几种半导体和稀土纳米材料的制备与光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于小尺寸效应、量子限域效应以及表面效应等引起一些新的物理、化学性质,受到广泛的关注和研究。ZnO、ZnSe、CdS是重要的II-VI族直接带隙化合物半导体材料,具有较大的禁带宽度和激子束缚能。它们在半导体激光器、太阳能电池、发光二极管、场效应晶体管、光电探测器件、气体传感器、光开关等光电子纳米器件方面有很大的应用前景。Gd2O3:Eu~(3+)材料由于具有较高的发光量子效率和较好的光谱特性,是一种优质的红色荧光粉,可广泛用于高清晰度电视、投影电视、平板显示、绿色照明等领域,因此得到了广泛的关注。本论文利用热蒸发法制备出高质量ZnO、ZnSe、CdS纳米材料,并对ZnO、ZnSe、CdS纳米材料的晶体结构、形貌、生长机理和光学性质进行了研究。用燃烧合成法成功的制备了Gd2O3:Eu~(3+)纳米晶,对其光学性质进行了研究。具体研究内容如下:
     (1)采用简单的热蒸发方法,成功的制备出ZnO四足和多足纳米结构。所制备的ZnO纳米结构纯度高,为六方纤锌矿结构。ZnO四足和多足纳米结构的足部沿[0001]方向生长。讨论了它们的生长过程。ZnO纳米结构的室温光致发光(PL)谱中出现一个较弱的紫外发射峰和一个较强的绿色发射峰,分别位于383nm和495nm处。其中紫外发射峰来源于近带边发射,绿色发射峰可能是表面缺陷和氧空位共同引起的。通过热蒸发方法,还制备出ZnO纳米棒和星状ZnO纳米结构,并对它们的光学性质进行了研究。
     (2)运用氢气辅助热蒸发方法制备出大量结晶良好的周期性孪晶结构的ZnSe纳米线。结构分析表明ZnSe纳米线为立方相结构并沿[111]方向生长。室温PL光谱中,在462nm处出现蓝色的近带边发射峰,在500至680nm间出现缺陷相关的发射带。在488nm激光激发下,首次观察到ZnSe纳米线的反斯托克斯(anti-Stokes)发光。用近场光学显微系统观察到ZnSe纳米线的Fabry–Pérot谐振现象。对ZnSe纳米线的光波导性质和表面光伏性质也进行了研究。
     (3)利用氢气辅助的一步热蒸发法,制备出大量的纤锌矿结构的CdS纳米带和纳米锯(nanosaw)。研究了沉积温度对CdS纳米结构形貌的影响。应用气–液–固(VLS)机理结合气–固(VS)生长机理来解释了CdS纳米结构的形成过程。CdS纳米结构在488nm激光的激发下,发射出波长为512nm的绿色发射峰,对应于CdS的带–带发射。研究了CdS纳米结构的光波导性质,其中CdS纳米带显示出很好的光波导性质。(4)用燃烧合成法成功的制备了Gd2O3:Eu~(3+)纳米晶。在甘氨酸–硝酸盐体系中,
     通过调节甘氨酸与稀土离子的比例得到不同相结构的Gd2O3:Eu~(3+)纳米晶,随着甘氨酸比例的增加,纳米晶逐渐从立方相向单斜相转变。研究了甘氨酸和退火温度对尺寸和发光性能的影响。在柠檬酸–硝酸盐体系中成功地制备出纯立方相的Gd2O3:Eu~(3+)纳米晶。所制备的立方相Gd2O3:Eu~(3+)纳米晶,主发射峰均出现在612nm处,对应于5D0→7F2跃迁。
Due to small size effect, quantum confinement effect and surface effect, nanomaterials with unique physical and chemical properties have stimulated great interest and have been investigated extensively. ZnO, ZnSe and CdS, having wide band gap and large exciton binding energy, are important II–IV group direct band semiconductors. These semiconductors have been widely applied in many fields, including nanolasers, solar cell, light-emitting diodes, field-effect transistors, photodetectors, gas sensors, optical switches, etc. The gadolinium oxide doped with europium (Gd_2O_3:Eu~(3+)) possess excellent luminescent characteristics and high thermal stability, which are useful in luminescent lighting and optoelectronic devices, including fluorescent lamps, high definition televisions, plasma display panels, flat panel displays, etc. In this dissertation, ZnO, ZnSe and CdS nanostructures have been achieved by the simple thermal evaporation methods. Their morphologies, structures, growth mechanism and optical properties have been investigated in detail. Nanocrystalline Gd_2O_3:Eu~(3+) have been synthesized by low temperature combustion method. The luminescent properties of the nanocrystals were studied. The main research results are shown as followed:
     (1) Novel ZnO tetrapod and multipod nanostructures were successfully synthesized in bulk quantity through thermal evaporation method. The ZnO nanostructures were of high purity, and were well-crystallized with wurtzite structure. The preferred growth direction of legs was found to be the [0001] direction. Possible growth mechanisms were proposed for the formation of the ZnO nanostructures. Room temperature photoluminescence spectra showed that the as-synthesized ZnO nanostructures had a strong green emission centered at 495 nm and a weak ultraviolet (UV) emission at 383 nm. The UV emission corresponds to the near band edge emission and the green emission probably originates from surface defects and oxygen vacancies. ZnO nanowires and star-like ZnO nanostructures were also synthesized in bulk quantity by thermal evaporation method. Optical properties of these ZnO nanostructures were studied.
     (2) ZnSe nanowires with zinc-blende structure were synthesized by a simple hydrogen assisted thermal evaporation method. Structure analysis indicated that the nanowires have periodically twinned structures and grown along the [111] direction. Photoluminescence spectra revealed that the nanowires have a near band edge emission at 462 nm and a broad defect-related deep level emission band extending from 500 to 680 nm. Anti-Stokes photoluminescence was observed for the first time in ZnSe nanowires excited by 488 nm laser. Optical waveguide behavior and surface photovoltage (SPV) of ZnSe nanowires was also investigated.
     (3) By using a simple one-step H2-assisted thermal evaporation method, high quality CdS nanostructures have been successfully fabricated in large scale. The as-synthesized CdS nanostructures consisted of nanobelts and nanosaws with a hexagonal wurtzite structure. The deposition temperature played an important role in defining the size and morphology of the CdS nanostructures. A vapor-liquid-solid (VLS) combined with vapor-solid (VS) growth mechanism was proposed to interpret the formation of CdS nanostructures. Room temperature photoluminescence measurements showed intense green emission centered at 512nm for both nanobelts and nanosaws, which is the band-to-band emission of CdS. The waveguide behavior of both types of CdS nanostructures was observed and discussed. CdS nanobelts exhibited excellent optical waveguide property.
     (4) Nanocrystalline Gd2O3 doped with europium was synthesized by the facile combustion method. In glycine-nitrate combustion reaction, the structure changed from cubic to monoclinic by varying the glycine-to-metal nitrate (G/M) molar ratio. The influences of glycine and annealing temperatures on the grain size, crystallinity and luminescent properties were clarified. Nanocrystalline Gd2O3:Eu3+ with cubic phase was also prepared by modified combustion synthesis using citric acid as the fuel. Nanocrystalline Gd2O3:Eu3+ with cubic structure showed a dominant emission peak at about 612 nm, being attributed to 5D0→7F2 transition.
