含镉量子点体系的制备与荧光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光纳米材料具有量子尺寸效应、表面效应及宏观量子隧道效应等多种新奇效应,在光、电、磁、热等方面呈现出优异的性能,近年来成为科技领域研究的热点。量子点(QDs、或称为半导体纳米晶体)的发射谱线窄、激发谱线宽、荧光波长随粒径变化连续可调、性能稳定,诸多理化性质方面的优点使其有望取代目前使用的有机荧光材料,在细胞成像、DNA测序、免疫检测、温度传感、白光LED等领域有广阔的应用前景。目前,量子点材料已经有较成熟的合成技术路线,但是仍需改进,例如油相合成应降低成本,水相合成需提高晶体质量。量子点受表面界面效应影响较大,很多光学特性产生的物理机制复杂,目前尚未完全研究清楚,如金属表面增强荧光、上转换荧光、量子点与有机分子间的相互作用等。
     与传统的油相合成方法不同,我们使用十八烯(ODE)作为反应溶剂,替代昂贵、有毒的三辛基氧化膦(TOPO),合成得到发光性能同样优异的不同颜色的CdSe量子点,降低了合成成本。在氯仿溶液中,获得了CdSe量子点与聚苯胺的复合体,实验发现量子点尺寸减小和聚苯胺浓度增加时复合体荧光强度会降低。研究表明,一方面是由于CdSe量子点向聚苯胺的共振能量传递,另一方面是由于聚苯胺可以有效截获CdSe量子点中的电荷传递,两者共同导致复合体的荧光淬灭现象。
     在水相以巯基羧酸为表面配体,合成得到不同尺寸的CdSe和CdTe量子点。CdSe量子点在金岛薄膜表面,与在玻璃表面相比较,荧光积分强度增加四倍,而荧光寿命减小接近一半。CdSe量子点和金之间的能带结构相匹配,所以金岛薄膜中激发态的电子隧穿注入CdSe核区,增加了量子点激发态的电子密度,从而导致荧光增强。荧光寿命减小则是由于金岛薄膜的存在,导致量子点中自由激子数目和辐射跃迁效率增加的结果。利用银纳米粒子表面配体(聚乙烯吡咯烷酮)与CdTe量子点之间的Cd—O键相互作用,将CdTe量子点自组装到银纳米粒子表面,观察到CdTe量子点的荧光增强、峰位红移和寿命缩短等现象,研究表明上述现象的出现与金属表面强局域电磁场和表面配体等有关。这种自组装方法简单、方便,对量子点在生命科学、化学、医学等领域应用中提高检测灵敏度具有重要的意义。
     制备出壳层厚度可以精确控制的水溶性CdTe/CdS核壳量子点,在该体系中存在不同于CdSe/CdS、CdTe/ZnS等核壳量子点的荧光峰展宽、大幅度红移以及荧光寿命增加现象。我们认为,随着CdS厚度的增加,量子点会从I型逐渐过渡到II型。对于II型CdTe/CdS核壳量子点,不仅有CdTe核区导带电子与价带空穴间的直接复合,还有CdS壳层导带电子与CdTe核价带空穴界面处的间接复合,这种发光机制的改变导致荧光光谱的上述变化。
     利用400nm和800nm不同波长的低强度飞秒激光,对CdTe和CdTe/CdS核壳量子点溶胶进行激发,获得其稳态和时间分辨荧光性质。800nm飞秒激光激发下,CdTe和CdTe/CdS量子点产生上转换发光现象,上转换荧光峰与400nm激发下的荧光峰相比发生蓝移,而且蓝移值与荧光量子产率有关,激发光功率与上转换荧光强度间满足平方关系。研究表明,CdTe和CdTe/CdS量子点荧光由带边激子态和诱捕态两种成分组成,两种成分峰位不同,带边激子态波长较短,诱捕态波长较长。800nm激发与400nm激发时相比,激子态相对比重增加,这导致荧光峰的蓝移。所以,表面态辅助的双光子吸收是低激发强度下量子点上转换发光的主要机制。
Fluorescent nano-materials have many kinds of novel effects, such as the quantum size effect, the surface effect and the macroscopic quantum tunnel effect and so on. Fluorescent nano-materials become the research hotspot in recent years because of the outstanding performance in the optics, electricity, magnetism, thermology. Quantum dots (QDs or semiconductor nanometer crystals) have the narrow emission line, wide stimulation spectral line, stable property, continuously adjustable emission wave length along with particle size and much other excellent physical and chemical nature. It is hopeful to substitute present organic materials and obtains the widespread application in the domains of cell imaging, DNA sequencing, immunity examination, temperature sensing, white light LED and so on. At present, the synthesis of QDs has the mature technology route, but the oil phase synthesis needs to reduce the cost and the aqueous phase synthesis needs to raise the fluorescence efficiency. QDs have strong surface and interfacial effect. The physical mechanism of many optical characters is not completely clear, sucn as the metal surface enhancement fluorescence, up-coversion fluorescence, the interaction between QDs and other materials etc.
     We used the octadecene (ODE) to substitute three octyl oxidation phosphine (TOPO) as the resolver. It reduced the synthetic cost. The CdSe QDs with different color have been synthesized in the oil phase. The fluorescence performances of CdSe QDs are similar to the QDs obtained from the traditional oil phase synthetic method. In the chloroform solution, the polyaniline (PAni) were mixed with the different size CdSe QDs. Then CdSe QDs/PAni compound was obtained. The fluorescence intensity of CdSe QDs/PAni compound reduces when the size of CdSe QDs reduces. Simultaneously the polyaniline density increases can also reduce the fluorescence intensity of CdSe QDs/PAni compound effectively. The analysis indicates that the energy transfer and charge transfer occur between the CdSe QDs and the polyaniline. It causes the fluorescence quenching. On the one hand, resonance energy transmission has produced from CdSe QDs to the polyaniline. On the other hand the polyaniline may intercept the electric charge transmission in CdSe QDs effectively and cause the interruption of its radiative recombination process.
