卟啉及量子点光敏剂荧光光谱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,光动力治疗作为一种新型的肿瘤治疗方法逐渐发展起来并在生物医学研究领域受到了广泛的关注。光动力治疗是指利用光敏剂的光照激发来产生毒性物质如单线态氧等从而杀伤肿瘤细胞的方法,是一种无损伤的物理性肿瘤治疗方法。在制约光动力治疗技术发展进步的各个环节中,光敏剂的开发研制无疑是举足轻重的一环。目前已有大量工作投入到了新型光敏剂的研究中并取得了很大进展。其中卟啉类光敏剂是最早应用于光动力治疗中的光敏药物,其肿瘤富集性好,单线态氧量子产率高,分子可塑性大,是光敏药物研究的主流;而半导体量子点则是一种新兴的光敏材料,独特的尺寸效应使得其吸收和发射光谱可连续调谐,光源选择范围广,稳定性好,量子产率高,双光子吸收截面大,因而成为极具应用潜力的光敏药物。
     随着光动力治疗临床应用领域的扩大,光敏剂的研究工作也在不断地开展和深入。然而,由于光敏剂属于交叉学科研究范畴,各学科研究侧重点不同,很容易顾此失彼,导致目前关于光敏剂生物化学反应机制方面的工作报道较多,而对其本身的发光特性及潜在的物理机制研究不够深入。卟啉和量子点作为典型的光敏剂材料,其自身的光致发光过程是实现光敏化作用的前提,也是肿瘤诊断和定位的依据,对其发光特性的研究还可以获取大量分子信息,为新型光敏药物的开发研制和已有光敏剂的性质改良提供依据。
     因此,本课题以极具光动力治疗应用潜力的飞秒脉冲激光作为激发光源,搭建了稳态和纳秒时间分辨荧光光谱探测系统,对几种典型的水溶性和非水溶性卟啉及量子点光敏剂进行了光谱表征和分析;针对双光子激发光动力治疗的需求研究了材料的双光子激发荧光特性;观察了光致损伤行为;并成功的利用量子点作为能量给体实现了卟啉光敏剂的间接活化,讨论了二者间的能量转移机制及可能的转移通道。
     首先,对合成多种卟啉衍生物的母体材料四苯基卟啉(TPP)进行了详细的光谱表征,并在单光子和双光子两种不同激发条件下对其光损伤特性进行了研究分析,发现在光损伤过程中伴随有产物生成。损伤产物表现出良好的光稳定性和双光子荧光特性,具有光动力治疗的潜在应用价值。通过光谱分析推测产物应为苯环断裂基础上氧化形成的二氢卟吩类氧化物。另外,通过计算不同激发功率下的损伤速率,发现TPP分子在单光子和双光子激发下表现出不同的损伤速率—功率关系,暗示双光子激发下有更高阶光损伤机制存在。
     其次,对水溶性四磺酸苯基卟啉(TSPP)单体及二聚体进行了对比研究。通过调节pH值获得了TSPP单体和二聚体溶液样品,实验结果表明,TSPP二聚体为单体间J-聚合形式形成,聚合效应对TSPP的光谱特性产生了很大的影响,使得二聚体和单体的光谱具有显著区别。且这种聚合现象具有光稳定性,不会因光照而分离。单体表现出比二聚体更好的光稳定性,几乎没有损伤现象发生,而二聚体的荧光损失在一次常规光动力治疗的时间范围内也不超过15%。
     再次,对非水溶性CdSe量子点和水溶性CdTe量子点进行了稳态和时间分辨光谱特性研究,结果表明量子点荧光由带边激子态和表面诱捕态两种发射成分组成,其中带边激子态能量较高,发射中心波长较短,而诱捕态能量较低,发射中心波长较长。对大小尺寸CdTe量子点混合体系研究发现,小尺寸绿光量子点对大尺寸红光量子点具有荧光增强效应,且这种效应与激发方式和粒子间距离无关,讨论了这种增强效应可能的物理机制。另外研究了共存体系的稳定性,发现静置后的混合体系中发生了Ostwald熟化作用。
     最后,以量子点为能量给体,卟啉为能量受体,在800nm双光子激发下,分别对非水溶性CdSe-TPP和水溶性CdTe-TSPP两种不同样品体系进行了稳态和时间分辨光谱研究。实验表明两种体系中都存在明显的能量转移现象,量子点荧光强度显著下降而卟啉荧光强度上升,实现了卟啉光敏剂的有效间接激活,弥补了卟啉光敏剂双光子吸收截面较小的缺陷,为体系在双光子激发光动力治疗中的应用提供了依据。另外,通过对量子点时间分辨动力学数据的分析,判断体系中的主要能量转移机制为电子交换机制,并发现能量转移很可能是经由量子点表面诱捕态而发生的,因此可以通过表面修饰来增加能量转移效率,进而提高卟啉的敏化效率。
In the resent years, photodynamic therapy (PDT) attracts more attention in the biomedical research field as a new way dealing with tumor. It is a non-invasive physical diagnostic and therapic method using photosensitizers associated with laser irradiation to produce tumor toxicity material which can damage the tumor tissue. Development of photosensitizers is a critical factor affecting the clinical application of PDT. So far, a lot of work has been done on the investigation of new type of photosensitizers and great progress has been made. The first photosensitizer used in PDT is the porphyrin type compound. Porphyrins are typical photosensitizers with high singlet oxygen quantum yields, convenient molecular modification and preferential accumulation in tumor, so that they play the major role in study of the PDT drugs. Whereas semiconductor quantum dot (QD) is a new type of photosensitizer with the unique quantum size effect. QDs possess contiueous absorption and emission wavelength, high photo- and chemical stability, high fluorescence quantum yield and larger two-photon absorption cross section, making them potential photosensitiers in PDT application.
