)的聚集作用,将此法用于Hb的痕量分析具有很高的灵敏度。据此,本论文分以下两部分进行研究:第一部分茜素红-稀土离子配合物为光散射探针的共振瑞利散射和共振非线性散射法测定四环素类药物
     (1)在pH 5.75的HAc-NaAc缓冲液中,茜素红(ARS)-La与四环素(TC)形成三元配合物,导致体系的共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)均增强,光谱最大散射波长分别位于312nm、580nm和290nm,对于RRS在0.004-0.444μg/mL、SOS在0.008-0.444μg/mL和FDS在0.008-0.444μg/mL范围内呈良好的线性关系,TC的检出限分别为2.95 ng/mL(RRS法)、2.47 ng/mL(SOS法)和2.27ng/mL(FDS法),据此建立了灵敏的测定四环素的RRS和RNLS法,检出限达到纳克级。并以SOS法考察了ARS-La-TC体系的反应条件、影响因素等,以标准加入法对生物样品进行分析,结果满意。
     (2)在pH 4.4的HAc-NaAc缓冲液中,茜素红(ARS)-Eu与米诺环素(MC)形成三元配合物,导致共振瑞利散射(RRS)增强,首次以染料-稀土配合物为光散射探针,建立了一种测定米诺环素的RRS分析方法。在λ=370nm处,米诺环素浓度在0.073-5.493μg/mL范围内与体系RRS强度呈良好的线性关系,检出限为0.021μg/mL。此方法灵敏度高,简单、快速,具有良好的选择性和重复性,对尿样进行加标回收及用于片剂、胶囊中米诺环素的测定,结果满意。第二部分染料及其稀土离子配合物为光散射探针的共振瑞利散射和共振非线性散射法在生物大分子测定中的研究及应用
     (1)在pH 4.5的HAc-NaAc缓冲液中,茜素红(ARS)-La与牛血清白蛋白(BSA)形成三元离子缔合物,导致共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)同步显著增强,光谱最大散射波长分别位于373 nm、620 nm和310nm,对于RRS在0.034-13.4μg/mL、SOS在0.201-13.40μg/mL和FDS在0.201-10.05μg/mL范围内呈良好的线性关系,对于BSA的检出限分别为0.010μg/mL(RRS法)、0.052μg/mL(SOS法)和0.089μg/mL(FDS法),首次以染料-稀土配合物为光散射探针,建立了灵敏的测定BSA的RRS和RNLS分析法。以RRS法考察了ARS-La与BSA三元离子缔合物的适宜条件、影响因素等,此方法可用于生物样品中蛋白含量的测定,并对样品进行加标回收,结果满意。
     (2)以甲基蓝(MB)为光散射探针,应用RRS法研究了与血红蛋白(Hb)相互作用的二元体系的光散射性质。在弱酸性条件下,MB可以通过静电和疏水作用聚集到Hb上并形成离子缔合物,不仅使吸收光谱发生变化,而且使得RRS增强。据此发展了一种新的测定Hb的RRS便捷方法,其线性范围和检出限分别为0.2-20μg/mL和0.012μg/mL。与RRS法相比,分光光度法的线性范围和检出限分别为8-60μg/mL和0.688μg/mL (344 nm),5-60μg/mL和0.398μg/mL (408 nm)。此RRS法可用于尿样中Hb的痕量检测。实验考察了体系的吸收、散射光谱性质和最佳聚合条件,并在最佳条件下研究了分析参数及作用机理。最后首次以RRS法初步讨论了有机小分子对体系的影响。
Resonance Rayleigh scattering (RRS) and Resonance non-linear scattering (RNLS) as a kind of new light scattering technique which is rise and developed in 1990s. The technology of RRS analysis was established in 1993 by Pasternack et al. on a common spectrofluorometer, and firstly it was applied to research and determine DNA. While Prof.Liu Shaopu and his coworkers studying the RRS of process of ionic association, they discovered when monochromatic light of different wavelengths in parallel by some of the solution,2 times the wavelength of the incident light and 1/2 can also have a strong light scattering, respectively. The first time, they used as a spectral analysis technology to study, and thought this is due to resonance Rayleigh scattering from the resonance nonlinear scattering, based on this established a new method of trace analysis. As a new tool in chemical research, RRS and RNLS have received much attention and has a broad application prospects due to their high sensitivity, simplicity and convenient.
     In this research, the first proposed method was the alizarin red S (ARS) and its rare earth complexes as light scattering probe. The RRS and RNLS spectra of their interaction between complexes and tetracycline drugs or biological macromolecules of bovine serum albumin were studied, and the added of rare earth ion makes the RRS and RNLS signals of two simultaneous enhanced. Accordingly, new high sensitive RRS method and RNLS method of drugs and biological macromolecules for trace analysis and detection were established with the wide linear range. Simultaneously, the aggregation of Methyl blue (MB) and hemoglobin (Hb) was investigated by RRS method and using for trace analysis of Hb with high sensitivity. Herein, this paper includes two parts:
     Part one Determination of tetracycline antibiotics using alizarin red S (ARS)-rare earth ion complexes as a light scattering probe by resonance Rayleigh scattering and resonance non-linear scattering
     (1)In buffer solution of HAc-NaAc (pH 5.75), alizarin red S (ARS)-La3+ was combined with tetracycline (TC) and the ternary complexes were formed. This resulted in prominent enhancement of resonance Rayleigh scattering (RRS)、Second-Order scattering (SOS) and Frequency-Double scattering (FDS), The maximum scattering wavelengths were 312 nm for RRS,580 nm for SOS and 290nm for FDS, respectively. The scattering intensity of system was proportional to the concentration of TC in certain ranges. The linear ranges and the detection limits of TC were 0.004-0.444μg/mL and 2.95 ng/mL for RRS method, 0.008-0.444μg/mL and 2.47 ng/mL for SOS method,0.008-0.444μg/mL and 2.27 ng/mL for FDS method, respectively. Based on the enhancement of light scattering, the proposed methods (resonance linear and nonlinear scattering analysis method) can be sensitively applied to the determination of TC, and the detection limit could reach nanogram level. The reacting conditions and influence factors of ARS-La-TC system were also investigated by SOS method. The proposed methods can be applied to the determination of TC content in biological samples by the standard addition method, and the results were satisfied.
     (2) In buffer solution of NaAc-HAc (pH 4.4), minocycline (MC) was combined with alizarin red S (ARS) and Eu3+ by intermolecular forces to form ternary complexes, which causing an enhancement of RRS at 370 nm. Based on the enhancement of RRS, a novel method can be applied to the determination of MC. The linear range for the determination of MC was 0.073-5.493μg/mL and the detection limit was 0.021μg/mL. The proposed method was sensitive, simple and fast; it also had well selectivity and repetitiveness. The urine sample was analyzed by the standard addition method; the method could be applied to the determination of MC in tablet and capsule, and the results were satisfied.