引文
[1]张立德,牟季美著.纳米材料与纳米结构.北京:科学出版社, 2001
    [2] Huang M H,Mao S,Feiek H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899.
    [3] Duan X F, Huang Y, Lieber C M, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421(6920): 241-245.
    [4] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629-632
    [5] Law M, Sirbuly D J, Johnson J C, et al. Nanoribbon waveguides for subwavelength photonics integration. Science, 2004, 305(5688): 1269-1273
    [6] Huang Y, Duan X F, Lieber C M. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1(1): 142-147
    [7] Kubo R, Kawabata A, Kobayashi S. Electronic properties of small particles. Annual Review of Materials Science. 1984, 14: 49-66
    [8] Brus L E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of Chemical Physics, 1984, 80(9): 4403-4409
    [9] Chang J Y, Wang S R, Yang C H. Synthesis and characterization of CdTe/CdS and CdTe/CdSe core/shell type-II quantum dots in a noncoordinating solvent. Nanotechnology, 2007, 18(4): 345602
    [10] Li S, Zhang X Z, Yan B, et al. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method. Nanotechnology, 2009, 20(9): 495604
    [11] Mute A, Peres M, Peiris T C, et al. Structural and optical characterization of ZnO nanowires grown on alumina by thermal evaporation method. Journal of Nanoscience and Nanotechnology, 2010, 10(4): 2669-2673
    [12] Qiu M X, Ye Z Z, Lu J G, et al. Growth and properties of ZnO nanorod and nanonails by thermal evaporation. Applied Surface Science, 2009, 255(7): 3972-3976
    [13] Liang C H, Shimizu Y, Sasaki T, et al. Au-mediated growth of wurtzite ZnS nanobelts, nanosheets, and nanorods via thermal evaporation. Journal of Physical Chemistry B, 2004, 108 (28): 9728-9733
    [14] Jiang Y, Meng X M, Liu J, et al. Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale. Advanced Materials, 2003, 15(4): 323-327
    [15] Wang F F, Zhang Z H, Liu R B, et al. Structure and stimulated emission of ZnSe nanoribbons grown by thermal evaporation. Nanotechnology, 2007, 18(30): 305705
    [16] Hu J Q, Bando Y, Golberg D. Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. Small, 2005, 1(1): 95-99
    [17] Pan H, Xing G C, Ni Z H, et al. Stimulated emission of CdS nanowires grown by thermal evaporation. Applied Physics Letters, 2007, 91(19): 193105
    [18] Wang Y, Jiang Y, Wu D, et al. Field effect properties of phosphorus doped CdS single-crystal nanoribbon via co-thermal-evaporation. Journal of Nanoscience and Nanotechnology, 2010, 10 (1): 433-439
    [19] Li C, Liu Z T, Yang, Y. The selective synthesis of single-crystalline CdS nanobelts and nanowires by thermal evaporation at lower temperature. Nanotechnology, 2006, 17(8): 1851-1857
    [20] Ma C, Wang Z L. Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws - A step towards nanomanufacturing. Advanced Materials, 2005, 17(21): 2635-2639
    [21] Hou D D, Liu Y K, Zapien J A, et al. High-quality single-crystal CdSe nanoribbons and their optical properties. Optoelectronics Letters, 2008, 4(3): 161-164
    [22] Liu B L, Ren W C, Liu C, et al. Growth velocity and direct length- sorted growth of short single-walled carbon nanotubes by a metal-catalyst- free chemical vapor deposition process. ACS Nano, 2009, 3(11): 3421-3430
    [23] Wu C C, Wuu D S, Lin P R, et al. Three-step growth of well-aligned ZnO nanotube arrays by self-catalyzed metalorganic chemical vapor deposition method. Crystal Growth & Design, 2009, 9(10): 4555-4561
    [24] Wu C C, Wuu D S, Lin P R, et al. Effects of growth conditions on structural properties of ZnO nanostructures on sapphire substrate by metal-organic chemical vapor deposition. Nanoscale Research Letters, 2009, 4(4): 377-384
    [25] Leung Y P, Liu Z, Hark S K. Changes in morphology and growth rate of quasi-one-dimensional ZnSe nanowires on GaAs (100) substrates by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2005, 279(3-4): 248-257
    [26] Ge J P, Li Y D. Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Advanced Functional Materials, 2004, 14(2): 157-162
    [27] Shan C X, Liu Z, Hark S K. CdSe nanowires with controllable growth orientations. Applied Physics Letters, 2007, 90(19): 193123
    [28] Liu C, Wu P C, Sun T, et al. Synthesis of high quality n-type CdSe nanobelts and their applications in nanodevices. Journal of Physical Chemistry C, 2009, 113(32): 14478-14481
    [29] Zhang X T, Liu Z, Li Q, et al. Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metal organic chemical vapor deposition. Journal of Physical Chemistry B, 2005, 109(38): 17913-17916
    [30] Zhai T Y, Zhang X Z, Yang W S, et al. Growth of single crystalline ZnxCd1-xS nanocombs by metallo-organic chemical vapor deposition. Chemical Physics Letters, 2006, 427(4-6): 371-374
    [31] Jiang P, Zhou J J, Fang H F, et al. Hierarchical shelled ZnO structures made of bunched nanowire arrays. Advanced Functional Materials, 2007, 17(8): 1303-1310
    [32] Fang X, Li J H, Zhao D X, et al. Phosphorus-doped p-Type ZnO nanorods and ZnO nanorod p-n homojunction LED fabricated by hydrothermal method. Journal of Physical Chemistry C, 2009, 113(50): 21208-21212
    [33] Lupan O, Chow L, Chai G, et al. Synthesis of one-dimensional SnO2 nanorods via a hydrothermal technique. Physica E, 2009, 41(4): 533-536
    [34] Yu W, Fang P F, Wang S J. Synthesis of ZnS nanorod arrays by an aqua-solution hydrothermal process on pulse-plating Zn nanocrystallines. Journal of Materials Research, 2009, 24(9): 2821-2827
    [35] Kuo P C, Wang H W, Chen S Y. Synthesis and photoluminescent properties of wurtzite ZnS nanorods by hydrothermal and co-precipitation methods. Journal of the ceramic Society of Japan, 2006, 114(1335): 918-922
    [36] Li Y X, Hu Y F, Peng S Q, et al. Synthesis of CdS Nanorods by an Ethylenediamine Assisted Hydrothermal Method for Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2009, 113(21): 9352-9358
    [37] Wang Y L, Guo M, Zhang M, et al. Hydrothermal synthesis of SnO2 nanoflower arrays and their optical properties. Scripta Materialia, 2009, 61(3): 234-236
    [38] Wang, L C, Chen L,Y, Luo T, et al. A hydrothermal method to prepare the spherical ZnS and flower-like CdS microcrystallites. Materials Letters, 2006,60(29-30): 3627-3630
    [39] Yang J, Li C X, Cheng Z Y, et al. Size-tailored synthesis and luminescent properties of one-dimensional Gd2O3:Eu3+ nanorods and microrods. Journal of Physical Chemistry C, 2007, 111(49): 18148-18154