     With the rapid development of PDT, studies on photosensitizers become faster and deeper. However, photosensitizer is an interdiscipline research topic, and different research fields focus on different problem, resulting in an imbalance in the study of the photosensitizers. Till now, a lot of works have been reported on the biochemical reaction mechanism of the photosensitizers, but studies on the photoluminescence of the sensitizer itself and the correspongding underlying physical mechanism is pretty rare. As typical photosensitizers, the photoluminescent process of porphyrins and QDs is the precondition of the photosensitization and tumor diagnosis and localization. The photoluminescent properties can provide mass of molecular information, whicn can accelerate the decelopment of new sensitizers and improvement of exist sensitizers.
     So in the present thesis, femtosecon pulsed laser, which is believed to be a potential light source for PDT, is used as the excitation source to build a steady-state and nanosecond time-resolved fluorescence spectral detected system. Several typical hydrophilic and hydrophobic porphyrins and QDs are studied and their spectral characteristics are analyzed. Two-photon excitation fluorescence spectroscopy is performed. Photodamge behavior of the photosensitizers is observed. Porphyrins are successfully activated by the QDs by way of the excited-state energy transfer and the possible energy transfer mechanism and transfer channel is discussed.
     Firstly, the spectral characteristics meso-tetraphenylporphyrin (TPP) is measured and analyzed. Its photodamage behavior under one- and two-photon excitation is detailed discussed. Results suggest that laser irradiation on TPP mainly causes two simultaneously occurring photoprocesses: photodamage and formation of a porphine-type photoproduct. This product, which is observed to possess superior photostability and two-photon absorbing ability compared with the original TPP sensitizer, is likely to be treated as a secondary photosensitizer in the activation process of photodynamic therapy (PDT). This work might be helpful for the drug evaluation in the practical application of PDT. The damage rate exhibits different power dependence in one-and two-photon excitation, suggesting higher-order photodamage mechanism operated in the two-photon excitation process.
     Secondly, comparision study has been done between meso-tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP) monomer and dimmer. TSPP monomer and dimer are achieved by adjusting the pH value of the solution. Results show that TSPP dimer displays a J-aggregation pattern. The aggregation effect influenced the spectral properties of TSPP greatly, and this aggregation effect is stable. The TSPP monomer possess better photostability during the laser irradiation, and the fluorescence intensity loss is less than 15% within a typical PDT time.
     Thirdly, CdSe and CdTe QDs are studied by steady-state and time-resolved spectroscopy. Results suggest a combination of two components in the luminescence behavior of CdTe QDs. The fast component is the excitonic state emission caused by narrow band-edge effect and the slow component is the trapping state emission caused by surface-related effect, in which the trapping state emits at a relative lower energy level than the excitonic state emission. The mixture of different size of CdTe QDs is studied. Results show that QDs of small size have a fluorescence enhancemet effect on the QDs of large size, and this enhancemet effect is irrelative to the particle distance. Possible enhancemet mechanism is discussed. The stability of the mixture is also observed and Ostwald ripening is found in the sample system.