     Part two Determination of biomacromolecules using dye and its rare earth ion complexes as a light scattering probe by resonance Rayleigh scattering and resonance non-linear scattering
     (1) In buffer solution of HAc-NaAc (pH 4.5), alizarin red S (ARS)-La3+ was combined with bovine serum albumin (BSA) and form ternary ion-complexes, which resulted in significant enhancement of resonance Rayleigh scattering (RRS)、Second-Order scattering(SOS) and Frequency-Double scattering (FDS). The maximum scattering wavelengths were 373 nm for RRS,620 nm for SOS and 310nm for FDS, respectively. The scattering intensity of system was proportional to the concentration of BSA in certain ranges. The linear ranges and the detection limits of BSA were 0.034-13.40μg/mL and 0.010μg/mL for RRS method,0.201-13.40μg/mL and 0.052μg/mL for SOS method, 0.201-10.05μg/mL and 0.089μg/mL for FDS method, respectively. Based on the enhancing of light scattering, the proposed methods (resonance linear and nonlinear scattering analysis method) can be applied to the determination of BSA, sensitively. The reacting conditions and influence fators of ARS-La-BSA system were investigated by RRS method. The proposed methods can be applied to the determination of protein content in biological samples, and the results were satisfied.
     (2)The light scattering characteristics of MB-Hb binary system were investigated by RRS method which using MB as a light scattering probe. In weak acidic condition, methyl blue (MB) could aggregate on hemoglobin (Hb) and form ion-association complexes by electrostatic and hydrophobic interactions. It resulted in not only the changes of the absorption spectrum, but also the enhancement of resonance Rayleigh scattering (RRS). According to these phenomena, a convenient method for the determination of Hb was developed. The linear range and the detection limit for the determination of Hb were 0.2-20μg/mL and 0.012μg/mL, respectively. Compared with RRS method, the linear range and the detection limits for Spectrophotometry (SP) were 8-60μg/mL and 0.688μg/mL (at 344 nm),5-60μg/mL and 0.398μg/mL (at 408 nm), respectively. In this paper, the RRS method has been successfully applied to the determination of trace Hb in urine samples. The spectral characteristics of the absorption and scattering, the optimum conditions of the aggregating were investigated. Besides, the parameters of the analytical chemistry and mechanism of interaction were investigated under the optimum conditions. Finally, the influences of small organic molecules (S.O.M.) were also discussed, firstly.
引文
[l]汪尔康,分析化学新进展,科学出版社,北京,2002,p.280-282.
    [2]魏小琴,刘忠芳,刘绍璞,四环素类抗生素-钨酸钠-乙基紫体系的共振瑞利散射光谱及其分析应用,化学学报,2006,(06),521-526.
    [3]X. Q. Wei, Z. F. Liu.S. P. Liu, Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue, Analytical Biochemistry,2005,346(2),330-332.
    [4]王明霞,刘忠芳,胡小莉 等,达旦黄与氨基糖苷类抗生素相互作用的共振瑞利散射光谱研究及其应用,理化检验(化学分册),2006,(01),16-21.
    [5]王齐,刘忠芳,刘绍璞 等,硫化镉纳米微粒与某些氨基糖苷类抗生素相互作用的共振瑞利散射光谱及其分析应用,西南大学学报(自然科学版),2007,(07),64-68.
    [6]胡庆红,张阳勇,江波,丽春红S共振瑞利散射法测定硫酸小诺霉素,西南师范大学学报(自然科学版),2008,(02),54-58.
    [7]S. Liu, F. Wang, Z. Liu et al., Resonance Rayleigh scattering spectra for studying the interaction of anthracycline antineoplastic antibiotics with some anionic surfactants and their analytical applications, Analytica Chimica Acta,2007,601(1),101-107.
    [8]王齐,刘忠芳,刘绍璞,硫化镉纳米微粒作探针共振瑞利散射测定某些蒽环类抗癌药物,高等学校化学学报,2007,(05),837-842.
    [9]H. Duan, Z. Liu, S. Liu et al., Resonance Rayleigh scattering, second-order scattering and frequency doubling scattering methods for the indirect determination of penicillin antibiotics based on the formation of Fe3[Fe(CN)6]2 nanoparticles, Talanta,2008,75(5),1253-1259.
    [10]段慧,刘忠芳,刘绍璞,钯(Ⅱ)与阿莫西林和氨苄西林相互作用的共振瑞利散射光谱及其分析应用,化学学报,2008,(08),969-974.
    [11]江波,胡庆红,庆大霉素-刚果红体系共振Rayleigh散射光谱的研究及其分析应用,遵义医学院学报,2009,(01),17-19+23.
    [12]杨季冬,曹团武,刘绍璞,利福霉素类抗生素-Cu(Ⅱ)-核酸体系的RRS光谱研究,化学学报,2008,(19),2131-2137.
    [13]阳泽平,刘忠芳,胡小莉 等,氟喹诺酮类抗菌素-钯(Ⅱ)-曙红Y体系的共振瑞利散射光谱及其分析应用,应用化学,2007,(03),261-267.
    [14]J. Wang, Z. Liu, J. Liu et al., Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,69(3),956-963.
    [15][a]L. d. S. Teixeira, A. N. Grasso, A. M. Monteiro et al., Enhancement on the Europium emission band of Europium chlortetracycline complex in the presence of LDL, Analytical Biochemistry,2010,400(1),19-24;[b]魏雷雷,李贵荣,李海鹏等,诺氟沙星-Bi(Ⅲ)-KI体系的共振瑞利散射法测定牛奶中诺氟沙星残留量的方法,应用化工,2010,(01),127-129+146.
    [16]L.-F. Wang, J.-D. Peng.L.-M. Liu, A reversed-phase high performance liquid chromatography coupled with resonance Rayleigh scattering detection for the determination of four tetracycline antibiotics, Analytica Chimica Acta,2008,630(1),101-106.
    [17]王剑,刘忠芳,刘绍璞等,氟喹诺酮类抗生素与钴(Ⅱ)和刚果红三元配合物的共振瑞利散射光谱研究及其分析应用,化学学报,2008,(11),1337-1343.
    [18]S. Fu, Z. Liu, S. Liu et al., Study on the resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectra of the interactions of palladium(II)-ceftriaxone chelate with anionic surfactants and their analytical applications, Talanta,2008,75(2),528-535.
    [19]H. Q. Luo, S. P. Liu, Z. F. Liu et al., Resonance Rayleigh scattering spectra for studying the interaction of heparin with some basic phenothiazine dyes and their analytical applications, Analytica Chimica Acta, 2001,449(1-2),261-270.
    [20]H. Q. Luo, S. P. Liu, N. B. Li et al., Resonance Rayleigh scattering, frequency doubling scattering and second-order scattering spectra of the heparin-crystal violet system and their analytical application, Analytica Chimica Acta,2002,468(2),275-286.
    [21]S. P. Liu, H. Q. Luo, H. Xu et al., Resonance Rayleigh scattering study of interaction of heparin with some cationic surfactants and their analytical application, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2005,61(5),861-867.
    [22]蔡炼,徐红,甲基紫共振瑞利散射法测微量肝素,化工时刊,2007,(05),41-43.