    [40] Chang C K, Kimura F, Kimura T, et al. Preparation and characterization of rod-like Eu: Gd2O3 phosphor through a hydrothermal routine. Materials Letters, 2005, 59(8-9): 1037-1041
    [41] Xu Z H, Yang J, Hou Z Y, et al. Hydrothermal synthesis and luminescent properties of Y2O3:Tb3+ and Gd2O3:Tb3+ microrods. Materials Research Bulletin, 2009, 44(9): 1850-1857
    [42] Devaraju M K, Yin S, Sato T. A rapid hydrothermal synthesis of rare earth oxide activated Y(OH)3 and Y2O3 nanotubes. Nanotechnology, 2009, 20 (30): 305302
    [43] Thongtem T, Phuruangrat A, Thongtem S. Free surfactant synthesis of microcrystalline CdS by solvothermal reaction. Materials Letters, 2007, 61(14-15): 3235-3238
    [44] Demazeau G, Goglio G, Largeteau A. Solvothermal processes and the synthesis of nitrides. High Pressure Research, 2008, 28(4): 497-502
    [45] Mazurrider B, Chirico P, Hector A L. Direct solvothermal synthesis of early transition metal nitrides. Inorganic Chemistry, 2008, 47(20): 9684-9690
    [46] Demazeau G, Goglio G, Denis A, et al. Solvothermal synthesis: a new route for preparing nitrides. Journal of Physics: Condensed Matter, 2002, 14(44): 11085-11088
    [47] Jang J S, Joshi U A, Lee J S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. Journal of Physical Chemistry C, 2007, 111(35): 13280-13287
    [48] Chai L L, Du J, Xiong S L, et al. Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique. Journal of Physical Chemistry C, 2007, 111(34): 12658-12662
    [49] Yang Q, Tang K B, Wang C R, et al. PVA-Assisted Synthesis and Characterization of CdSe and CdTe Nanowires. Journal of Physical Chemistry B, 2002, 106(36): 9227-9230
    [50] Du J, Xu LQ, Zou GF, et al. Solvothermal synthesis of single crystalline ZnTe nanorod bundles in a mixed solvent of ethylenediamine and hydrazine hydrate. Journal of Crystal Growth, 2006, 291(1): 183-186
    [51] Grocholl L, Wang J J, Gillan E G. Solvothermal azide decomposition route toGaN nanoparticles, nanorods, and faceted crystallites. Chemistry of Materials, 2001, 13(11): 4290-4296
    [52] Zhou Z F, Zhou Y C, Pan Y, et al. Growth of the nickel nanorod arrays fabricated using electrochemical deposition on anodized Al templates. Materials Letters, 2008, 62(19): 3419-3421
    [53] Wang J B, Zhou X Z, Liu W F, et al. Magnetic texture in iron nanowire arrays. Nanotechnology, 2004, 15(5): 485-489
    [54] Singh N K, Tripathi N, Rath S, et al. Structural, morphological, and optical characterisation of ZnO nanostructures fabricated by electrochemical deposition. Journal of Nanoscience and Nanotechnology, 2009, 9(9): 5608-5613
    [55] Zhong K, Xia J, Li H H, et al. Morphology evolution of one-dimensional-based ZnO nanostructures synthesized via electrochemical corrosion. Journal of Physical Chemistry C, 2009, 113(35): 15514-15523
    [56] Li G R, Qu D L, Zhao W X, et al. Electrochemical deposition of (Mn, Co)-codoped ZnO nanorod arrays without any template. Electrochemistry Communications, 2007, 9(7): 1661-1666
    [57] Yang J H, Qiu Y F, Yang S H. Studies of electrochemical synthesis of ultrathin ZnO nanorod/nanobelt arrays on Zn substrates in alkaline solutions of amine-alcohol mixtures. Crystal Growth & Design, 2007, 7(12): 2562-2567
    [58] Park S K, Lee Y K, Kwak H T, et al. Periodic growth of ZnO nanorod arrays on two-dimensional SiNx nanohole templates by electrochemical deposition. Journal of Physical Chemistry C, 2008, 112(11): 4129-4133
    [59] Elias J, Tena-Zaera R, Levy-Clement C. Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. Journal of Electroanalytical Chemistry. 2008, 621(2): 171-177
    [60] Han W, Fan S, Li Q, et al. Synthesis of silicon nitride nanorods using carbon nanotube as a template. Applied Physics Letters, 1997, 71(16): 2271-2273
    [61] Han W, Fan S, Li Q, Hu Y. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science, 1997, 277(5330): 1287-1289
    [62] Che G L, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393(6683): 346-349
    [63] Liu K, Fournier-Bidoz S, Ozin GA, et al. Highly ordered magnetic ceramic nanorod arrays from a polyferrocenylsilane by nanoimprint lithography with anodic aluminum oxide templates. Chemistry of Materials, 2009, 21(9):1781-1783
    [64] Zhao Q, Wen G H, Liu Z G, et al. High-density, vertically aligned crystalline CrO2 nanorod arrays derived from chemical vapor deposition assisted by AAO templates. Chemical Communications, 2009, 26: 3949-3951
    [65] Wang Z, Li H L. Highly ordered zinc oxide nanotubules synthesized within the anodic aluminum oxide template. Applied Physics A, 2002, 74(2): 201-203
    [66] Cheng G S, Chen S H, Zhu X G, et al. Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes. Materials Science and Engineering A, 2000, 286(1): 165-168
    [67] Routkevitch D, Bigioni T, Xu J M, et al. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. Journal of Physical Chemistry, 1996, 100(33): 14037-14047
    [68] Zhang J L, Hong G Y. Synthesis and photoluminescence of the Y2O3:Eu3+ phosphor nanowires in AAO template. Journal of Solid State Chemistry, 2004, 177(4-5): 1292-1296
    [69] Li S W, Song H W, Yu H Q, et al. Influence of annealing temperature on photoluminescence characteristics of Gd2O3:Eu/AAO nanowires. Journal of Luminescence, 2007, 122-123: 876-878
    [70] Wagner R S, Ellis W C, Jackson K A, et al. Study of the filamentary growth of silicon crystals from the vapor. Journal of Applied Physics, 1964, 35(10): 2993-3000
    [71] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279(5348): 208-211
    [72] Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society, 2001, 123(13): 3165-3166
    [73] Wang F, Dong A, Sun J, et al. Solution-liquid-solid growth of semiconductor nanowires. Inorganic Chemistry, 2006, 45(19): 7511-7521
    [74] Wang Z L. Oxide Nanobelts and Nanowires - Growth, Properties and Applications. Journal of Nanoscience and Nanotechnology, 2008, 8(1): 27–55
    [75] Ke Y, Weng X J, Redwing J M, et al. Fabrication and electrical properties of si nanowires synthesized by Al catalyzed vapor-liquid-solid growth. Nano Letters, 2009, 9(12): 4494-4499
    [76] Wu Y, Yang P. Germanium nanowire growth via simple vapor transport. Chemistry of Materials, 2000, 12(3): 605-607
    [77] Soudi A, Lopez R, Dawson R D, et al. Anharmonic phonon coupling invapor-liquid-solid grown ZnO nanowires. Applied Physics Letters, 2009, 95(19): 193111
    [78] Fang X S, Bando Y H, Ye C H, et al. Shape- and size-controlled growth of ZnS nanostructures. Journal of Physical Chemistry C, 2007, 111(24): 8469-8474