     The CdSe and CdTe QDs with different size were synthesized in the aqueous phase. The mercaptoacetic acid and thiohydracrylic acid were taken as the superficial ligands. Metal-Enhanced Fluorescence from CdSe and CdTe QDs were investigated. The spectrum change of the QDs on the metal surface is dependent on at least two factors: an enhanced local electromagnetic field and an increase in the intrinsic decay rate of the QDs. A significant enhancement (4-fold) in fluorescence intensity is observed from the CdSe QDs on the Au island thin film as compared to that on the glass. On the other hand, the fluorescence intensity decay of CdSe QDs on the Au island thin film shows a faster decay with nearly 2-fold decrease in average fluorescence lifetime. The energy band structure matches between the CdSe QDs and Au, therefore the excited electrons in the Au island thin film can pour into the CdSe nuclear area. It increases the excited state electron density in QDs, thus causes the fluorescence enhancement. The fluorescent lifetime reduction is a result of the free exciton number and the radiative transition efficiency increase.
     CdTe QDs were self-assembled on the surface of silver nanoparticles (NPs) capped with polyvinylpyrrolidone (PVP) through the ligand field effect of Cd—O. A significant 2-fold enhancement in the integrated fluorescence intensities, red shift of fluorescence peak and obvious decrease of lifetime were observed in the CdTe QDs assembled on the Ag NPs in comparison with the pure CdTe QDs. The fluorescence enhancement factor and red shift were found to depend on the Ag NPs concentration. Compared with previous reports, the occurrence of the self-assembly of CdTe QDs on the surface of PVP-capped Ag NPs is fairly simple and easy. From a practical point of view, the combination of CdTe QDs with Ag NPs may lead to the fluorescence enhancement, which could be utilized in a variety of biological, chemical and medical detection applications.
     Water-soluble CdTe/CdS core/shell quantum dots (QDs) with the different shell thickness capped were synthesized following the synthetic method of successive ion layer adsorption and reaction. The relationships of fluorescence quantum yield, the spectrum structure with CdS shell thickness were discussed. The CdTe/CdS core/shell QDs exhibite a significant red shift of emission peak, full width of half maximum (FWHM) increase and fluorescence lifetime lengthening which is different to CdSe/ZnS, CdTe/ZnS core/shell QDs. We hypothesize that CdTe QD will gradually evolve into a type-II core/shell QDs from a type-I CdTe core with increasing CdS shell thickness. For the type-II CdTe/CdS QDs, the fluorescence can come not only from the recombination between an electron in the conduction band of CdS shell and a hole in the valence band of CdTe core, resulting in a significant red shift and a long radiative lifetime, but also from the recombination from an electron in the conduction and valence bands of CdTe core. The two recombination processes will cause a broadening of the fluorescence band, as well as a significant red shift. The lack of fluorescence lifetime lengthening and quantum yield increasing was ascribed to the surface influence of the thick shell.
     We study the steady-state and time-resolved fluorescent properties of CdTe and CdTe/CdS core/shell QDs by one and two photons excitation with a femto-second laser under the low intensity. 800 nm laser excitation causes a blue shift of the emission peak compared with 400 nm laser excitation. The blue shift value is related to fluorescence quantum yield. The blue shift value is small when the fluorescence quantum yield is high. Near-quadratic laser power dependence of the up-conversion intensity and bi-exponential decay kinetics are observed. It is found that up-conversion fluorescence is composed of a photoinduced trapping and a band edge excitonic state. The blue shift of the emission peak is caused by the relative change in fluorescence intensity between excitonic and trapping states. Two-steps and two-photons absorption involving the surface as the intermediate states has been proposed for up-conversion fluorescence of CdTe/CdS quantum dots.
引文
1张志焜,崔作林.纳米材料与纳米技术.国防工业出版社, 2001: 4-5
    2张立德,牟季美.纳米材料和纳米结构.科学出版社, 2001: 16-19
    3 B.O. Dabbousi, J. Rodriguez-viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi. (CdSe)ZnS Core-shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B, 1997, 101(46): 9463-9475
    4 C.B. Murray, C.R. Kagan, M.G. Bawendi. Synthesis and Characterization of Monodisperse. Annu. Rev. Mater. Sci., 2000, 30: 545-610
    5 M.Q. Bawendi, M.L. Steigerwald, L.E. Bras. The Quantum Mechanics of Larger Semiconductor Clusters Quantum Dots. Annu. Rev. Phys. Chem. 1990, 41: 477-496
    6 A.P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996, 271: 933-937
    7 N. Chestnoy, T.D. Harris, R. Hull, L.E. Brus. Luminescence and Photophysics of Cadmium Sulfide Semiconductor Clusters: the Nature of the Emitting Electronic State. J. Phys. Chem., 1986, 90(15): 3393-3399
    8 T. Vossmeyer, L.Katsikas, M. Giersig, I.G. Popovie, K. Diesner, A.Chemseddine, A. Eychmüller, H. Weller. CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift ofthe Excitonic Transition Energy, and Reversible Absorbance Shift. J. Phys. Chem., 1994, 98: 7665-7673
    9 Y. Kayanuma. Quantum-size Effects of Interacting Electrons and Holes in Semiconductor Microcrystals with Spherical Shape. Phys. Rev. B, 1988, 38: 9797-9805
    10 F. Wang, W.B. Tan, Y. Zhang, X.P. Fan, M.Q. Wang. Luminescent Nanomaterials for Biological Labelling. Nanotechnology, 2006, 17: 1-13
    11 A.P. Alivisatos, W. Gu, C. Larabell. Annual Review of Biomedical Engineering, 2005, 7: 55-76
    12 X. Gao, Y. Cui, R.M. Levenson. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nature Biotechnology, 2004, 22(8): 969-976
    13 X. Gao, L. Yang, J.A. Petros, et al. In Vivo Molecular and Cellular Imaging with Quantum Dots. Curr Opin Biotechnol, 2005, 16(1): 63-72
    14 J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon. Long-Term Multiple Color Imaging of Live Cells Using Quantum Dot Bioconjugates. Nature Biotech.,2003, 21: 47-51
    15 B.F. Fischer, H.J. Eisler, N.E. Stott, M.G. Bawendi. Emission Intensity Dependence and Single-exponential Behavior in Single Colloidal Quantum Dot Fluorescence Lifetimes. J. Phys. Chem. B, 2006, 108: 143-148
    16 D. Brunner, B.D. Gerardot, P.A. Dalgarno, G. Wüst, K. Karrai, N.G. Stoltz, P.M. Petroff, R.J. Warburton. A Coherent Single-Hole Spin in a Semiconductor. Science, 2009, 325: 70-72
    17 K.W. Stone, K. Gundogdu, D.B. Turner, X. Li, S.T. Cundiff, K.A. Nelson. Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells. Science, 2009, 324: 1169-1173
    18 R.M. Westervelt. Applied Physics: Graphene Nanoelectronics. Science, 2008, 320: 324-325
    19 L.E. Brus. Electron–Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: the Size Dependence of the Lowest Excited Electronic State. J. Chem. Phys., 1984, 80: 4403-4409
    20 M.L. Steigerwald. L. E. Brus. Synthesis, Stabilization and Electronic Structure of Quantum Semiconductor Nanoclusters. Annu. Rev. Mater. Sci., 1989, 19: 471-495
    21 R. Kubo. Electronic Properties of Metallic Fine Particles. J. Phys. Soc., Japan. 1962, 17: 975-986
    22 S.K. Poznyak, N.P. Osipovich, A. Shavel, D.V. Talapin, M. Gao. A. Eychlmüller, N. GaPonik. Size-Dependent Electrochemical Behavior of Thio-capped CdTe Nanocrystals in Aqueous Solution. J. Phys. Chem. B, 2005, 109: 1094-1100
    23 I. Robe, M. Kuno, P.V. Kamat. Size-Dependent Electron Injection from Excited Cdse Quantum Dots into TiO2 Nano Partieles. J. Am. Chem. Soc., 2007, 129: 4136-4137.