    [23]闫曙光,何佑秋,彭娟娟等,CdTe量子点作探针共振瑞利散射法测定肝素钠,西南大学学报(自然科学版),2010,(03),67-71.
    [24]S. P. Liu, Z. Yang, Z. F. Liu et al., Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application, Analytica Chimica Acta,2006,572(2), 283-289.
    [25]Shaopu, Liu, Xiaoli et al., Study on the resonance Rayleigh scattering spectra and resonance non-linear spectra of congo red-amikacin system and its analytical application, Science in China Series B(Chemistry), 2006,49(6),507-516.
    [26]彭敬东,刘绍璞,刘忠芳等,镧(Ⅲ)与丹参酮ⅡA磺酸钠螫合物的共振瑞利散射光谱及其分析应用,中国科学(B辑化学),2006,(03),227-233.
    [27]王芬,刘忠芳,刘绍璞等,用钼酸盐高灵敏共振瑞利散射法测定米托蒽醌,高等学校化学学报,2006,(08),1459-1461.
    [28]杨浩然,胡芸,姜鹰雁等,曲利本蓝与硫酸奈替米星和硫酸依替米星相互作用的共振瑞利散射光谱及分析应用,光谱实验室,2006,(04),797-799.
    [29]刘正文,刘绍璞,王录飞等,硫化镉量子点-硫酸依替米星体系的共振瑞利散射和共振非线性散射光谱研究及其分析应用,西南大学学报(自然科学版),2009,(05),51-54.
    [30]S. Fu, Z. Liu, S. Liu et al., Study on the resonance Rayleigh scattering spectra of the interactions of palladium (Ⅱ)-cephalosporins chelates with 4,5-dibromofluorescein and their analytical applications, Analytica Chimica Acta, 2007,599(2),271-278.
    [31]傅生会,刘忠芳,刘绍璞,Cu(Ⅱ)-头孢曲松-赤藓红离子缔合物的UV-Vis、荧光和共振瑞利散射光谱分析及应用,应用化学,2008,(11),1249-1254.
    [32]Y. Ji-Dong, D. Shi-Xing.Z. Shang, Determination of Chitosan in Serum Albumin-Cu(II)-Chitosan Ternary System Using Resonance Rayleigh Scattering Spectra, Chinese Journal of Analytical Chemistry,2007,35(11), 1619-1624.
    [33]J. Liu, Z. Liu, X. Hu et al., A highly sensitive resonance Rayleigh scattering method for the determination of bleomycinA5 and bleomycinA2 with some halofluorescein dyes, Journal of Pharmaceutical and Biomedical Analysis,2007,43(4),1452-1459.
    [34]S. P. Liu, Y. Q. He, Z. F. Liu et al., Resonance Rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe, Analytica Chimica Acta,2007,598(2),304-311.
    [35]Q. Wang, Z.-F. Liu, L. Kong et al., Absorption and Resonance Rayleigh Scattering Spectra of the Interaction for Copper Nanoparticles with Vitamin Bl, Chinese Journal of Analytical Chemistry,2007,35(3),365-369.
    [36]C. Xi, Z. Liu, L. Kong et al., Effects of interaction of folic acid with uranium (VI) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical applications, Analytica Chimica Acta,2008,613(1),83-90.
    [37]D. Xu, S. Liu,Z. Liu et al., Determination of verapamil hydrochloride with 12-tungstophosphoric acid by resonance Rayleigh scattering method coupled to flow injection system, Analytica Chimica Acta,2007,588(1), 10-15.
    [38]刘绍璞,王芬,刘忠芳 等,盐酸表柔比星与核酸相互作用的共振瑞利散射光谱研究及其分析应用,化学学报,2007,(10),962-970.
    [39]郗存显,刘忠芳,刘绍璞 等,钯(Ⅱ)-甲氨蝶呤螯合物与亚甲蓝相互作用的共振瑞利散射光谱及其分析应用,高等学校化学学报,2008,(03),510-514.
    [40]张远馥,王金中.郝巧艳,共振瑞利散射法测定阿米卡星,南阳师范学院学报,2008,(03),49-52.
    [41]胡蓉,彭娟娟,范小青等,CdSe量子点作探针共振瑞利散射法测定阿米卡星,西南民族大学学报(自然科学版),2009,(01),119-123.
    [42]胡小莉,安兰香,刘绍璞 等,同多钨酸-阿米卡星相互作用的共振瑞利散射光谱及其分析应用,应用化学,2009,(05),588-592.
    [43]张书然,杨季冬,共振瑞利散射光谱法对盐酸异丙嗪与盐酸氯丙嗪的同时测定,分析测试学报,2009,(12),1362-1367.
    [44]孟维伟,胡小莉,刘忠芳 等,钯(Ⅱ)-盐酸吗啉胍螯合物与卤代荧光素类染料相互作用的共振瑞利散射光谱及其分析应用,应用化学,2010,(02),206-210.
    [45]杨睿,刘绍璞,龙秀芬,曲利本蓝-蛋白质体系的共振瑞利散射及其分析应用,西南师范大学学报(自然科学版),1999,24(02),47-50.
    [46]龙秀芬,刘绍璞,磷锑钼蓝共振瑞利散射法测定蛋白质,西南师范大学学报(自然科学版),2000,(02),155-159.
    [47]刘绍璞,范莉,龙秀芬 等,偶氮氯膦Ⅲ共振瑞利散射法测定蛋白质,西南师范大学学报(自然科学版),2001,(03),293-296.
    [48]范莉,刘绍璞,龙秀芬 等,某些变色酸双偶氮染料-蛋白质体系的共振瑞利散射及其分析应用,分析化学,2002,(01),81-85.
    [49]高建华,李华岑,杨潞 等,四磺基金属酞菁类染料共振光散射法测定人血清白蛋白,郑州大学学报(理学版),2004,(01),82-85+91.
    [50]刘绍璞,范莉,胡小莉 等,某些氨羧络合型染料与蛋白质相互作用的共振瑞利散射研究,化学学报,2004,(17),1635-1640.
    [51]刘绍璞,杨睿,罗红群 等,某些同多酸根与蛋白质相互作用的共振瑞利散射光谱研究,分析化学,2005,(08),1125-1128.
    [52]刘晓辉,高俊杰,余萍,偶氮胭脂红B与蛋白质的共振瑞利散射研究,沈阳理工大学学报,2005,(04),63-66.
    [53]张爱梅,臧运波,曙红Y-SDS体系共振瑞利散射法测定蛋白质,食品科学,2005,(07),191-193.
    [54]刘立明,罗光富,李瑞萍等,邻羟基苯基荧光酮共振瑞利散射法测量蛋白质含量,化学试剂,2008,(03),191-193.
    [55]刘妮娜,张爱梅,李林尉,茜素绿-蛋白质体系的共振瑞利散射光谱及其分析应用,分析试验室,2006,(11),86-89.
    [56]C. Cai.X. Chen, Determination of nanograms of proteins based on the amplified resonance light scattering signals of Tichromine, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,75(3), 1057-1060.