    [79] Choi Y J, Choi K J, Kim D W, et al. Morphological evolution of CdS nanowires to nanosheets. Journal of Nanoscience and Nanotechnology, 2009, 9(7): 4487-4491
    [80] Cai Y, Wong T L, Chan S K, et al. Growth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy. Applied Physics Letters, 2008, 93(23): 233107
    [81] Wang M, Fei G T. Synthesis of tapered CdS nanobelts and CdSe nanowires with good optical property by hydrogen-assisted thermal evaporation. Nanoscale Research Letters, 2009, 4(10): 1166-1170
    [82] Bae S Y, Seo H W, Park J, et al. Single-crystalline gallium nitride nanobelts. Applied Physics Letters, 2002, 81(1): 126-128
    [83] Duan X F, Wang J F, Lieber C M. Synthesis and optical properties of gallium arsenide nanowires. Applied Physics Letters, 2000, 76(9): 1116-1118
    [84] Dick KA, Deppert K, Samuelson L, et al. Control of GaP and GaAs nanowire morphology through particle and substrate chemical modification, Nano Letters, 2008, 8(11): 4087-4091
    [85] Tateno K, Zhang G, Nakano H. InP nanostructures formed in GaP-based nanowires grown on Si(111) substrates. Journal of Crystal Growth, 2008, 310(12): 2966-2969
    [86] Sear G W. The growth of mercury crystals from the vapor. Annals of the New York Academy of Sciences,1956, 65: 388-416
    [87] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947-1949
    [88] Fang X S, Ye C H, Peng X S, et al. Large-scale synthesis of ZnS nanosheets by the evaporation of ZnS nanopowders. Journal of Crystal Growth, 2004, 263(1-4): 263-268
    [89] Liu W F, Jia C, Jin C G, et al. Growth mechanism and photoluminescence of CdS nanobelts on Si substrate. Journal of Crystal Growth, 2004, 269(2-4): 304-309
    [90] Trentler T J, Hickman K M, Goel S C, et al. Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science, 1995, 270 (5243): 1791-1794
    [91] Fanfair D D, Korgel B A. ZnE (E = S, Se, Te) nanowires grown by the solution-liquid-solid mechanism: Importance of reactant decomposition kinetics and the solvent. Crystal Growth & Design, 2008, 8(9): 3246-3252
    [92] Fanfair D D, Korgel B A. Bismuth nanocrystal-seeded III-V semiconductor nanowire synthesis. Crystal Growth & Design, 2005, 5(5): 1971-1976
    [93] Liu Z P, Sun K, Jian W B, et al. Soluble InP and GaP nanowires: self-seeded, solution-liquid-solid synthesis and electrical properties. Chemistry - A European Journal, 2009, 15(18): 4546-4552
    [94]梁栋材. X射线晶体学基础.北京:科学出版社, 2006
    [95]章晓中.电子显微分析.北京:清华大学出版社, 2006
    [96]张中太,张俊英.无机光致发光材料及应用.北京:化学工业出版社, 2005
    [97] Chang P C, Fan Z, Chien C J, et al. High-performance ZnO nanowire field effect transistors. Applied Physics Letters, 2006, 89(13): 133113
    [98] Park W, Hong W K, Jo G, et al. Tuning of operation mode of ZnO nanowire field effect transistors by solvent-driven surface treatment. Nanotechnology, 2009, 20(47): 475702
    [99] Keem K, Jeong D Y, Kim S, et al. Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors. Nano Letters, 2006, 6(7): 1454-1458
    [100] Lee S K, Lee S Y, Hyung J H, et al. AC dielectrophoresis alignment of ZnO nanowires and subsequent use in field-effect transistors. Journal of Nanoscience and Nanotechnology, 2008, 8(7): 3473-3477
    [101] Arnold M S, Avouris P, Pan Z W, et al. Field-effect transistors based on single semiconducting oxide nanobelts. Journal of Physical Chemistry B, 2003, 107(3): 659-663
    [102] Cheng Y, Xiong P, Fields L, et al. Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors. Applied Physics Letters, 2006, 89(9): 093114
    [103] Ma R M, Dai L, Qin G G. Enhancement-mode metal-semiconductor field-effect transistors based on single n-CdS nanowires. Applied Physics Letters, 2007, 90(9): 093109
    [104] Ma R M, Dai L, Qin G G. High-performance nano-Schottky diodes and Nano-MESFETs made on single CdS nanobelts. Nano Letters, 2007, 7(4): 868-873
    [105] Ma R M, Dai L, Huo H B, et al. High-performance logic circuits constructed onsingle CdS nanowires. Nano Letters, 2007, 7(11): 3300-3304
    [106] Jie J S, Zhang W J, Jiang Y, et al. Transport properties of single-crystal CdS nanoribbons. Applied Physics Letters, 2006, 89(22): 223117
    [107] Li G H, Jiang Y, Wang Y, et al. Synthesis of CdSxSe1-x nanoribbons with uniform and controllable compositions via sulfurization: optical and electronic properties studies. Journal of Physical Chemistry C, 2009, 113(39): 17183-17188
    [108] Khandelwal A, Jena D, Grebinski J W, et al. Ultrathin CdSe nanowire field-effect transistors. Journal of Electronic Materials, 2006, 35(1): 170-172
    [109] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242-246
    [110] Wang X D, Song J H, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316(5821): 102-105
    [111] Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451(7180): 809-813
    [112] Wang Z L. Towards Self-powered nanosystems: from nanogenerators to nanopiezotronics. Advanced Functional Materials. 2008, 18(22): 3553-3567
    [113] Yang R S, Qin Y, Dai L M, et al. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology. 2009, 4(1): 34-39
    [114] http://physicsworld.com/cws/article/news/37182
    [115] Yang R, Qin Y, Li C, et al. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Letters. 2009, 9(3): 1201-1205
    [116] Jing K, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453): 622-625
    [117] Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81(10): 1869-1871
    [118] Comini E, Faglia G, Sberveglieri G, et al. Oxide nanobelts as conductometric gas sensors. Materials and Manufacturing Processes, 2006, 21(3): 229-232
    [119] Kaur M, Chauhan SVS, Sinha S, et al. Application of aligned ZnO nanowires/nanobelts as a room temperature NO gas sensor. Journal of Nanoscience and Nanotechnology, 2009, 9(9): 5293-5297
    [120] Liao L, Lu H B, Li J C, et al. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation. Applied Physics Letters, 2007, 91(17): 173110
    [121] Son J Y, Lim S J, Cho J H, et al. Synthesis of horizontally aligned ZnOnanowires localized at terrace edges and application for high sensitivity gas sensor. Applied Physics Letters, 2008, 93(5): 053109
    [122] Chang S J, Hsueh T J, Chen I C, et al. Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology, 2008, 19(17): 175502
    [123] Kim K, Song Y W, Chang S, et al. Fabrication and characterization of Ga-doped ZnO nanowire gas sensor for the detection of CO. Thin Solid Films, 2009, 518(4): 1190-1193