    24 M. Laferri?re, R.E. Galian, V. Maurel, J.C. Scaiano. Non-linear Effects in the Quenching of Fluorescent Quantum Dots by Nitroxyl Free Radicals. Chem. Commun., 2006, (3): 257-259.
    25 M.J. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 1998, 281: 2013-2015
    26 W.C.W. Chan, D.J. Maxwell, X. Gao, R.E Bailey,. M. Han, S. Nie. Luminescent Quantum Dots for Multiplexed Biological Detection and Imaging, Curr. Opin. Biotechnol. 2002, 13: 40-46
    27 L.E. Brus. Electron Wave Fundtion in Semiconduetor Clusters: Experiment and Theory. J. Phy. Chem., 1986, 90(12): 2555-2560
    28 P. Ball, L. Garvin. Science at the Atomic Scale. Nature, 1992, 355: 761-766
    29 W.P. Halperin. Quantum Size Effects in Metal Particles. Rev. Modern Phys., 1986, 58: 533-606
    30 M.V. Kovalenko, M. Scheele, D.V. Talapin. Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands. Science, 2009, 324:1417-1420
    31 P. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A.P. Baddorf, S.V. Kalinin. Polarization Control of Electron Tunneling into Ferroelectric Surfaces. Science, 2009, 324: 1421-1425
    32 P. Szuromi. Surface Science: Long Intervals in the Islands. Science, 2007, 316: 1395
    33 D.L. Feldheim. Chemistry: The New Face of Catalysis. Science, 2007, 316: 699-700
    34 M.V. Kovalenko, M. Scheele, D.V. Talapin. Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands. Science, 2009, 324: 1417-1420
    35 N.H. Nahler, J.D. White, J. Larue, D.J. Auerbach, A.M. Wodtke. Inverse Velocity Dependence of Vibrationally Promoted Electron Emission from a Metal Surface. Science, 2008, 321: 1191-1194
    36 X.L. Qi, R. Li, J. Zang, S.C. Zhang. Inducing a Magnetic Monopole with Topological Surface States. Science, 2009, 323: 1184-1187
    37 D. Hsich, Y. Xia, L. Wray, D. Qian, A. Pal, J.H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C.L. Kane, Y.S. Hor, R.J. Cava, M.Z. Hasan. Observation of Unconventional Quantum Spin Textures in Topological Insulators. Science, 2009, 323: 919-922
    38 S. Giblin. Applied Physics: One Electron Makes Current Flow. Science, 2007, 316: 1130-1131
    39 M.C. LeMieux, M. Roberts, S. Barman, Y.W. Jin, J.M. Kim, Z. Bao. Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors. Science, 2008, 321: 101-104
    40 C.M. Niemeyer. NanoParticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials. Science, Angew. Chem. Int. Ed., 2001, 40: 4128-4158
    41安利民.可用于生物标记的半导体纳米微粒与有机、生物分子的界面效应研究.东北师范大学硕士毕业论文, 2004: 8-10
    42李凤生.超细粉体技术,国防工业出版社, 2000: 95-245
    43 V. Graaf, M.A. Keizer, A. Burggraaf. Wet Chemical Preparation of Zirconia Powders: their Microstructure and Mechanical Properties. J. Science of Ceramics, 1980, 10: 83-92
    44 Y.M. Zhou, H.G. Zhu, Z.X. Chen, M.Q. Chen, Y. Xu, H.Y. Zhang, D.Y. Zhao. A Large 24-Membered-Ring Germanate Zeolite-Type Open-Framework Structurewith Three-Dimensional Intersecting Channels. Angew. Chem. Int. Ed., 2001, 40: 2166-2168
    45 L.D. Klayman, T.S. Griffin. Reaction of Selenium with Sodium Borohydride in Protic Solvents: A Facile Method for the Introduction of Selenium into Organic Molecules. J. Am. Chem. Soc., 1973, 95:197-199; 30: 545-610
    46 M. Boutonnet, J. Kizling, P. Stenuis. The Preparation of Monodisperse Colloidal Metal Particles from Microemulsions. J. Colloid Surf., 1982, 5: 209-225
    47 L. Spanhel, M. Haase, H. Weller, A. Henglein. Surface Modification and Stability of Strong Luminescing CdS Particles. J. Am. Chem. Soc., 1987, 109: 5649-5655
    48 A.R. Kortan, R. Hull, R.L. Opila, M.G. Bawendi, L. Steigerwald, P.J. Carroll, L.E. Brus. Nucleation and Growth of Cadmium Selendie on Zinc Sulfide Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. J. Am. Chem. Soc., 1990, 112: 1327-1332
    49 M.A. Hines, P. Guyot-Sionnest. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem., 1996, 100: 468-471
    50 C.B. Murray, D.J. Norris, M.G. Bawendi. Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites. J. Am. Chem. Soc., 1993, 115 (19): 8706-8715
    51 L.H. Qu, Z.A. Peng, X.G. Peng. Alternative Routes toward High Quality CdSe Nanocrystals. Nano. Leter., 2001, 1: 333-337
    52 L.H. Qu, X.G Peng. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc., 2002, 124: 2049-2055
    53 Z.A. Peng, X.G. Peng. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc., 2001, 123: 183-184
    54 B. Blackman, D. Battaglia. X. Peng. Bright and Water-Soluble Near IR-Emitting CdSe/CdTe/ZnSe Type-II/Type-I Nanocrystals, Tuning the Efficiency and Stability by Growth. Chem. Mater., 2008, 20 (15): 4847-4853