     Finally, use QDs as energy donors and porphyrins as energy acceptors to build a hydrophilic CdTe-TSPP and hydrophobic CdSe-TPP model system, and study their steady-state and time-resolved spectra under 800nm two-photon excitation. Energy transfer process is observed in both of the two model systems. The fluorescence intensity of the QDs decreases and that of porphyrins increases, successfully indirectly activated the porphyrin sensitizers and compensates their small two-photon absorption cross section, which could be helpful for taking use of these model systems in the two-photon excitation PDT. In addition, electron exchange is deduced to be the dominant transfer mechanism by analyzing the time-resolved data, and non-radiative energy transfer is supposed to occur through the trapping state of QDs, which presents a way of raising energy transfer efficiency in this type of donor-acceptor pairs.
引文
1 P. Chondros, D. Nikolidakis, N. Christodoulides, R. R?ssler, N. Gutknecht, A. Sculean. Photodynamic Therapy as Adjunct to Non-Surgical Periodontal Treatment in Patients on Periodontal Maintenance: A Randomized Controlled Clinical Trial. Laser Med. Sci. 2008, 24:681~688
    2 B. C. Wilson, M. S. Patterson. The Physics, Biophysics and Technology of Photodynamic Therapy. Phys. Med. Biol. 2008, 53:53~61
    3吴继明,熊建文,肖化.用于肿瘤治疗的光动力疗法.激光杂志. 2003, 24: 70~73
    4 M. F. Edelson. Light-Activated Drugs. Scientific American. 1988, 259:68~75
    5 H. Baden. The Chemotherapy of Psoriasis. Pergamon. 1984
    6 H. Laurens. The Physiological Effects of Raditation Energy. Tudor Press. 1933
    7 H. Gauvain. Actinotherapy Technique. The Sollux Publishing Co. 1933
    8 R. L. Lipson, E. J. Baldes, A. M. Olsen. The Use of a Derivative of Hematoporphyrin in Tumor Detection. J. Natl Cancer Inst. 1961, 26:1~8
    9 M. H?dersdal, K. Togsverd-Bo, H. Wulf. Evidence-Based Review of Lasers, Light Sources and Photodynamic Therapy in the Treatment of Acne Vulgaris. J. Eur. Acad. Dermatol. 2008, 22:267~278
    10 K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich. Photophysics and Photochemistry of Photodynamic therapy: Fundamental Aspects. Laser Med. Sci. 2009, 24:259~268
    11 C. M. Moore, D. Pendse, M. Emberton. Photodynamic Therapy for Prostate Cancer-A Review of Current Status and Future Promise. Nat. Clin. Pract. Urol. 2009, 6:18~30
    12 A. Klein, P. Babilas, S. Karrer, M. Landthaler, R. Szeimies. Photodynamic Therapy in Dermatology-An Update 2008. Journal of the German Society of Dermatology. 2008, 6:839~845
    13 C. R. Selvasekar, N. Birbeck, T. McMillan, M. Wainwright, S. J. Walker. Photodynamic Therapy and the Alimentary Tract. Aliment Pharm Therap. 2001, 15:899~915
    14 P. Uehlinger, M. Zellweger, G. Wagnières, L. J. Juillerat, H. Vandenbergh, N. Lange. 5-Aminoleculinic Acid and Its Derivatives: Physical Chemical Properties and Protoporphyrin IX Formation in Cultured Cells. J. Photochem.Photobiol. B. 2000, 54:72~80
    15 P. Zhang, W. Steelant, M. Kumar, M. Scholfield. Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation. J. Am. Chem. Soc. 2007, 129:4526~4527
    16 K. Ishii, S. Abiko, N. Kobayashi. Time-Resolved Electron Spin Resonance of Gallium and Germanium Porphyrins in the Excited Triplet State. Inorg. Chem. 2000,39:468~472
    17 N. Toyama, M. A. Someda, T. Ichino, Y. Kaizu. Enhanced Intersystem Crossing in Gable-Type Copper(II) Porphyrin-Free-Base Porphyrin Dimers: Evidence of Through-Bond Exchange Interaction. J. Phys. Chem. A. 2000, 104:4857~4865