    [57]周娟,王祥洪,结晶紫共振瑞利散射法测定七叶皂苷钠,重庆师范大学学报(自然科学版),2008,(02),71-73+77.
    [58]张爱梅,李林尉,刘妮娜,溴百里酚蓝-蛋白质体系的共振瑞利散射光谱的研究及分析应用,理化检验(化学分册),2007,(07),575-577.
    [59]江波,胡庆红,血清蛋白与SDS作用的RRS研究及应用,广西师范大学学报(自然科学版),2002,(02),60-64.
    [60]江波,胡庆红,十二烷基苯磺酸钠共振瑞利散射法测定蛋白质,分析试验室,2002,(03),27-30.
    [61]冯宁川,龚国权,亮黄-曲通X-100体系共振瑞利散射法测定蛋白质,分析化学,2002,(04),425-427.
    [62]Y.-j. Chen, J.-h. Yang, X. Wu et al., Resonance light scattering technique for the determination of proteins with resorcinol yellow and OP, Talanta,2002,58(5),869-874.
    [63]张爱梅,臧运波,达旦黄-OP体系共振瑞利散射法测定蛋白质,聊城大学学报(自然科学版),2004,(04),38-40+107.
    [64]张爱梅,臧运波,吖啶红-SLS体系共振瑞利散射法测定蛋白质,分析试验室,2005,(07),44-47.
    [65]胡庆红,杨阳,江波等,Fe(3+)-十二烷基苯磺酸钠作探针的共振瑞利散射法测定血清蛋白,光谱实验室,2008,(04),722-726.
    [66]敖登高娃,阿娟,陶玉龙,吐温-20敏化甲摹蓝-蛋白质散射光谱研究与应用,分析科学学报,2009,(04),493-496.
    [67]李燕,宋桂兰,卢燕等,荧光镓-SDS共振瑞利散射法测定蛋白质的研究,分析试验室,2009,(03),55-58.
    [68]许立松,王颖臻,曹秋娥等,钙指示剂羧酸钠-SDS体系共振瑞利散射法测定蛋白质,中国卫生检验杂志,2009,(06),1284-1286.
    [69]杨睿,刘绍璞,黄承志,铝(Ⅲ)-铬天青S-蛋白质体系共振瑞利散射法测定蛋白质,云南大学学报(自然科学版),1999,(S2),63-65.
    [70]R. Jia, L. Dong, Q. Li et al., Study of the interaction of protein and dibromomethyl-Arsenazo-Al(III) by Rayleigh light-scattering technique, Analytica Chimica Acta,2001,442(2),249-256.
    [71]W. Qin, L. Yan, Z. Hui et al., Rapid determination of ultra trace amounts of residual protein in penicillin based on its enhancement effects of Rayleigh light scattering on trimethoxyphenlyfiuorone (TM-PF)-Mo(VI) complex, Journal of Pharmaceutical and Biomedical Analysis,2005,38(2),232-238.
    [72]张晓亮,陈亚东,徐伟民等,双核铜(Ⅱ)-β-丙氨酸缩水杨醛席夫碱配合物与血清蛋白相互作用的共振瑞利散射光谱,光谱实验室,2008,(05),939-942.
    [73]Z. Chen, G. Liu, M. Chen et al., Determination of nanograms of proteins based on decreased resonance light scattering of zwitterionic gemini surfactant, Analytical Biochemistry,2009,384(2),337-342.
    [74]陈粤华,刘忠芳,胡小莉等,铬(Ⅵ)与蛋白质相互作用的共振瑞利散射光谱及其分析应用,分析化学,2005,(06),802-804.
    [75]X. Long, C. Zhang, J. Cheng et al., A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,69(1),71-77.
    [76][a]S. Liu, Z. Yang, Z. Liu et al., Resonance Rayleigh-scattering method for the determination of proteins with gold nanoparticle probe, Analytical Biochemistry,2006,353(1),108-116; [b]H.-H. Cai, P.-H. Yang, J. Feng et al., Immunoassay detection using functionalized gold nanoparticle probes coupled with resonance Rayleigh scattering, Sensors and Actuators B:Chemical,2009,135(2),603-609.
    [77]Z. Shu-hong, F. Yong-shan, F. Shuo et al., Microdetermination of proteins by resonance light scattering technique based on aggregation of ferric nanoparticles, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,72(4),748-752.
    [78]K.-J. Huang, C.-Y. Wei, Y.-M. Shi et al., The investigation of the interactions between CdSe quantum dots and human serum albumin by resonance Rayleigh scattering and second-order scattering spectra, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,75(3),1031-1035.
    [79]H. Chen, F. Xu, S. Hong et al., Quantitative determination of proteins at nanogram levels by the resonance light-scattering technique with composite nanoparticles of CdS/PAA, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2006,65(2),428-432.
    [80][a]C. Zhi Huang, Y. Fang Li.X. Dong Liu, Determination of nucleic acids at nanogram levels with safranine T by a resonance light-scattering technique, Analytica Chimica Acta,1998,375(1-2),89-97; [b]Y. Liu, C. Qi Ma, K. An Li et al., Simple and sensitive assay for nucleic acids by use of Rayleigh light scattering technique with rhodamine B, Analytica Chimica Acta,1999,379(1-2),39-44; [c]M. Wang, J. Yang, X. Wu et al., Study of the interaction of nucleic acids with acridine red and CTMAB by a resonance light scattering technique and determination of nucleic acids at nanogram levels, Analytica Chimica Acta,2000,422(2),151-158; [d]R. Liu, J. Yang, X. Wu et al., Interaction of cetyltrimethylammonium bromide with nucleic acids and determination of nucleic acids at nanogram levels based on the measurement of light scattering, Analytica Chimica Acta, 2001,441(2),303-308; [e]R. Liu, J. Yang.X. Wu, Interaction of cetylpyridine bromide with nucleic acids and determination of nucleic acids at nanogram levels based on the enhancement of resonance Rayleigh light scattering, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2002,58(9),1935-1942; [f]R. Liu, J. Yang, C. Sun et al., Study of the interaction of nucleic acids with acridine orange-CTMAB and determination of nucleic acids at nanogram levels based on the enhancement of resonance light scattering, Chemical Physics Letters,2003,376(1-2),108-115; [g]X, Long, S. Bi, X. Tao et al., Resonance Rayleigh scattering study of the reaction of nucleic acids with thionine and its analytical application, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2004,60(1-2),455-462; [h]X. Long, Q. Miao, S. Bi et al., Resonance Rayleigh scattering method for the recognition and determination of double-stranded DNA using amikacin, Talanta,2004,64(2),366-372; [i]C. Zhu, S. Zhuo, Y. Li et al., Determination of nucleic acids with tetra-(N-hexadecylpyridiniumyl) porphyrin sensitized by cetyltrimethylammonium bromide (CTMAB) using a Rayleigh light-scattering technique, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2004,60(4),959-964;[J]Z. Chen, W. Ding, F. Ren et al., A simple and sensitive assay of nucleic acids based on the enhanced resonance light scattering of zwitterionics, Analytica Chimica Acta,2005,550(1-2),204-209; [k]F.Ding, H. Zhao, S. Chen et al., Study of the interaction of nucleic acid with europium(III) and CTMAB and determination of nucleic acids at nanogram levels by the second-order scattering, Analytica Chimica Acta, 2005,536(1-2),171-178; [1]Z. Chen, L. Zhu, T. Song et al., Determination of dextrin based on its self-aggregation by resonance light scattering technique, Analytica Chimica Acta,2009,635(2),202-206; [m]J. Y. Piao, E. H. Park, K. Choi et al., Direct visual detection of DNA based on the light scattering of silica nanoparticles on a human papillomavirus DNA chip, Talanta,2009,80(2),967-973; [n]J. Yu, B. Li, P. Dai et al., Study on the interaction among molecules and the determination of DNA by light scattering with a new type rhodanine derivative, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,74(4),875-880; [o]Z. Chen, T. Song, S. Wang et al., Screening DNA-targeted anticancer drug in vitro based on the drug-conjugated DNA by resonance light scattering technique, Biosensors and Bioelectronics,2010,25(8),1947-1952; [p]Q.-C. Zou, H. Chen, H. Yu et al., Synthesis of polycation with gemini structure and detection of DNA by resonance light scattering, Sensors and Actuators B:Chemical,2010,145(1),378-385.