    55 J. Aldana, Y.A. Wang, X. Peng. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. J. Am. Chem. Soc., 2001, 123(36): 8844-8850
    56 Z.A. Peng, X. Peng. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth. J. Am. Chem. Soc., 2002, 124 (13): 3343-3353
    57 L. Qu, X. Peng. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc., 2002, 124 (9): 2049-2055
    58 M. Shim, C. Wang, P. Guyot-Sionnest. Charge-Tunable Optical Properties inColloidal Semiconductor Nanocrystals. J. Phys. Chem. B, 2001, 105(12): 2369-2373
    59 S. Xu, S. Kumar, T. Nann. Rapid Synthesis of High Quality InP Nanocrystals. J. Am. Chem. Soc., 2006, 128: 1054-1055
    60 I. Mekis, D.V. Talapin, A. Kornowski, M. Haase, H. Weller. One-pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and "Greener" Chemical Approaches. J. Phys. Chem. B, 2003, 107: 7454-7462
    61 D.C. Pan, Q.Wang, S.C. Jiang, X.L Ji, L.J. An. Low-Temperature Synthesis of Oil-Soluble CdSe, CdS, and CdSe/CdS Core-Shell Nanocrystals by Using Various Water-Soluble Anion Precursors. J. Phys. Chem. C, 2007, 111: 5661-5666
    62 M. Danek, K.F. Jensen, C.B. Murray, M.G. Bawendi. Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe. Chem. Mater., 1996, 8: 173-180
    63 S. W. Kim, J.P. Zimmer, S.Ohnishi, J.B. Tracy, J.V. Frangioni, M.G. Bawendi. Engineering InAsxP1-x InP/ZnSe III-ⅤAlloyed Core/Shell Quantum Dots for the Near-Infrared. J. Am. Chem. Soc., 2005, 127: 10526-10532
    64 A.W. Schill, C.S. Gaddis, W. Qian, M.A.El-Sayed, Y. Cai, V.T. Milam, K. Sandhage. Ultra Fast Electronic Relaxation and Charge Carrier Localization in CdS/CdSe/CdS Quantum-Dot Quantum-Well Heterostructures. Nano.Lett., 2006, 6: 1940-1949
    65 X.H. Zhong, M.Y. Han, Z.L Dong, T.J. White, W. Knoll. Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability. J. Am. Chem. Soc., 2003, 125: 8589-8594
    65 X.H. Zhong, Y.Y. Feng, W.G. Knoll, M.Y. Han. Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width. J. Am. Chem. Soc., 2003, 125: 13559-13563
    66范希武,单崇新,羊亿,张吉英,申德振,吕有明,刘益春.以S-K和VW模式生长ZnCdSe和ZnSeS量子点及其特性.发光学报(Chinese Journal of Luminescence), 2005, 26: 9-14
    67 H.F. Qian, X. Qiu, L. Li, J.C. Ren. Microwave-Assisted Aqueous Synthesis: A Rapid Approach to Prepare Highly Luminescent ZnSe(S) Alloyed Quantum Dots. J. Phys. Chem. B., 2006, 110: 9034-9040
    68 T. Franzl, J. Muller, T.A. Klar, A.L. Rogach, J. Feldmann, D.V. Talapin, H. Weller. CdSe: Te Nanocrystals: Band-Edge versus Te-Related Emission. J. Phys. Chem. C, 2007, 111: 2974-2979
    69 X.H. Zhong, S.H. Liu, Z.H. Zhang, L. Li, Z. Wei, W. Knoll. Synthesis ofHigh-Quality CdS, ZnS, and ZnxCd1-xS Nanocrystals using Metal Salts and Elemental Sulfur. J. Mater. Chem., 2004, 14: 2790-2794
    70 Y. Gu, I. L. Kuskovsky, R.D. Robinson, I.P. Herman, G.F. Neumark, X. Zhou, S.P. Guo, M. Munoz, M.C. Tamargo. A Comparison between Optically Active CdZnSe ZnSe and CdZnSe ZnBeSe Self-assembled Quantum Dots: Effect of Beryllium. Solid State Communications, 2005, 134: 677-681
    71 K.P. Korona, P. Wojnar, J.A. Gaj, G. Karczewski, J. Kossut, J. Kuhl. Influence of Quantum Dot Density on Excitonic Transport and Recombination in CdZnTe QD Structures. Solid State Communications, 2005, 133: 369-373
    72 L.A. Swafford, L.A. Weigand, M.J. Bowers, J.R. McBride, J.L. Rapaport, T.L. Watt, S.K. Dixit, L.C. Feldman, S.J. Rosenthal. Homogeneously Alloyed CdSxSe1-x Nanocrystals: Synthesis, Characterization, and Composition Size Dependent Band Gap. J. Am. Chem. Soc., 2006, 128: 12299-12306
    73 N. Pradhan, X. Peng. Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry. J. Am. Chem. Soc., 2007, 129 (11): 3339-3347
    74 R. Xie, X. Peng. Synthesis of Cu-Doped InP Nanocrystals with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. J. Am. Chem. Soc., 2009, 131 (30): 10645-10651
    75 W. Liu, M. Howarth, A.B. Greytak, Y. Zheng, D.G. Nocera, A.Y. Ting, M.G. Bawendi. Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging. J. Am. Chem. Soc., 2008, 130 (4): 1274-1284
    76 S.C. Hsieh, F.F. Wang, C.S. Lin, Y.J. Chen, S.C. Hung, Y.J. Wang. The Inhibition of Osteogenesis with Human Bone Marrow Mesenchymal Stem Cells by CdSe/ZnS Quantum Dot Labels. Biomaterials, 2006, 27: 1656-1664
    77 A.L. Rogach, L. Katsikas, A. Komowski, D.S. Su, A. Eychmüller, H. Weller. Synthesis and Characterization of Thiol-stabilized CdTe Nanocrystals. Ber. Bunsen-Ges. Phys. Chem., 1996, 100: 1772-1778