    [124] Arnold S P, Prokes S M, Perkins F K, et al. Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor. Applied Physics Letters, 2009, 95(10): 103102
    [125] Andrei P, Fields L L, Zheng J P, et al. Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure. Sensors and Actuators B: Chemical, 2007, 128(1): 226-234
    [126] Sysoev V V, Schneider T, Goschnick J, et al. Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle films. Sensors and Actuators B: Chemical, 2009, 139(2): 699-703
    [127] Moon S E, Kim E K, Lee H Y, et al. Fabrication and NO2 sensing characteristics of an In2O3 nanowire gas sensor. Journal of the Korean Physical Society, 2009, 54(2): 830-834
    [128] Liu J Y, Luo T, Meng F L, et al. Porous hierarchical In2O3 micro-/nanostructures: preparation, formation mechanism, and their application in gas sensors for noxious volatile organic compound detection. Journal of Physical Chemistry C, 2010, 114(11): 4887-4894
    [129] Yan H Q, Johnson J, Law M, et al. ZnO nanoribbon microcavity lasers. Advanced Materials, 2003, 15(22): 1907-1911
    [130] Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 2005, 5(5): 917-920
    [131] Zapien J A, Jiang Y, Meng X M, et al. Room-temperature single nanoribbon lasers. Applied Physics Letters, 2004, 84(7): 1189-1191
    [132] Johnson J C, Choi H J, Knutsen K P, et al. Single gallium nitride nanowire lasers. Nature Materials, 2002, 1(2): 106-110
    [133] Liu Y K, Zapien J A, Lee S T, et al. Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons. Advanced Materials, 2005, 17(11): 1372-1377
    [134] Pan A L, Zhou W C, Leong ESP, et al. Continuous alloy-composition spatialgrading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Letters, 2009, 9(2): 784-788
    [135] Qian F, Li Y, Gradecak S, et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Materials, 2008, 7(9): 701-706
    [136] Yu D S, Chen Y J, Li B J, et al. Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates. Applied Physics Letters, 2008, 91(9): 091116
    [137] Qian F, Gradecak S, Li Y, et al. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Letters, 2005, 5(11): 2287-2291
    [138] Fang X, Li J H, Zhao D X, et al. Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p-n homojunction LED fabricated by hydrothermal method. Journal of Physical Chemistry C, 2009, 113(50): 21208-21212
    [139] Guo R, Nishimura J, Matsumoto M, et al. Electroluminescence from ZnO nanowire-based p-GaN/n-ZnO heterojunction light-emitting diodes. Applied Physics B, 2009, 94(1): 33-38
    [140] Willander M, Nur O, Bano N, et al. Zinc oxide nanorod-based heterostructures on solid and soft substrates for white-light-emitting diode applications. New Journal of Physics, 2009, 11: 125020
    [141] Kishwar S, ul Hasan K, Tzamalis G, et al. Electro-optical and Cathodoluminescence properties of low temperature grown ZnO nanorods /p-GaN white light emitting diodes. Physica Status Solidi A, 2010, 207(1): 67-72
    [142] Guo H H, Lin Z H, Feng Z F, et al. White-light-emitting diode based on ZnO nanotubes. Journal of Physical Chemistry C, 2009, 113(28): 12546-12550
    [143] Lee C Y, Wang J Y, Chou Y, et al. White-light electroluminescence from ZnO nanorods/polyfluorene by solution-based growth. Nanotechnology, 2009, 20(42): 425202
    [144] He Y, Wang J A, Chen X B, et al. Blue electroluminescence nanodevice prototype based on vertical ZnO nanowire/polymer film on silicon substrate. Journal of Nanoparticle Research, 2010 12(1): 169-176
    [145] Jeong M C, Oh B Y, Ham M H, et al. ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes. Small, 2007, 3(4): 568-572
    [146] Zhang X M, Lu M Y, Zhang Y, et al. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Advanced Materials, 2009, 21(27): 2767-2770
    [147] Chen C H, Chang S J, Chang S P, et al. Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction. Chemical Physics Letters, 2009, 476(1-3): 69-72
    [148] Guo Z, Zhao D X, Liu Y C, et al. Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction. Applied Physics Letters, 2008, 93(16): 163501
    [149] Hsu C L, Hsueh T J, Chang S P. Preparation of ZnO nanoflakes and a nanowire-based photodetector by localized oxidation at low temperature. Journal of The Electrochemical Society, 2008, 155(3): K59-K62
    [150] Tak Y, Kim H, Lee D, et al. Type-II CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: enhanced photocatalytic activity. Chemical Communications, 2008, 38: 4585-4587
    [151] Xu F, Yuan Z Y, Du G H, et al. Simple approach to highly oriented ZnO nanowire arrays: large-scale growth, photoluminescence and photocatalytic properties. Nanotechnology, 2006, 17(2): 588-594
    [152] Zhang L, Zhu Y J. ZnO micro- and nano-structures: microwave-assisted solvothermal synthesis, morphology control and photocatalytic properties. Applied Physics A, 2009, 97(4): 847-852
    [153] Voss T, Svacha G T, Mazur E, et al. The influence of local heating by nonlinear pulsed laser excitation on the transmission characteristics of a ZnO nanowire waveguide. Nanotechnology, 2009, 20(9): 095702
    [154] Voss T, Svacha G T, Mazur E, et al. High-order waveguide modes in ZnO nanowires. Nano Letters, 2007, 7(12): 3675-3680
    [155] Wang K, Chen J J, Zhou W L, et al. Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Advanced Materials, 2008, 20(17): 3248-3253
    [156] Jiang C Y, Sun X W, Tan K W, et al. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Applied Physics Letters, 2008, 92(14): 143101
    [157] Shi Zhilong, Neoh K G, Kang E T, et al. Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T1 contrast agent for stem cell labeling. Contrast Media & Molecular Imaging, 2010, 5(2): 105-111
    [158] Cress C D, Redinoa C S, Landi B J, et al. Alpha-particle-induced luminescence of rare-earth-doped Y2O3 nanophosphors. Journal of Solid State Chemistry, 2008, 181(8): 2041-2045
    [159] Doh Y J, Maher K N, Ouyang L, et al. Electrically driven light emission from individual CdSe nanowires. Nano Letters, 2008, 8 (12): 4552-4556
    [160] Bardhan R, Wang H, Tam F, et al. Facile chemical approach to ZnO submicrometer particles with controllable morphologies. Langmuir, 2007, 23 (11): 5843-5847
    [161] Kar J P, Ham M H, Lee S W, et al. Fabrication of ZnO nanostructures of various dimensions using patterned substrates. Applied Surface Science, 2009, 255(7): 4087-4092
    [162] Zhu H, Shan C X, Yao B, et al. Ultralow-threshold laser realized in zinc oxide. Advanced Materials, 2009, 21(16): 1613-1617