    [8l]杨清玲,刘忠芳,鲁群岷 等,盐酸氯丙嗪作探针共振瑞利散射法测定环境水样中某些阴离子表面活性剂,高等学校化学学报,2006,(12),2281-2284.
    [82]刘云富,李贵荣,谭广辉 等,共振瑞利散射法测定环境水样中痕量砷(Ⅲ),光谱实验室,2007,(05),902-906.
    [83]张红梅,杜晓燕,李伟伟,共振光散射技术测定水中十二烷基硫酸钠,中国卫生检验杂志,2007,(01),79-81.
    [84]杨清玲,鲁群岷,刘忠芳等,钴(Ⅱ)-2-(5-溴-2-吡啶偶氮)-5-二乙氨基酚体系共振瑞利散射法测定环境.水样中十二烷基苯磺酸钠,化学学报,2008,(21),2371-2378.
    [85]陈云生,杨红梅,何爱桃 等,共振光散射法测定水中的痕量萘酚,光谱实验室,2009,(02),324-327.
    [86]陈展光,谢非,蒋文艳 等,共振光散射技术测定地表水中阴离子表面活性剂,中国环境监测,2009,(04),35-38.
    [87]李海鹏,李贵荣,魏雷雷 等,结晶紫共振光散射法测定水样中痕量过氧化氢,南华大学学报(自然科学版),2009,(04),88-91.
    [88]肖锡林,蔡亮,廖力夫 等,均匀设计优化共振瑞利散射法测定水中阴离子表面活性剂,光谱实验室,2009,(03),459-462.
    [89]徐红,黄亚励,刘红,硫堇-I3-PVA共振瑞利散射法测定环境水样中痕量砷(Ⅲ),化工时刊,2009,(11),35-37.
    [90]谭蓉,秦宗会,曙红亚甲基蓝分光光度法测定水中阳离子表面活性剂,日用化学工业,2010,(02),144-147.
    [91]衷明华,共振光散射法测定环境水样中痕量铅(Ⅱ),广东微量元素科学,2005,(08),65-67.
    [92]刘绍璞,周光明,刘忠芳 等,共振瑞利散射法测定硫氰酸盐-碱性三苯甲烷染料体系中的痕量钼,高等学校化学学报,1998,(07),35-39.
    [93]陈兰化,刘发光,共振散射光谱法测定水中铬(Ⅵ),中国卫生检验杂志,2006,(02),205-206.
    [94]韩志辉,吕昌银,杨胜圆,Cd-(2+)-PAN-聚乙烯醇共振瑞利散射法测定水中痕量镉,分析科学学报,2006,(01),77-79.
    [95]李少旦,蒙进怀,黎明强,共振光散射法测定环境水样中痕量锡,光谱实验室,2006,(05),981-983.
    [96]衷明华,银(Ⅰ)-碘化物-十六烷基三甲基溴化铵体系共振光散射光谱法测定废水中微量银,冶金分析,2006,(03),50-52.
    [97]曾铭,巯基棉分离富集-共振光散射法测定环境水样中痕量铅和镉,冶金分析,2007,(11),44-47.
    [98]李少旦,共振瑞利散射法检测水环境中痕量锌,光谱实验室,2007,(04),671-674.
    [99]刘运美,杨静,高治平,钴(Ⅱ)-PAN-SDBS共振瑞利散射法测定钴,应用化学,2007,(12),1467-1469.
    [100]罗道成,刘俊峰,铅-碘化钾-罗丹明6G共振瑞利散射法测定环境水样中微量铅,化学试剂,2007,(09),547-548+568.
    [101]赵霞,李珍贵,丁中涛 等,共振光散射法测定白酒中的微量铜,酿酒科技,2007,(10),88-89+92.
    [102]冯伟,吕昌银,蔡颖等,共振光散射法测定水中痕量总锰,应用化工,2009,(12),1817-1819+1821.
    [103]龙巍然,李娥贤,王俊芳 等,共振瑞利散射光谱法测定冶金样品中痕量铱(Ⅳ),理化检验(化学分册),2009,(08),936-938+941.
    [104]翟海云,高建华,刘栓富,盐酸苯海拉明的二级散射法测定,郑州大学学报(理学版),2002,(01),59-61.
    [105]刘绍璞,罗红群,李念兵等,Study on Frequency Doubling Scattering and Second-Order Scattering Spectra of Heparin-Methylene Blue System, Chinese Journal of Chemistry,2003,(04),423-428+362.
    [106]X. Long, H. Zhang.S. Bi, Frequency doubling scattering and second-order scattering spectra of phosphato-molybdate heteroply acid-protein system and their analytical application, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2004,60(7),1631-1636.
    [107]刘绍璞,胡小莉,刘忠芳,刚果红-阿米卡星体系的共振Rayleigh散射和共振非线性散射光谱及其分析应用,中国科学(B辑化学),2006,(04),317-325.
    [108]杨清玲,刘忠芳,鲁群岷等,盐酸氯丙嗪作探针二级散射和倍频散射法测定环境水样中某些阴离子表面活性剂,分析化学,2007,(06),797-802.
    [109]杨志洁,赵慧春,丁芬 等,银纳米敏化铽-诺氟沙星荧光和二级散射的研究与应用,光谱学与光谱分析,2007,(12),2534-2537.
    [110]刘健,刘忠芳,胡小莉 等,牛血清白蛋白共振瑞利散射和共振非线性散射法测定硫酸软骨素,西南大学学报(自然科学版),2010,(03),30-33.
    [111]魏永巨,李克安,童沈阳,蛋白质-铬天青S体系的弹性光散射及其初步分析应用,化学学报,1998,56(3),290-297.