    78 J. Rockenberger, L.Troger, A.L. Rogach, M. Tischer, M. Grundmann, A. Eychmüller, H. Weller. The Contribution of Particle Core and Surface to Strain, Disorder and Vibrations in Thiolcapped CdTe Nanocrystals. J. Chem. Phys. 1998, 108: 7807-7815
    79 A.M. Kapitonov, A.P. Stupak, S.V. Gaponenko, E.P. Petrov, A.L Rogach, A. Eychmüller. Luminescence Properties of Thiol-Stabilized CdTe Nanocrystals. J. Phys. Chem. B, 1999, 103: 10109-10113
    80 M.Y. Gao, S. Kirstein, H. Mhwald. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. J. Phys. Chem. B, 1998, 102:8360-8363
    81 N.Gaponik, D.V. Talapin, A.L. Rogach, K. Hoppe, E.V. Shevehenko, A. Kornowski, A. Eychmüller, H. Weller. Thiol-Capping of CdTe Nanocrystals: an Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B, 2002, 106: 7177-7185
    82 H. Zhang, L.P. Wang, H.M. Xiong, L.H. Hu, B. Yang, W. Li. Adv. Mater., 2003, 15: 1712-1715
    83 C. Wang, H. Zhang, J. Zhang, M. Li, H. Sun, B. Yang. Application of Ultrasonic Irradiation in Aqueous Synthesis of Highly Fluorescent CdTe/CdS Core-shell Nanocrystals. J. Phys. Chem. C, 2007, 111: 2465-2469
    84 J. Ziegler, A. Merkulov, M. Grabolle. High-Quality ZnS Shells for CdSe Nanoparticles: Rapid Microwave Synthesis. Langmuir, 2007, 23: 7751-7759
    85 J. Guo, W. Yang, C. Wang. Systematic Study of the Photoluminescence Dependence of thiol-Capped CdTe Nanocrystals on the Reaction Conditions. J. Phys. Chem.B, 2005, 109: 17467-17473
    86 T. Torimoto, H. Kontani, Y. Shibutani, S. Kuwabata, T. Sakata, H. Mori, H. Yoneyama. Characterization of Ultrasmall CdS Nanoparticles Prepared by the Size-Selective Photoetching Technique. J. Phys. Chem. B, 2001, 105: 6838-6845
    87 Q.D. Chen, Q. Ma, Y. Wan, X.G. Su, Z.B. Lin. Q.H Jin. Studies on Fluorescence Resonance Energy Transfer between Dyes and Water-Soluble Quantum Dots. Luminescence. 2005, 20: 251-255
    88 J. Müller, J.M. Lupton, A. Rogach, J. Feldmann, D.V. Talapin, and H. Weller Signatures of Surface Charge Migration in the Spectral Diffusion of Single Elongated CdSe/CdS Nanocrystals. Phys. Rev. B, 2005, 72: 205339-205350
    89 M. B?umle, D. Stamou, J.M. Segura, R. Hovius, H.Vogel. Highly Fluorescent Streptavidin-Coated CdSe Nanopaticles: Preparation in Water, Characterization, and Micropatterning. Langmuir, 2004, 20: 3828-3831
    90 W. Guo, J.J. Li, Y.A. Wang, X. Peng. Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging. Chem. Mater., 2003, 15: 3125-3133
    91 I. Arslan, T.J. V. Yates, N.D. Browning, P. A. Midgley. Embedded Nanostructures Revealed in Three Dimensions. Science, 2005, 309: 2195-2198
    92 A.R. Clapp, I.L. Medintz, H.T. Uyeda, B.R. Fisher, E.R. Goldman, M.G. Bawendi, H. Mattoussi. Quantum Dot-Based Multiplexed Fluorescence Resonance Energy Transfer. J. Am. Chem. Soc., 2005, 127(51): 18212-18221
    93 B.J. Walker, G.P. Nair, L.F. Marshall, V. Bulovi, M.G. Bawendi. Narrow-BandAbsorption-Enhanced Quantum Dot/J-Aggregate Conjugates. J. Am. Chem. Soc., 2009, 131 (28): 9624-9625
    94 W. Liu, H.S. Choi, J.P. Zimmer, E. Tanaka, J.V. Frangioni, M. Bawendi. Compact Cysteine-Coated CdSe(ZnCdS) Quantum Dots for in Vivo Applications. J. Am. Chem. Soc., 2007, 129 (47): 14530-14531
    95 W.C. Chan, S.M. Nie. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 1998, 281: 2016-2018
    96 H.K. Baca, C. Ashley, E. Carnes, D. Lopez, J. Flemming, D. Dunphy, S. Singh, Z. Chen, N. Liu, H. Fan, G.P. López, S.M. Brozik, M. Werner-Washburne, C.J. Brinker. Cell-Directed Assembly of Lipid-Silica Nanostructures Providing Extended Cell Viability. Science, 2006, 313: 337-341
    97 X. Wu, H. Liu, J. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N. Ge, F. Peale, M.P. Bruchez. Immuno Fluorescent Labeling of Cancer Marker Her2 and other Cellular Targets with Semiconductor Quantum Dots. Nature Biotechnology, 2002, 21: 41-46
    98 J.P. Zimmer, S.W. Kim, S. Ohnishi, E. Tanaka, J.V. Frangioni, M.G. Bawendi. Size Series of Small Indium Arsenide?Zinc Selenide Core?Shell Nanocrystals and Their Application to In Vivo Imaging. J. Am. Chem. Soc., 2006, 128 (8): 2526-2527
    99 M.P. Bruchez, C.Z. Hotz. Quantum Dots Applications in Biology. Humana Press. 2007: 93-104
    100 X. Gao, C.W. Chan Warren, S. Nie, Quantum-Dot Nanocrystals for Ultrasensitive Biological Labeling and Multicolor Optical Encoding, J. Biomed. Opt., 2002, 7: 532-537.