    18 P. E. Mattias, T. Ljungdahl, J. Andreasson, J. Mártensson, B. Albinsson. Triplet Photophysics of Gold(II) Porphyrins. J. Phys. Chem. A. 2005, 109:1776~1784
    19 L. M. Demers, C. A. Mirkin, R. C. Mucic, R. A. Reynolds, R. L. Letsinger, R.Elghanian, G. Viswanadham. A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles. Anal. Chem. 2000, 72:5535~5541
    20 C. M. Niemeyer. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angew. Chem.Int. Ed. 2001, 40:4128~4158
    21 C. Zhang, Z. Zhang, B. Yu, J. Shi, X. Zhang. Application of the Biological Conjugate between Antibody and Colloid Au Nanoparticles as Analyte to Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2002, 74:96~99
    22 B. Nolting, J. J. Yu, G. Y. Liu, S. J. Cho, S. Kauzlarich, J. G. Hague. Synthesis of Gold Glyconanoparticles and Biological Evaluation of Recombinant Gp
    120 Interactions. Langmuir. 2003, 19:6465~6473
    23 X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, S. Nie. In Vivo Molecular and Cellular Imaging with Quantum Dots. Curr. Opin. Biotechnol. 2005, 16:63~72
    24 F. Schmitt, P. Govindaswamy, G. Süss-Fink, W. H. Ang, P. J. Dyson, L. J. Juillerat, B. Therrien. Ruthenium Porphyrin Compounds for Photodynamic Therapy of Cancer. J. Med. Chem. 2008, 51:1811~1816
    25金为群,刘玉文,陈禄. N—甲基血卟啉化合物的合成及抗癌实质.吉林大学自然科学学报. 1998, (4):97~100
    26范开华,陈志龙.血卟啉乙二醇醚类化合物的合成及其光动力抑瘤活性.中国医药工业杂志. 1999, 30(6):258~260
    27钟振起,万维勤,许德余.血卟啉类光敏剂的合成新方法.中国医药工业杂志. 2000, 31(9):389~390
    28 D. M. Chipman. Energy Correction to Simulation of Volume Polarization in Reaction Field Theory. J. Chem. Phys. 2002, 116:10129~10139
    29 X. L. Li, B. B. Liu, Z. P. Li, Q. J. Li, Y. G. Zou, D. D. Liu, D. M. Li, B. Zou, T. Cui, G. T. Zou. Photoluminescence Up-Conversion of CdSe/ZnS Core/Shell Quantum Dots under High Pressure. J. Phys. Chem. C. 2009, 113:4737~4740
    30 N. N. Hewa-Kasakarage, N. P. Gurusinghe, M. Zamkov. Blue-Shifted Emission in CdTe/ZnSe Heterostructured Nanocrystals. J. Phys. Chem. C. 2009, 113: 4362~4368
    31 M. D. Garrett, A. D. Dukes, J. R. McBride, N. J. Smith, S. J. Pennycook, S. J. Rosenthal. Band Edge Recombination in CdSe, CdS and CdSxSe1-x Alloy Nanocrystals Observed by Ultrafast Fluorescence Upconversion: the Effect of Surface Trap States. J. Phys. Chem. C. 2008, 112:12736~12746
    32 S. T. Cundiff. Coherent Spectroscopy of Semiconductors. Opt. Express. 2008, 16:4639~4664
    33 M. Reischle, G. J. Beirne, R. RoSbach, M. Jetter, P. Michler. Influence of the Dark Exciton State on the Optical and Quantum Optical Properties of Single Quantum Dots. Phys. Rev. Lett. 2008, 101:146402~146406
    34 C. Rajesh, A. D. Lad, A. Ghangrekar, S. Mahamuni. Exciton Recombination Dynamics in Zinc Selenide Quantum Dots. Sol. St. Comm. 2008, 148:435~439
    35 J. Kim, C. Y. Wong, G. D. Scholes. Excition Fine Structure and Spin Relaxation in Semiconductor Colloidal Quantum Dots. Acc. Chem. Res. 2009, 42(8):1037~1046
    36 V. D. Graaf, M. A. Keizer, A. J. Burggraaf. Wet Chemical Preparation of Zirconia Powders: Their Microstructure and Mechanical Properties. Adv. Ceram. 1984, 12:83~92
    37 L. D. Klayman, T. S. Griffin. Reaction of Selenium with Sodium Borohydride in Protic Solvents: A Facile Method for the Introduction of Selenium into Organic Molecules. J. Am. Chem. Soc. 1973, 95:197~199
    38 M. Boutonnet, J. Kizling, P. Stenuis. The Preparation of Monodisperse Colloidal Metal Particles from Microemulsions. J. Colloid Surf. 1982, 5:209~225
    39吴文智.含镉量子点材料的超快光学特性研究.哈尔滨工业大学理学博士学位论文. 2007:3~5