    [112]高建华,李华岑,尼晓威 等,酸性染料反二级散射法测定人血清白蛋白,郑州大学学报(理学版),2004,(04),59-61+66.
    [113]高建华,李华岑,杨潞 等,四磺基铁(Ⅲ)酞菁二级散射和反二级散射法测定人血清白蛋白,分析科学学报,2005,(01),84-86.
    [114]郭晓燕,何宝林,刘光荣,二级散射光谱法研究纳米铂胶体与牛血清白蛋白的相互作用,中南民族大学学报(自然科学版),2005,(04),4-7.
    [115]罗家刚,刘忠芳,刘绍璞等,[HgI4]2--蛋白质离子缔合物体系共振瑞利散射和共振非线性散射光谱及其分析应用,化学学报,2008,(23),2604-2612.
    [116]周炎宏,唐宁莉,杨兰玲,人血清中总蛋白的四羧基铁酞菁二级散射法测定,分析测试学报, 2008,(05),505-508.
    [117]Z. Liu, S. Liu, L. Wang et al., Resonance Rayleigh scattering and resonance non-linear scattering method for the determination of aminoglycoside antibiotics with water solubility CdS quantum dots as probe, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,74(1),36-41.
    [118]Y. Ma, N. B. Li.H. Q. Luo, Novel and sensitive methods for the determination of dopamine based on the resonance Rayleigh scattering, second-order scattering and frequency doubling scattering quenching effects,: Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,73(4),747-751.
    [119]M. Qin, S. Liu, Z. Liu et al., Resonance Rayleigh scattering spectra, non-linear scattering spectra of tetracaine hydrochloride-erythrosin system and its analytical application, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,71(5),2063-2068.
    [120]董存智,梁丽娜,张淑静,TiO2-SiO2纳米粒子的合成及二级散射光谱法测定核糖核酸,分析化学,2009,(02),279-282.
    [121]解文秀,张瑾,张思宝等,茜素红二级散射法测定核酸,济南大学学报(自然科学版),2009,(04),389-392.
    [122]梁丽娜,穆志英,董存智,TiO2溶胶二级散射光谱法测定人血清白蛋白,分析试验室,2010,(02),101-104.
    [123]刘绍璞,刘忠芳,李明,离子缔合物二级散射光谱的分析应用——Ⅰ.硒(Ⅳ)-碘化物-罗丹明B体系,化学学报,1995,(12),1178-1184.
    [124]刘绍璞,刘忠芳,李明,离子缔合物二级散射光谱的分析应用——Ⅱ.汞(Ⅱ)-硫氰酸盐-碱性三芳基甲烷染料体系,化学学报,1995,(12),1185-1192.
    [125]刘绍璞,刘忠芳,李明,离子缔合物二级散射光谱的分析应用Ⅲ.汞(Ⅱ)-硫氰酸盐-罗丹明染料体系,分析化学,1996,(05),501-505.
    [126]刘绍璞,刘忠芳,汞(Ⅱ)-硫氰酸盐-维多利亚蓝4R体系的共振发光和二级散射光谱及其分析应用,高等学校化学学报,1996,(06),887-892.
    [127]刘绍璞,刘忠芳,硒(Ⅳ)-碘化物-结晶紫体系的共振发光和二级散射光谱,高等学校化学学报,1996,(08),1213-1215.
    [128]刘绍璞,刘忠芳,钼(Ⅴ)-硫氰酸盐-碱性三苯甲烷染料体系的二级散射光谱及其分析应用,西南师范 大学学报(自然科学版),1998,(04),47-52.
    [129]刘绍璞,杨睿,刘忠芳,铬(Ⅵ)-碘化物-维多利亚蓝4R体系的共振瑞利散射和二级散射及其分析应用,分析化学,1998,(12),1432-1436.
    [130]高建华,林鹏,陈彬等,Zn(Ⅱ)-硫氰酸盐-罗丹明体系反二级散射光谱法测Zn,冶金分析,2000,(04),1-3.
    [131]黄永炎,蒋治良,吴群娣等,砷钼杂多酸/罗丹明B三元离子缔合物的二级散射光谱研究,分析科学学报,2000,(02),127-130.
    [132]蒋治良,王盛棉,黄中强等,硅锑钼杂多酸罗丹明B缔合物的二级散射光谱研究,广西师范大学学报(自然科学版),2000,(02),50-53.
    [133]刘绍璞,刘忠芳,罗红群,硒(Ⅳ)-碘化物-维多利亚蓝4R体系共振瑞利散射、二级散射和倍频散射法测定痕量硒(Ⅳ),西南师范大学学报(自然科学版),2000,(04),408-412.
    [134]Y. Q. He, S. P. Liu, L. Kong et al., A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2005,61(13-14),2861-2866.
    [135]N. B. Li, S. P. Liu, H. Q. Luo, Frequency doubling scattering and second-order scattering technology as novel methods for the determination of the inclusion constant of procaine hydrochloride to β-cyclodextrin, Analytica Chimica Acta,2002,472(1-2),89-98.
    [136]罗红群,刘绍璞,李念兵,共振非线性散射技术测定盐酸普鲁卡因与β-环糊精包结常数的新方法,化学学报,2003,(03),435-439.
    [137]仉文生,李安良,徐萍,药物化学,高等教育出版社,北京,2005,p.467-472.
    [1]仉文生,李安良,徐萍,药物化学,高等教育出版社,北京,2005:471.
    [2]R. V. Gopalkrishnan, K. A. Christiansen, N. I. Goldstein, et al., Use of the human EF-1 alpha promoter for expression can significantly increase success in establishing stable cell lines with consistent expression:a study using the tetracycline-inducible system in human cancer cells, Nucleic Acids Research,1999,27(24),4775-4782.
    [3]C. M. Krauthauser, L. A. M. Hall, R. S. Wexler, et al., Regulation of gene expression and cell growth in vivo by tetracycline using the hollow fiber assay, Anticancer Research,2001,21(2A),869-872.
    [4]B. L. Lokeshwar, M. G. Selzer, B. Q. Zhu. et al., Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model, International Journal of Cancer,2002,98(2),297-309.
    [5]谭峰,郎惠云,李媛 等,差示分光光度法测定药物制剂中的四环素,分析试验室,2000,(06),33-35.
    [6]叶宪曾,江子伟,周生武等,四环素的极谱法测定,北京大学学报(自然科学版),1983,(06),76-80.
    [7]敖登高娃,刘惠民,代钢,四环素-Mo(Ⅵ)-CTMAB络合物荧光光度法测定四环素,分析科学学报,2005,(04),461-462.
    [8]刘明娣,邻氨基苯甲酸荧光猝灭法测定四环素,湖南城市学院学报(自然科学版),2008,(02),62-64.
    [9]姚玉玲,李绍波,万喻平 等,高效液相色谱同时测定饲料中三种抗生素,化学研究与应用,2009,(01),25-30.
    [10]魏小琴,刘忠芳,刘绍璞,四环素类抗生素-钨酸钠-乙基紫体系的共振瑞利散射光谱及其分析应用,化学学报,2006,(06),521-526.