    101 M. Han, X. Gao, J.Z. Su, S. Nie. Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nature Biotechnology, 2001, 19: 631-635
    102 E.R. Goldman, A.R. Clapp, G.P. Anderson, H.T. Uyeda, J.M. Mauro, I.L. Medintz, H. Mattoussi. Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents. Anal. Chem., 2004, 76 (3): 684-688
    103冯力蕴.复合荧光CdSe量子点的制备、表征与荧光性质研究.中国科学院长春光学精密机械与物理研究所博士学位论文, 2006:16
    104 J.W. Moreau, P.K. Weber, M.C. Martin, B. Gilbert, I.D. Hutcheon, J.F. Banfield. Extracellular Proteins Limit the Dispersal of Biogenic Nanoparticles. Science, 2007, 316: 1600-1603
    105 X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss. Quantum Dots for Live Cells,in Vivo Imaging, and Diagnostics. Science, 2005, 307: 538-544
    106金丽. CdTe量子点的合成表面、修饰及其在生物医学上的应用.吉林大学博士学位论文, 2009: 27-29
    107 E.A. Weiss, V.J. Porter, R.C. Chiechi, S.M. Geyer, D.C. Bell, M.G. Bawendi, G.M. Whitesides. The Use of Size-Selective Excitation To Study Photocurrent through Junctions Containing Single-Size and Multi-Size Arrays of Colloidal CdSe Quantum Dots. J. Am. Chem. Soc., 2008, 130 (1): 83-92
    108 A.K. Geim. Graphene: Status and Prospects. Science, 2009, 324: 1530-1534
    109 T. Fujisawa, T. Hayashi, R. Tomita, Y. Hirayama. Bidirectional Counting of Single Electrons. Science, 2006, 312: 1634-1636
    110 H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda. GaN Photonic-Crystal Surface-Emitting Laser at Blue-Violet Wavelengths. Science, 2008, 319: 445-447
    111廖宇峰.应用于生物光子成像的CdSe量子点核壳结构材料的绿色制备.浙江大学博士学位论文, 2008: 10-13
    112陈鹏,刘育梁.量子点激光器.微纳电子技术, 2005, 7: 311-317
    113 Y. Chan, P.T. Snee, J.M. Caruge, B.K. Yen, G.P. Nair, D.G. Nocera, M.G. Bawendi. A Solvent-Stable Nanocrystal-Silica Composite Laser. J. Am. Chem. Soc., 2006, 128 (10): 3146-3147
    114 D.V. Vezenov, B.T. Mayers, R.S. Conroy, G.M. Whitesides, P.T. Snee, Y. Chan, D.G. Nocera, M.G. Bawendi. A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser. J. Am. Chem. Soc., 2005, 127 (25): 8952-8953
    115王防震.半导体量子点的光谱和光学性质研究.复旦大学博士学位论文. 2005:11-13
    116 S. Noda. Applied Physics: Seeking the Ultimate Nanolaser. Science, 2006, 314: 260-261
    117 V.L. Colvin, M.C. Schlamp, A.P. Alivisatos. Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature, 1994, 370: 354-357
    118 Q. Sun, Y.A. Wang, L.S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li. Bright, Multicoloured Light-Emitting Diodes Based on Quantum Dots. Nature Photonics, 2007, 1: 717-722
    119 Y. Xuan, D. Pan, N. Zhao, X. Ji, D. Ma. White Electroluminescence from a Poly (N-vinylcarbazole) Layer Doped with CdSe/CdS Core-Shell Quantum Dots. Nanotechnology, 2006, 17: 4966-4969
    120张淑平.混合有机电致发光材料的电输运及能量转移特性研究.哈尔滨工业大学理学博士学位论文, 2008: 9-12
    121 G. Fève, A. Mahé, J.M. Berroir, T. Kontos, B. Pla?ais, D. C. Glattli, A. Cavanna, B. Etienne, Y. Jin. An On-Demand Coherent Single-Electron Source. Science, 2007, 316: 1169-1172
    122 H. Mooij. Physics: The Road to Quantum Computing. Science, 2005, 307: 1210-1211
    123 M. K?nig, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science, 2007, 318: 766-770
    124 E.A. Stinaff, M. Scheibner, A.S. Bracker, I.V. Ponomarev, V.L. Korenev, M.E. Ware, M.F. Doty, T.L. Reinecke, D. Gammon. Optical Signatures of Coupled Quantum Dots. Science, 2006, 311: 636 - 639
    125 L. Robledo, J. Elzerman, G. Jundt, M. Atatüre, A. H?gele, S. F?lt, A. Imamoglu1. Conditional Dynamics of Interacting Quantum Dots. Science, 2008, 320: 772-775
    126王防震.半导体量子点的光谱和光学性质研究.复旦大学博士学位论文, 2005: 11-13
    127 M.S. Lavine. Chemistry: Almost as Bright. Science, 2005, 307: 18
    128 J.M. Perkel. Business office feature: Cell Signaling: In Vivo Veritas. Science, 2007, 316: 1763-1768
    129安利民.可用于生物标记的半导体纳米微粒与有机、生物分子的界面效应研究.东北师范大学硕士毕业论文, 2004: 25-26
    130张立德,牟季美.纳米材料和纳米结构.科学出版社, 2006: 147-148
    131 X.N. Wang, J. Wang, M. Zhou, H.J. Zhu, H. Wang, X.D. Cui, X.D. Xiao, Q. Li. CdTe Nanorod Arrays on ITO: From Microstructure to Photoelectrical Property. J. Phys. Chem. C, 2009, 113: 16951-16953
    132陈治明,王建农.半导体器件的材料物理学基础.科学出版社, 2003: 263
    133 W.T. Lim, C.H. Lee. Thin solid films, 1999, 353: 12
    134王中林,曹茂盛,李金刚.纳米材料表征.化学工业出版社, 2005: 31-32
    135 X.F. Gao, H.B. Li, W.T. Sun, Q. Chen, F.Q. Tang, L.M. Peng. CdTe Quantum Dots-Sensitized TiO2 Nanotube Array Photoelectrodes. J. Phys. Chem. C, 2009, 113: 7531-7535