    [163] Chang Y K, Hong F C, et al. The fabrication of ZnO nanowire field-effect transistors combining dielectrophoresis and hot-pressing. Nanotechnology, 2009, 20(23): 235202
    [164] Ahn M W, Park K S, Heo J H, et al. On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sensors and Actuators B: Chemical, 2009, 138(1): 168-173
    [165] Jiang X, Wong F L, Fung M K, et al. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Applied Physics Letters, 2003, 83(9): 1875-1877
    [166] Wang X D, Zhou J, Song J H, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 2006, 6(12): 2768-2772
    [167] Bhat D K. Facile synthesis of ZnO nanorods by microwave irradiation of zinc-hydrazine hydrate complex. Nanoscale Research Letters, 2008, 3(1): 31-35
    [168] Pan Z W, Mahurin S M, Dai S, et al. Nanowire array gratings with ZnO combs. Nano Letters, 2005, 5(4): 723-727
    [169] Wang B B, Xie J J, Yuan Q Z, et al. Growth mechanism and joint structure of ZnO tetrapods. Journal of Physics D: Applied Physics, 2008, 41(10): 102005
    [170] Yang L W, Wu X L, Huang G S, et al. In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration. Journal of Applied Physics, 2005, 97(1): 014308
    [171] Gao P X, Ding Y, Mai W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science, 2005, 309(5741): 1700-1704
    [172] Yu K, Zhang Y S, Xu R L, et al. Efficient field emission from tetrapod-like zinc oxide nanoneedles. Materials Letters, 2005, 59(14-15): 1866-1870
    [173] Ghoshal T, Kar S, Biswas S, et al. Multipod ZnO nanoforms: low temperature synthesis and characterization. Journal of Nanoscience and Nanotechnology, 2007, 7(2): 689-695
    [174] Wan Q, Wang T H, Zhao J C. Enhanced photocatalytic activity of ZnO nanotetrapods. Applied Physics Letters, 2005, 87(8): 083105
    [175] Gao T, Wang T H. Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications. Applied Physics A, 2005, 80(7): 1451-1454
    [176] Qiu Y F, Yang S H. ZnO nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Advanced Functional Materials, 2007, 17(8): 1345-1352
    [177] He F Q, Zhao Y P. Growth of ZnO nanotetrapods with hexagonal crown. Applied Physics Letters, 2006, 88(19): 193113
    [178] Dai Y, Zhang Y, Wang Z L, The octa-twin tetraleg ZnO nanostructures. Solid State Communications, 2003, 126(11): 629-633
    [179] Iwanaga H, Fujii M, Takeuchi S, Growth model of tetrapod zinc oxide particles. Journal of Crystal Growth, 1993, 134(3-4): 275-280
    [180] Yan Y G, Zhou L X, Zou J Y , et al. Synthesis and growth discussion of novel ZnO nanotetrapods with pearl-necklace-shaped arms. Applied Physics A, 2009, 94(3): 559-565
    [181] Zhu G P, Xu C X, Yang Y, et al. Disk-capped multipod arrays of zinc oxide. Materials Chemistry and Physics, 2009, 113(1): 115-118
    [182] Zheng K, Xu C X, Zhu G P, et al. Formation of tetrapod and multipod ZnO whiskers. Physica E, 2008, 40(8): 2677-2681
    [183] Feng L B, Liu A H, Wei J, et al. Synthesis, characterization and optical properties of multipod ZnO whiskers. Applied Surface Science, 2009, 255(20): 8667-8671
    [184] Umar A , Kim S H, Lee Y S, et al. Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties. Journal of Crystal Growth, 2005, 282(1-2): 131-136
    [185] Yang L W, Wu X L, Huang G S, et al. In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration. Journal of Applied Physics, 2004, 97(1): 014308
    [186] Zhu H C, Iqbal J, Xu H J, et al. Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquid-solid process. Journal of Chemical Physics, 2008, 129(12): 124713
    [187] Umar A, Kim B K, Kim J J, et al. Optical and electrical properties of ZnOnanowires grown on aluminium foil by non-catalytic thermal evaporation. Nanotechnology, 2007, 18(17): 175606
    [188] Umar A, Kim S H, Lee H, et al. Optical and field emission properties of single-crystalline aligned ZnO nanorods grown on aluminium substrate. Journal of Physics D: Applied Physics, 2008 41(6): 065412
    [189] Wang R P, Xu G, Jin P. Size dependence of electron-phonon coupling in ZnO nanowires. Physical Review B, 2004, 69(11): 113303
    [190] Fauteux C, Longtin R, Pegna J, et al. Fast synthesis of ZnO nanostructures by laser-induced decomposition of zinc acetylacetonate. Inorganic Chemistry, 2007, 46(26): 11036-11047
    [191] Liu J Z, Lee S, Ahn Y H, et al. Tailoring the visible photoluminescence of mass-produced ZnO nanowires. Journal of Physics D: Applied Physics. 2009, 42(9): 095401
    [192] Ahn M W, Park K S, Heo J H, et al. Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Applied Physics Letters, 2008, 93(26): 263103
    [193] Zhang H, Shen L, Guo S W. Insight into the structures and properties of morphology-controlled legs of tetrapod-like ZnO nanostructures. Journal of Physical Chemistry C, 2007, 111(35): 12939-12943
    [194] Wang Z L. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter, 2004, 16(25): R829
    [195] Long T, Yin S, Tkabatake K, et al. Synthesis and characterization of ZnO nanorods and nanodisks from zinc chloride aqueous solution. Nanoscale Research Letters, 2009, 4(3): 247-253
    [196] Gao P X, Wang Z L. Nanopropeller arrays of zinc oxide. Applied Physics Letters, 2004, 84(15): 2883-2885
    [197] Lao J Y, Huang J Y, Wang D Z, et al. ZnO nanobridges and nanonails. Nano Letters, 2003, 3(2):235-238
    [198] Wang Z, Qian X F, Yin J, et al. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir, 2004, 20(8): 3441-3448
    [199] Heo Y W, Varadarajan V, Kaufman M, et al. Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Applied Physics Letters, 2002, 81(16): 3046-3048
    [200] Kawakami M, Hartanto A B, Nakata Y, et al. Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition. Japanese Journal of AppliedPhysics, 2003, 42(1): L33-L35
    [201] Chang P C, Fan Z Y, Wang D W, et al. ZnO nanowires synthesized by vapor trapping CVD method. Chemistry of Materials, 2004, 16(24): 5133-5137
    [202] Li J, Srinivasan S, He G N, et al. Synthesis and luminescence properties of ZnO nanostructures produced by the sol-gel method. Journal of Crystal Growth, 2008, 310(3): 599-603
    [203] Cheng W D, Wu P, Zou X Q, et al. Study on synthesis and blue emission mechanism of ZnO tetrapodlike nanostructures. Journal of Applied Physics, 2006, 100(5): 054311
    [204] Gao T, Huang Y H, Wang T H, et al. The synthesis and photoluminescence of multipod-like zinc oxide whiskers. Journal of Physics: Condensed Matter, 2004, 16(7): 1115-1121
    [205] Gao T, Wang T H. Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications. Applied Physics A, 2005, 80(7): 1451-1454