    [11]X. Q. Wei, Z. F. Liu, S. P. Liu, Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue, Analytical Biochemistry,2005,346(2),330-332.
    [12]刘绍璞,刘忠芳,李明.离子缔合物二级散射光谱的分析应用——Ⅰ.硒(Ⅳ)-碘化物-罗丹明B体系,化学学报,1995,(12),1178-1184.
    [13]刘绍璞,刘忠芳,李明.离子缔合物二级散射光谱的分析应用——Ⅱ.汞(Ⅱ)-硫氰酸盐-碱性三芳基甲烷染料体系,化学学报,1995,(12),1185-1192.
    [1]季颖,张明发.米诺环素治疗类风湿关节炎.中国新药与临床杂志[J],2000,19(3):220.
    [2]Paulus HE. Minocycline treatment of rheumatoid arthritis. Ann Intern Med.1995,122:147.
    [3]Steve Casha, V.Wee Yong,Rajiv Midha.Minocycline for axonal regeneration after nerve injury:A double-edged sword.Experimental Neurology[J],2008,123(2):245.
    [4]K.Smith and J.J.Leyden, Safety of doxycycline and minocycline:A systematic review,Clinical Therapeutics[J], 2005,27:1329.
    [5]Zawilla, N.H.,Diana, J.,Hoogmartens, J.,et al. Improved LC of minocycline drug substance.Journal of Pharmaceutical and Biomedical Analysis[J].2006.40:815.
    [6]乐涛,佘永新 柳江英,毕丁仁.固相萃取-反相高效液相色谱测定牛奶中米诺环素残留量的研究.食品科学[J],2008,29(1):270.
    [7]C. Z. Huang, Y. F. Li, X. D. Liu, Determination of nucleic acids at nanogram levels with safranine T by a resonance light-scattering technique, Analytica Chimica Acta,1998,375(1-2),89-97
    [8]X. Long, C. Zhang, J. Cheng, et al., A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,69(1),71-77.
    [9]. S. H. Zhang, Y. S. Fan, S. Feng., et al., Microdetermination of proteins by resonance light scattering technique based on aggregation of ferric nanoparticles, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,72(4),748-752.
    [10]王剑,刘忠芳,刘绍璞.氟喹诺酮类抗生素与钴(Ⅱ)和刚果红三元配合物的共振瑞利散射光谱研究及其分析应用.化学学报[J],2008,66(11):1337.
    [11]H. Duan, Z. F. Liu, S. P. Liu, et al., Resonance Rayleigh scattering, second-order scattering and frequency doubling scattering methods for the indirect determination of penicillin antibiotics based on the formation of Fe3[Fe(CN)6]2 nanoparticles, Talanta,2008,75(5),1253-1259.
    [12]刘俊轶,敖登高娃.茜素红-铕(Ⅲ)光谱探针用于蛋白质分子的分光光度研究与应用.内蒙古大学学报(自然科学版)[J].2009,40(2):173.
    [1]Marion M,Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemis-try,1976,72:248-254.
    [2]魏琴,李燕,于海琴等,偶氮羧Ⅰ-铽(Ⅲ)配合物与蛋白质相互作用的吸光光谱行为的研究及应用,分析化学,2005,(08),1175-1178.
    [3]L. I. Bebawy, K. E. Kelani.L. A. Fattah, Fluorimetric determination of some antibiotics in raw material and dosage forms through ternary complex formation with terbium (Tb3+), Journal of Pharmaceutical and Biomedical Analysis,2003,32(6),1219-1225.
    [4]C. Guo, L. Wang, Z. Hou,et al., Micelle-enhanced and terbium-sensitized spectrofluorimetric determination of gatifloxacin and its interaction mechanism, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,72(4),766-771.
    [5]彭敬东,刘绍璞,刘忠芳等,镧(Ⅲ)与丹参酮ⅡA磺酸钠螯合物的共振瑞利散射光谱及其分析应用,中国科学(B辑化学),2006,3,227-233.
    [6]J. Li, J. Kang, J. Lu,et al., Determination of calf thymus DNA using resonance light-scattering quenching method based on the terbium (III) (Tb3+)/europium (Ⅲ) (Eu3+)-quercetin system, Journal of Luminescence, 2009,129(9),906-911.
    [7]汪尔康.分析化学新进展.北京:科学出版社,2002:280-282.
    [8]杨志洁,赵慧春,丁芬等,银纳米敏化铽-诺氟沙星荧光和二级散射的研究与应用,光谱学与光谱分析,2007,(12),2534-2537.
    [9]许金钩,王尊本.荧光分析法.北京:科学出版社.2006:5-6.
    [10]O. R. Miranda, C. C. You, R. Phillips, et al., Array-Based Sensing of Proteins Using Conjugated Polymers J. Am. Chem. Soc.129 (2007) 9856-9857.
    [11]刘俊轶,敖登高娃.茜素红-铕(Ⅲ)光谱探针用于蛋白质分子的分光光度研究与应用.内蒙古大学学报(自然科学版)[J].2009,40(2):173.
    [12]马娴贤;吴集贵;邓汝温等.固体茜素红稀土化合物的制备及其性质研究.兰州大学学报,1987,23(03),133-135.
    [13]R. F. Pasternack, P.J. Collings. Resonance light.scattering:A new technique for studying chromophore aggregation. Science[J].1995,269:935-939.
    [14]C. X. Xi, Z. F. Liu, L. Kong, et al., Effects of interaction of folic acid with uranium (VI) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical applications. Analytica Chimica Acta[J].2008,613:83-90.
    [15]J. T. Liu, Z.F. Liu, X.L. Hu, et al., A highly sensitive resonance Rayleigh scattering method for the determination of bleomycinA5 and bleomycinA2 with some halofluorescein dyes. Journal of Pharmaceutical and Biomedical Analysis[J].2007,43:1452-1459.
    [16]Y. B. Li, X. d. Chen, M.Q. Zhang, et al., Macromolecular aggregation of aqueous polyacrylic acid in the presence of surfactants revealed by resonance Rayleigh scattering. Macromolecules[J].2008,41:4873-4880.
    [17]沈同,王镜岩,生物化学,第二版上册,1990,12,83
    [1]D. A. Scherlis, D.A. Estrin. Hydrogen bonding and O2 affinity of Hemoglobins. Journal of the. American Chemical Society[J].2001,123:8436-8437.
    [2]L. Capece, M. A. Marti, A. Crespo, et al.. Heme protein oxygen affinity regulation exerted by proximal effects. Journal of the American Chemical Society[J].2006,128:12455-12461.
    [3]A. K. Singh, K.P. Gudehithlu, P. Sethupathi, et al.. Determination of carbamylated hemoglobin by an enzyme immunoassay (ELISA) based on a novel antibody. Clinica Chimica Acta[J].2008,391:112-114.
    [4]C. C. Heuck, H. Reinauer, W.G. Wood. The alkaline haematin detergent (AHD575) method for the determination of haemoglobin in blood-A candidate reference measurement procedure. Clinical Laboratory[J]. 2008,54:255-272.