    136 B.S. Li, Y.C. Liu, D.Z. Shen, Y.M. Lu, J.Y. Zhang, X.G. Kong, X.W. Fan, Z.Z. Zhi. J. Vac. Sci. Technol. A, 2002, 20: 265
    137安利民.可用于生物标记的半导体纳米微粒与有机、生物分子的界面效应研究.东北师范大学硕士毕业论文, 2004: 30
    138王防震.半导体量子点的光谱和光学性质研究.复旦大学博士学位论文, 2005:15-16
    139 M. Bayer. O. Stern, P. Hawrylak, S. Fafard, A. Forchel. Nature, 2000, 405: 923
    140 E.F. Hilinski, Y. Wang, P.A Lucas. A Picosecond Bleaching Study of Quantum Confined Cadmium Sulfide Microcrystallites in a Polymer Film. J. Chem. Phys., 1988, 89: 3435-3441
    141 P. Anshu, G.S Philippe. Slow Electron Cooling in Colloidal Quantum Dots. Science, 2008, 322: 929 -932
    142樊美公.光化学基本原理与光子学材料科学.科学出版社, 2001: 10-28
    143张建成,王夺元.现代光化学.化学工业出版社, 2006: 20-21
    144陆同兴,路轶群.激光光谱技术原理及应用.中国科学技术大学出版社, 1999: 322-323
    145宋维斯.卟啉衍生物及荧光量子点光动力作用的光谱研究.哈尔滨工业大学理学硕士论文, 2008: 25-33
    146 C. Kim, A. Facchetti, T.J. Marks. Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance. Science, 2007, 318: 76-80
    147唐爱伟,滕枫,高银浩,梁春军,王永生. CdS纳米晶的制备条件对发光特性的影响.发光学报, 2005, 26(5): 622-626
    148 V.L. Colvin, M. C. Schlamp, A. P. Alivisatos. Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature, 1994, 370(6488): 354-357
    149 N.D. Kumar, M. P. Joshi, C.S. Friend, P.N. Prasad, R. Burzynski. Organic-Inorganic Heterojunction Light Emitting Diodes Based on Poly (p-phenylene vinylene)/Cadmium Sulfide Thin Films. Appl. Phys. Lett., 1997, 71(10): 1388-1390
    150 H. Park, J.Y. Kim, B.D. Chin, Y.C. Kim, J.K. Kim, O.O. Park. White Emission from Polymer/Quantum dot Ternary Nanocomposites by Incomplete Energy Transfer. Nanotechnology, 2004, 15: 1217-1220
    151 H. Goto, K. Akagi. Synthesis and Properties of Polyaniline Derivatives with Liquid Crystallinity. Macromolecules, 2002, 35: 2545-2551
    152王美健,杜美利.煤基聚苯胺复合材料的导电性能研究.现代塑料加工应用, 2007, 18(6): 5-8
    153喻冬秀,陈明涛,文秀芳,程江,杨卓如.聚苯胺包覆短碳纤维的机理及分散稳定性.华南理工大学学报(自然科学版), 2007, 35: 72-75
    154 Y. Wang, N. Herron. Nanometer-Sized Semiconductor Clusters: MaterialsSynthesis, Quantum Size Effects, and Photophysical Properties. J. Phys. Chem., 1991, 95(2): 525-532
    155 C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev., 2005, 105: 1025-1102
    156谢闯. CdSe纳米晶体的研究.天津大学博士学位论文, 2007: 139-141
    157陈国珍,黄贤智,郑朱梓,许金沟,王尊本.荧光分析法.科学出版社, 1990: 17
    158 J.S. Steckel, B.K.H. Yen, D.C. Oertel, M.G. Bawendi. On the Mechanism of Lead Chalcogenide Nanocrystal Formation. J. Am. Chem. Soc., 2006, 128 (40): 13032-13033
    159 J.Y. Rempel, M.G. Bawendi, K.F. Jensen. Insights into the Kinetics of Semiconductor Nanocrystal Nucleation and Growth. J. Am. Chem. Soc., 2009, 131 (12): 4479-4489
    160 Q. Zhang, Y. Li, R.W. Tsien. The Dynamic Control of Kiss-And-Run and Vesicular Reuse Probed with Single Nanoparticles. Science, 2009, 323: 1448-1453
    161张淑平.混合有机电致发光材料的电输运及能量转移特性研究.哈尔滨工业大学理学博士学位论文, 2008: 39-44
    162宋维斯.卟啉衍生物及荧光量子点光动力作用的光谱研究.哈尔滨工业大学理学硕士论文, 2008: 12-18
    163 S.A. Crooker, T. Barrick, J.A. Hollingsworth, V.I. Klimov. Multiple Temperature Regimes of Radiative Decay in CdSe Nanocrystal Quantum Dots: Intrinsic Limits to the Dark-exciton Lifetime. Appl. Phys. Lett., 2003, 82: 2793-2795
    164 S.N. Sharma, Z.S. Pillai, P.V. Kamat. J. Phys. Chem. B, 2003, 107(37): 10088-10093
    165 K. Ray, R. Badugu, J.R. Lakowicz. Metal-Enhanced Fluorescence from CdTe Nanocrystals: A Single-Molecule Fluorescence Study. J. Am. Chem. Soc., 2006, 128: 8998-8999
    166 J.H. Song, T. Atay, S. Shi, H. Urabe, A.V. Nurmikko. Large Enhancement of Fluorescence Efficiency from CdSe/ZnS Quantum Dots Induced by Resonant Coupling to Spatially Controlled Surface Plasmons. Nano Lett., 2005, 5(8): 1557-1561
    167 V. Biju, R. Kanemoto, Y. Matsumoto, S. Ishii, S. Nakanishi, T. Itoh, Y. Baba, M. Ishikawa. Photoinduced Photoluminescence Variations of CdSe Quantum Dots in Polymer Solutions. J. Phys. Chem. C, 2007, 111: 7924-7932
    168 H. Y. Lin, Y. F. Chen, J. G. Wu, D. I. Wang, C. C. Chen. Carrier TransferInduced Photoluminescence Change in Metal-Semiconductor Core-Shell Nanostructures. Appl. Phys. Lett., 2006, 88: 161911
    169 Lee, A.O. Govorov, N.A. Kotov. Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer. Angew. Chem., 2005, 117: 7605 -7608
    170 Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, S. S. Xie. Evidence for the Monolayer Assembly of Poly (vinylpyrrolidone) on the Surfaces of Silver Nanowires, J. Phys. Chem. B, 2004, 108: 12877-12881.