    [206] Sun X M, Chen X, Li Y D. Evaporation growth of multipod ZnO whiskers assisted by a Cu2+ etching technique. Journal of Crystal Growth, 2002, 244(2): 218-223
    [207] Hsu N E, Hung W K, Chen Y F. Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods. Journal of Applied Physics, 2004, 96(8): 4671-4673
    [208] Haase M A, Qiu J, DePuydt J M, et al. Blue-green laser diodes. Applied Physics Letters, 1991, 59(11): 1272-1274
    [209] Katayama K, Yao H, Nakanishi F, et al. Lasing characteristics of low threshold ZnSe-based blue/green laser diodes grown on conductive ZnSe substrates. Applied Physics Letters, 1998, 73(1): 102-104
    [210] Xiong S L, Shen J M, Xie Q, et al. A precursor-based route to ZnSe nanowire bundles. Advanced Functional Materials, 2005, 15(11): 1787-1792
    [211] Ishikura H, Abe T, Fukuda N, et al. Stable avalanche-photodiode operation of ZnSe-based p+-n structure blue-ultraviolet photodetectors. Applied Physics Letters, 2000, 76(8): 1069-1071
    [212] Li Q, Gong X G, Wang C R, et al. Size-dependant periodically twinned ZnSe nanowires. Advanced Materials, 2004, 16(16): 1436-1440
    [213] Hu Z D, Duan X F, Gao M, et al. ZnSe nanobelts and nanowires synthesized by a closed space vapor transport technique. Journal of Physical Chemistry C, 2007, 111(7): 2987-2991
    [214] Jiang Y, Meng X M, Yiu W C, et al. Zinc selenide nanoribbons and nanowires. Journal of Physical Chemistry B, 2004, 108(9): 2784-2787
    [215] Leung Y P, Choy WCH, Markov I, et al. Synthesis of wurtzite ZnSe nanorings by thermal evaporation. Applied Physics Letters, 2006, 88(18): 183110
    [216] Shan C X, Liu Z, Zhang X T, et al. Wurtzite ZnSe nanowires: growth, photoluminescence, and single-wire Raman properties. Nanotechnology, 2006, 17(22): 5561-5564
    [217] Cai Y, Chan S K, Sou I K, et al. The size-dependent growth direction of ZnSe nanowires. Advanced Materials, 2005, 18(1): 109-114
    [218] Wang Y Q, Philipose U, Xu T, et al. Twinning modulation in ZnSe nanowires. Semiconductor Science and Technology, 2007, 22(3): 175-178
    [219] Hao, Y F; Meng, G W; Wang, ZL, et al. Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth. Nano Letters, 2006, 6(8): 1650-1655
    [220] Fan, X; Meng, X M; Zhang, X H, et al. Formation and photoelectric properties of periodically twinned ZnSe/SiO2 nanocables. Journal of Physical Chemistry C, 2009, 113(3): 834-838
    [221] Mountziaris T J, Peck J, Stoltz S, et al. Metalorganic vapor phase epitaxy and characterization of Zn1-xFexSe films. Applied Physics Letters, 1996, 68(16): 270-272
    [222] Schreder B, Materny A, Kiefer W, et al. Resonance Raman spectroscopy on strain relaxed CdZnSe/ZnSe quantum wires. Journal of Raman Spectroscopy, 2000, 31(11): 959-963
    [223] Sarigiannis D, Peck J D, Kioseoglou G, et al. Characterization of vapor-phase-grown ZnSe nanoparticles. Applied Physics Letters, 2002, 80(21): 4024-4026
    [224] Hu J Q, Bando Y, Golberg D. Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. Small, 2005, 1(1): 95-99
    [225] Zhang X T, Liu Z, Ip K M, et al. Luminescence of ZnSe nanowires grown by metalorganic vapor phase deposition under different pressures. Journal of Applied Physics, 2004, 95(10): 5752-5755
    [226] Philipose U, Yang S, Xu T, et al. Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires. Applied Physics Letters, 2007, 90(6): 063103
    [227] Philipose U, Xu T, Yang S, et al. Enhancement of band edge luminescence inZnSe nanowires. 2006, Journal of Applied Physics, 100(8): 084316
    [228] Makhnii V P, Tkachenko I V. Mechanism for forming the red emission band of ZnSe(Te) scintillation crystals. Journal of Optical Technology, 2003, 70(9): 665-668
    [229] Potemski M, Stepniewski R, Maan J C, et al. Auger recombination within Landau levels in a two-dimensional electron gas. Physical Review Letters, 1991, 66(17): 2239-2242
    [230] Joly A G, Chen W, McCready D E, et al. Upconversion luminescence of CdTe nanoparticles. Physical Review B, 2005, 71(16): 165304
    [231] Valakh M Y, Vuychik N V, Strelchuk V V, et al. Low-temperature anti-Stokes photoluminescence in CdSe/ZnSe nanostructures. Semiconductors, 2003, 37(6): 699-704
    [232] Rakovich Y P, Donegan J F. Anti-Stokes photoluminescence in semiconductor nanocrystal quantum dots. Semiconductor Nanocrystal Quantum Dots, Springer Vienna, 2008, 257-275
    [233] Wang X Y, Yu W W, Zhang J Y, et al. Photoluminescence upconversion in colloidal CdTe quantum dots. Physical Review B, 2003, 68(12): 125318
    [234] Morozova N K, Gavrishchuk E M, Karetnikov I A, et al. ZnSe luminescence at high doping levels. Inorganic Materials, 2002, 38(6): 552-558
    [235] Carlone C, Béliveau A, Rowell N L. On the anti-Stokes fluorescence in Cd1-xZnxS crystals. Journal of Luminescence, 1991, 47(6): 309-317
    [236] Zhao Q D, Yu M, Xie T F, et al. Photovoltaic properties of a ZnO nanorod array affected by ethanol and liquid-crystalline porphyrin. Nanotechnology, 2008, 19(24): 245706
    [237] Zhang Y, Xie T F, Jiang T F, et al. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices. Nanotechnology, 2009, 20(15): 155707
    [238] Lin Y F, Song J H, Ding Y, et al. Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters. 2008, 92(2): 022105
    [239] Jie J S, Zhang W J, Jiang Y, et al. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Letters, 2006, 6(9): 1887-1892
    [240] Gao T, Li Q H, Wang T H. CdS nanobelts as photoconductors. Applied Physics Letters, 2005, 86(17): 173105
    [241] Ma R M, Dai L, Huo H B, et al. Synthesis of high quality n-type CdS nanobelts and their applications in nanodevices. Applied Physics Letters, 2006, 89(20):203120
    [242] Hayden O, Greytak A B, Bell D C. Core-shell nanowire light-emitting diodes. Advanced Materials, 2005, 17(6): 701-704
    [243] Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 2005, 5(5): 917-920
    [244] Pan A L, Liu D, Liu R B, et al. Optical waveguide through CdS nanoribbons. Small, 2005, 1(10): 980-983
    [245] Xu D S, Xu Y J, Chen D P, et al. Preparation of CdS single-crystal nanowires by electrochemically induced deposition. Advanced Materials, 2000, 12(7): 520-522
    [246] Gai H D, Wu Y S, Wu L L, et al. Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization. Applied Physics A, 2008, 91(1): 69-72
    [247] Kuthirummal N, Reppert J, Dihel B, et al. Synthesis and optical spectroscopic studies of semiconducting cadmium sulfide nanowires. Applied Optics, 2009, 48(15): 2842-2846