    [5]C. Zhao, L. Wan, L. Jiang, et al.. Highly sensitive and selective cholesterol biosensor based on direct electron transfer of hemoglobin. Analytical Biochemistry[J].2008,383:25-30.
    [6]F. A. O. Carvalho, P. S. Santiago, J. C. Borges, et al..On the molecular mass of the extracellular hemoglobin of Glossoscolex paulistus:Analytical ultracentrifugation reexamination. Analytical Biochemistry [J]. 2008,257-263.
    [7]I. Zanella-Cleon, M. Becchi, P. Lacan, et al.. Detection of a thalassemic a-chain variant (hemoglobin Groene Hart) by reversed-phase liquid chromatography. Clinical Chemistry [J].2008,54:1053-1059.
    [8]J. Kuriyan, D. Eisenberg. The origin of protein interactions and allostery in colocalization. Nature[J]. 2007,450:983-990.
    [9]J. M. W. Van Den Ouweland, H. Van Daal, C. H. Klaassen, et al., The silent hemoglobin a chain variant Hb Riccarton [a51(CE9)Gly→Ser] may affect HbAlc determination on the HLC-723 G7 analyzer. Clinical Chemistry and Laboratory Medicine[J].2008,46:827-830.
    [10]H. Jakubowski. New method for the determination of protein N-linked homocysteine. Analytical Biochemistry[J].2008,380:257-261.
    [11]K. E. Wheeler, J. M. Nocek, D. A. Cull, et al.. Dynamic docking of cytochrome b5 with Myoglobin and a-Hemoglobin:Heme-Neutralization "Squares" and the binding of electron-transfer-reactive configurations. Journal of the American Chemical Society[J].2007,129:3906-3917.
    [12]L. Liu, S. Hood, Y. Wang, et al.. Direct enzymatic assay for %HbAlc in human whole blood samples. Clinical Biochemistry[J].2008,41:576-583.
    [13]L. Vitagliano, A. Vergara, G. Bonomi, et al.. Spectroscopic and crystallographic characterization of a tetrameric hemoglobin oxidation reveals structural features of the functional intermediate relaxed/tense state. Journal of the American Chemical Society [J].2008,130:10527-10535.
    [14]Q. Z. Zhai, X.X. Zhang. Spectrophotometric determination of hemoglobin with lanthanum(Ⅲ)-(DBC-arsenazo). Asian Journal of Chemistry[J].2008,20:5060-5066.
    [15]T. Yonetani, M. Laberge. Protein dynamics explain the allosteric behaviors of hemoglobin. Biochimica et Biophysica Acta-Proteins and Proteomics[J].2008,1784:1146-1158.
    [16]X.L. Hou, X.F. Tong, W.J. Dong, et al.. Synchronous fluorescence determination of human serum albumin with methyl blue as a fluorescence probe Spectrochim. Acta Part A [J].2007,66:552-556.
    [17]S. M Song, X. L. Hou, Y. B. Wu, et al.. Study on the interaction between methyl blue.and human serum albumin by fluorescence spectrometry Journal of Luminescence[J].2009,129:169-175.
    [18]C. Q. Cai, H. Gong, M.C. X. Simple and sensitive assay for nucleic acids by use of the resonance light-scattering technique with the anionic dye methyl blue in the presence of cetyltrimethylammonium bromide. Microchimica Acta[J].2007,157:165-171.
    [19]R.F. Pasternack, C. Bustamante, P.J. Collings, et al.. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. Journal of the American Chemical Society [J].1993,115:5393-5399.
    [20]R.F. Pasternack, P.J. Collings. Resonance light scattering:A new technique for studying chromophore aggregation. Science[J].1995,269:935-939.
    [21]B. A. Du, Z. P. Li, Y.Q. Cheng. Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection. Talanta[J].2008,75:959-964.
    [22]X. F. Long, C. H. Zhang, J. J. Cheng, et al.. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy[J].2008,69:71-77.
    [23]X.L. Wei, A.H. Liang, S.S. Zhang. A selective resonance scattering assay for immunoglobulin G using Cu(II)-ascorbic acid-immunonanogold reaction. Analytical Biochemistry[J].2008,380:223-228.
    [24]Z. G. Chen, G. L. Liu, M. H. Chen, et al.. Determination of nanograms of proteins based on decreased resonance light scattering of zwitterionic gemini surfactant. Analytical Biochemistry[J].2009,384:337-342.
    [25]H. Zhong, K. Wang, and H. Y. Chen, Protein analysis with tetra-substituted sulfonated cobalt phthalocyanine by the technique of Rayleigh light scattering, Anal. Biochem.330 (2004) 37-42.
    [26]Y. j. Chen, J. H. Yang, X. Wu, et al.. Resonance light scattering technique for the determination of proteins with resorcinol yellow and OP, Talanta 58 (2002) 869-874.
    [27]Z. Chen, J. Liu, and Y. Han, Rapid and sensitive determination of proteins by enhanced resonance light scattering spectroscopy of sodium lauroyl glutamate, Talanta 71 (2007) 1246-1251.
    [28]C. X. Xi, Z. F. Liu, L. Kong, et al.. Effects of interaction of folic acid with uranium (Ⅵ) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical applications. Analytica Chimica Acta[J].2008,613:83-90.
    [29]H. Duan, Z. F. Liu, S.P. Liu, et al.. Resonance Rayleigh scattering, second-order scattering and frequency doubling scattering methods for the indirect determination of penicillin antibiotics based on the formation of Fe3[Fe(CN)6]2 nanoparticles. Talanta[J].2008,75:1253-1259.
    [30]J. T. Liu, Z.F. Liu, X.L. Hu, et al.. A highly sensitive resonance Rayleigh scattering method for the determination of bleomycinA5 and bleomycinA2 with some halofluorescein dyes. Journal of Pharmaceutical and Biomedical Analysis[J].2007,43:1452-1459.
    [31]S. H. Fu, Z.F. Liu, S.P. Liu, et al.. Study on the resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectra of the interactions of palladium(Ⅱ)-ceftriaxone chelate with anionic surfactants and their analytical applications. Talanta[J].2008,7:528-535.
    [32]S.P. Liu, Z.F. Liu, H.Q. Luo. Resonance Rayleigh scattering method for the determination of trace amounts of cadmium with iodide-rhodamine dye systems. Analytica Chimica Acta[J].2000,29:255-260.
    [33]Z.L. Jiang, Q.Y. Liu, S.P. Liu. Catalytic resonance scattering spectral method for the determination of trace amounts of Se Talanta[J].2002,58:635-640.
    [34]Y. B. Li, X. d. Chen, M.Q. Zhang, et al.. Macromolecular aggregation of aqueous polyacrylic acid in the presence of surfactants revealed by resonance Rayleigh scattering. Macromolecules[J].2008,41:4873-4880.
    [35]O. R. Miranda, C. C. You, R. Phillips, et al.. Array-Based Sensing of Proteins Using Conjugated Polymers. Journal of the American Chemical Society [J].2007,129:9856-9857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700