    171 S.F. Wuister, R. Koole, C. de Mello Donega, A. Meijerink. Temperature -dependent Energy Transfer in Cadmium Telluride Quantum Dot Solids. J. Phys. Chem. B, 2005, 109, 5504-5508.
    172 A.L. Rogach, T. Franzl, T.A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y.P. Rakovich, J.F. Donegan. Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals: State-of-the-Art. J. Phys. Chem. C, 2007, 111: 14628-14637
    173 R. Osovsky, V. Kloper, J. Kolny-Olesiak, A. Sashchiuk, E. Lifshitz. Optical Properties of CdTe Nanocrystal Quantum Dots, Grown in the Presence of Cd0 Nanoparticles. J. Phys. Chem. C., 2007, 111(29): 10841-10847
    174 A. O. Govorov, G.W. Bryant, W. Zhang, et al. Exciton-plasmon Interaction and Hybrid Excitons in Semiconductor-metal Nanoparticle Assemblies. Nano. Lett., 2006, 6: 984-994
    175 J. R. Lakowicz. Radiative Decay Engineering 5: Metal Enhanced Fluorescence and Plasmon Emission. Anal. Biochem., 2005, 337(2):171-194
    176 P. Szuromi. Chemistry: SERS from Sharp Silver. Science, 2007, 316: 21
    177 Carminati,R., J. J. Greffet, C. Henkel, et al. Radiative and Non-radiative Decay of a Single Molecule Close to a Metallic Nanoparticle. Opt. Commun., 2006, 261: 368-375
    178 P.T. Snee, R.C. Somers, G. Nair, J.P. Zimmer, M.G. Bawendi, D.G. Nocera. A Ratiometric CdSe/ZnS Nanocrystal pH Sensor. J. Am. Chem. Soc., 2006, 128 (41): 13320-13321
    179 W.W.Yu, L.Qu, W.Guo, X.Peng. Experimental Detennination of the Extinction Coeffieient of CdTe, CdSe, and CdS Nanocrystals. J. Chem. Mater., 2003, 15: 2854-2860
    180 J. Perez-Conde, A. K. Bhattacharjee, M. Chamarro, P. Lavallard, V.D. Petrikov, A.A. Lipovskii. Photoluminescence Stokes Shift and Exciton Fine Structure in CdTe Nanocrystals. Phys. Rev. B, 2001, 64: 113303-113306
    181 J.J. Li, Y.A.Wang, W.Z.Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/ShellNanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. J. Am. Chem. Soc., 2003, 125(41): 12567-12575
    182 O. Sch?ps, N.L. Thomas, U. Woggon, M.V. Artemyev. Recombination Dynamics of CdTe/CdS Core?Shell Nanocrystals. J. Phys. Chem. B, 2006, 110(5): 2074-2079
    183 G. Marquez, L. Wang. Anisotropy in the Absorption and Scattering Spectra of Chicken Breast Tissue. Appl. Opt., 1998, 37(4): 798-805
    184金丽. CdTe量子点的合成表面、修饰及其在生物医学上的应用.吉林大学博士学位论文, 2009: 26-29
    185 A.J. Silversmith, W. Lenth, R.M. Macfarlane. Green Infrared-Pumped Erbium Upconversion Laser. Appl. Phys. Lett. 1987, 51: 1977-1979
    186 W. Chen, R Sammynaiken, Y. Huang. Luminescence Enhancement of ZnS: Mn Nanoclusters in Zeolite. J. Appl. Phys. 2000, 88: 5188-5193
    187 Z.P. Su, K.L. Teo, P.Y. Yu, K. Uchida. Mechanisms of Photoluminescence Up Conversion at the GaAs/GaInP2 Interface. Solid State Commun., 1996, 99: 933-936
    188 F.A.J.M. Driessen. High-Efficiency Energy Up-Conversion at GaAs-GaInP2 Interfaces. Appl. Phys. Lett., 1995, 67: 2813-2815
    189 Y.P. Rakovich, S.A. Filonovich, M.J. M.Gomes. Anti-Stokes Photo Luminescence in II-VI Colloidal Nanocrystals. Phys. Stat. Sol. (b), 2002, 229: 449-452
    190 A.G. Joly, W. Chen, D.E. McCready, J. Malm, J. Bovin. Upconversion Luminescence of CdTe Nanoparticles. Phys. Rev. B, 2005, 71: 165304(1-9)
    191 X. Wang, W. Yu, J.Z. Zhang, J. Aldana, X. Peng, M. Xiao. Photoluminescence Upconversion in Colloidal CdTe Quantum Dots. Phys. Rev. B, 2003, 68: 125318(1-6)
    192 W. Chen, A.G. Joly, D.E. McCready. Upconversion Luminescence from CdSe Nanoparticles. J. Chem. Phys. B, 2005, 122: 224708-224714
    193 E.J. McLaurin, A.B. Greytak, M.G. Bawendi, D.G. Nocera. Two-Photon Absorbing Nanocrystal Sensors for Ratiometric Detection of Oxygen. J. Am. Chem. Soc., 2009, 131 (36): 12994-13001
    194 F.V. Mikulec, M. Kuno, M. Bennati, D.A. Hall, R.G. Griffin, M.G. Bawendi. Organometallic Synthesis and Spectroscopic Characterization of Manganese -Doped CdSe Nanocrystals. J. Am. Chem. Soc., 2000, 122: 2532-2540
    195 A. Javier, D. Magana, T. Jennings, G.F. Strouse. Nanosecond Exciton Recombination Dynamics in Colloidal CdSe Quantum Dots under Ambient Conditions. Appl. Phys. Lett., 2003, 83: 1423-1425
    196吴文智,含镉量子点材料的超快光学特性研究.哈尔滨工业大学理学博士学位论文, 2007: 50-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700