    [248] Lee K Y, Lim J R, Rho H, et al. Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets. Applied Physics Letters, 2007, 91(20): 201901
    [249] Lin Y F, Hsu Y J, Lu S Y, et al. Non-catalytic and template-free growth of aligned CdS nanowires exhibiting high field emission current densities. Chemical Communications, 2006, 22: 2391-2393
    [250] Li C, Liu Z T, Yang Y. The selective synthesis of single-crystalline CdS nanobelts and nanowires by thermal evaporation at lower temperature. Nanotechnology, 2006, 17(8): 1851-1857
    [251] Liu Z T, Li C, Fu Y P, et al. The catalyst-assisted synthesis of high quality CdS single-crystal nanowires through an epitaxy mechanism. Journal of Nanoscience and Nanotechnology, 2007, 7(9): 3152-3156
    [252] Wang C R, Ip K M, Hark S K, et al. Structure control of CdS nanobelts and their luminescence properties. Journal of Applied Physics, 2005, 97(5): 054303
    [253] Wu P C, Ma R M, Liu C, et al. High-performance CdS nanobelt field-effect transistors with high-kappa HfO2 top-gate dielectrics. Journal of Materials Chemistry, 2009, 19(15): 2125-2130
    [254] Ma C, Ding Y, Moore D, et al. Single-crystal CdSe nanosaws. Journal of the American Chemical Society, 2004, 126(3): 708-709
    [255] Hussain S G, Liu D M, Huang X T, et al. Synthesis and optical properties of heterostructured ZnO:S/ZnO nanosaws. Journal of Physics D: Applied Physics,2007, 40(24): 7662-7668
    [256] Wu C Y, Hsu H C, Cheng H M, et al. Structural and optical properties of ZnO nanosaws. Journal of Crystal Growth, 2006, 287(1): 189-193
    [257] Fan H J, Scholz R, Dadgar A, et al. A low-temperature evaporation route for ZnO nanoneedles and nanosaws. Applied Physics A, 2005, 80(3): 457-460
    [258] Li G H, Jiang Y, Wang C, et al. Hydrogen-assisted synthesis and optical properties of single-crystalline Cd0.9Mn0.1S nanobelts. Journal of Nanoscience and Nanotechnology, 2008, 8(8): 3883-3888
    [259] Dong L F, Jiao J, Coulter M, et al. Catalytic growth of CdS nanobelts and nanowires on tungsten substrates. Chemical Physics Letters, 2003, 376(5-6): 653-658
    [260] Venugopal R, Lin P I, Liu C C, et al. Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets. Journal of the American Chemical Society, 2005, 127(32): 11262-11268
    [261] Lee J Y, Kim D S, Kang J H, et al. Novel Zn1-xMnxSe (x=0.1-0.4) one-dimensional nanostructures: Nanowires, zigzagged nanobelts, and toothed nanosaws. Journal of Physical Chemistry B, 2006, 110(51): 25869-25874
    [262] Shen G Z, Chen D, Lee C J. Hierarchical saw-like ZnO nanobelt/ZnS nanowire heterostructures induced by polar surfaces. Journal of Physical Chemistry B, 2006, 110(32): 15689-15693
    [263] Kar S, Chaudhuri S. Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process. Journal of Physical Chemistry B, 2006, 110(10): 4542-4547
    [264] Gao T, Wang T H. Catalyst-assisted vapor-liquid-solid growth of single-crystal CdS nanobelts and their luminescence properties. Journal of Physical Chemistry B, 2004, 108(52): 20045-20049
    [265] Wang Z Q, Gong J F, Duan J H, et al. Direct synthesis and characterization of CdS nanobelts. Applied Physics Letters, 2006, 89(3): 033102
    [266]张吉林,洪广言.稀土纳米发光材料研究进展.发光学报, 2005, 26(3): 285-293
    [267] Qi Z M, Shi C S, Zhang W W, et al. Local structure and luminescence of nanocrystalline Y2O3:Eu. Applied Physics Letters, 2002, 81(15): 2857-2859
    [268] Li Y H, Hong G Y. Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+. Journal of Solid State Chemistry, 2005, 178(3): 645-649
    [269] Pires A M, Santos M F, Davolos M R, et al. The effect of Eu3+ ion dopingconcentration in Gd2O3 fine spherical particles. Journal of Alloys and Compounds, 2002, 344(1-2): 276-279
    [270] Kang Y C, Lenggoro I W, Okuyama K. et al. Gd2O3: Eu phosphor particles with sphericity, submicron size and non-aggregation characteristics. Journal of Physics and Chemistry of Solids, 1999, 60(3): 379-384
    [271] Bril A, Wanmaker W L. Fluorescent properties of some europium-activated phosphors. Journal of The Electrochemical Society, 1964, 111(12): 1363-1368
    [272] Park J C, Moon H K, Kim D K, et al. Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages. Applied Physics Letters, 2000, 77(14): 2162-2164
    [273] R Bazzi, Flores M A, Louis C, et al. Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3: Eu, and Y2O3: Eu. Journal of Colloid and Interface Science, 2004, 273(1): 191-197
    [274] Mercier B, Dujardin C, Ledoux G, et al. Observation of the gap blueshift on Gd2O3:Eu3+ nanoparticles. Journal of Applied Physics, 2004, 96(1): 650-653
    [275] Milosevic O, Mancic L, Jordovic B, et al. Processing of Gd2O3:Eu phosphor particles through aerosol route. Journal of Materials Processing Technology, 2003, 143-144(1): 501-505
    [276] Sun L D, Yao J, Liu C H, et al. Rare earth activated nanosized oxide phosphors: synthesis and optical properties. Journal of Luminescence, 2000, 87-89: 447-450
    [277] Tao Y, Zhao G W, Zhang W P, et al. Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors. Materials Research Bulletin, 1997, 32(5): 501-506
    [278] Phan T L, Phan M H, Vu N, et al. Luminescent properties of Eu-doped Y2O3 nanophosphors. Physica Status Solidi A, 2004, 201(9): 2170-2174
    [279]姚疆,孙彾东,钱程,等.稀土纳米复合氧化物RE2O3: Eu(RE=Y,Gd)的制备及特性.中国稀土学报, 2001, 19(5): 426-429
    [280]谢平波,张慰萍,尹民,等.纳米Ln2O3: Eu(Ln=Gd,Y)荧光粉的燃烧法合成及其光致发光性质.无机材料学报, 1998,13(1): 53-58
    [281] Eyring L. Chapter 27 The binary rare earth oxides. Handbook on the Physics and Chemistry of Rare Earths, 1979, 3: 337-399
    [282] Sun L D, Liao C S, Yan C H. Structure transition and enhanced photoluminescence of Gd2-xYxO3:Eu nanocrystals. Journal of Solid State Chemistry, 2003, 171(1-2): 304-307
    [283] Buijs M, Meyrink A, Blasse G. Energy transfer between Eu3+ ions in a latticewith two different crystallographic sites: Y2O3:Eu3+, Gd2O3:Eu3+ and Eu2O3. Journal of Luminescence. 1987, 37(1): 9-20
    [284] Williams D K, Bihari B, Tissue B M, et al. Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals. Journal of Physical Chemistry B. 1998, 102(6): 916-920
    [285] Zych E, Karbowiak M, Domagala K, et al. Analysis of Eu3+ emission from different sites in Lu2O3. Journal of Alloys and Compounds, 2002, 341(1-2): 381-384
    [286] Igarashi T, Ihara M, Kusunoki T, et al. Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor. Applied Physics Letters, 2000, 76(12): 1549-1551

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700