    40 L. Spanhel, M. Haase, H. Weller, A. Henglein. Photochemistry of ColloidalSemiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles. J. Am. Chem. Soc. 1987, 109:5649~5655
    41 A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, L. Steigerwald, P. J. Carroll, L. E. Brus. Nucleation and Growth of Cadmium Selendie on Zinc Sulfide Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. J. Am. Chem. Soc. 1990, 112:1327~1332
    42 M. A. Hines, P. G. Sionnest. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem. 1996, 100:468~471
    43 M. G. Bawendi, M. L. Steigerwald,L. E. Brus. The Quantum Mechanics of Larger Semiconductor Clusters (“Quantum Dots”). Annu. Rev. Phys. Chem. 1990, 41:477~496
    44 Z. A. Peng, X. G. Peng. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc. 2001, 123:183~184
    45 I. Mekis, D. V. Talapin, A. Kornowski, M. Haase, H. Weller. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and“Greener”Chemical Approaches. J. Phys. Chem. B. 2003, 107:7454~7462
    46 D. C. Pan, Q. Wang, S. C. Jiang, X. L. Ji, L. J. An. Low-Temperature Synthesis of Oil-Soluble CdSe, CdS, and CdSe/CdS Core-Shell Nanocrystals by Using Various Water-Soluble Anion Precursors. J. Phys. Chem. C. 2007, 111:5661~5666
    47 B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B. 1997, 101:9463~9475
    48 J. Ziegler, A. Merkulov, M. Grabolle. High-Quality ZnS Shells for CdSe Nanoparticles: Rapid Microwave Synthesis. Langmuir. 2007, 23:7751~7759
    49 M. Danek, K. F. Jensen, C. B. Murray M. G. Bawendi. Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe. Chem. Mater. 1996, 8:173~180
    50 S. C. Hsieh, F. F. Wang, C. S. Lin, Y. J. Chen, S. C. Hung, Y. J. Wang. The Inhibition of Osteogenesis with Human Bone Marrow Mesenchymal Stem Cells by CdSe/ZnS Quantum Dot Labels. Biomaterials. 2006, 27:1656~1664
    51 J. Müller, J. M. Lupton, A. Rogach, J. Feldmann, D. V. Talapin, H. Weller Signatures of Surface Charge Migration in the Spectral Diffusion of SingleElongated CdSe/CdS Nanocrystals. Phys. Rev. B. 2005, 72:205339~205350
    52 M. Y. Gao, S. Kirstein, H. Mhwald. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. J. Phys. Chem. B. 1998, 102:8360~8363
    53 H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, W. Li. Hydrothermal Synthesis for High-Quality CdTe Nanocrystals Adv. Mater. 2003, 15:1712~1715
    54刘庆华,余亮,熊建文.在光动力疗法中应用的量子点.激光生物学报. 2008, 17(1):138~143
    55 R. Bakalova, H. Ohba, Z. Zhelev, T. Nagase, R. Jose, M. Ishikawa, Y. Baba. Quantum Dot Anti-CD Conjugates: Are They Potential Photosensitizers or Potentiators of Classical Photosensitizing Agents in Photodynamic Therapy of Cancer. Nano Lett. 2004, 4:1567~1573
    56 A. C. Samia, X. Chen, C. Burda. Semiconductor Quantum Dots for Photodynamic Therapy. J. Am. Chem. Soc. 2003, 125:15736~15737
    57 M. Bruche, J. M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science. 1998, 281:2013~2016
    58 W. C. Chan, S. Nie. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science. 1998, 281:2016~2018
    59 D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science, 2003, 300:1434~1436
    60 J. Lovric, S. Hassan, B. H, Y. Cute. Differences in Subcellular Distribution and Toxicity of Green and Red Emitting CdTe Quantum Dots. J. Mol. Med. 2005, 83:377~385
    61林章碧,苏星光,张浩.用水溶液中合成的量子点作为生物荧光标记物的研究.高等学校化学学报. 2003, 24(2): 216~220
    62 C. Gerhards, C. Schulz-Drost, V. Sgobba, D. M. Guldi. Conjugating Luminescent CdTe Quantum Dots with Biomolecules. J. Phys. Chem. B. 2008, 112:14482~14491
    63 P. M. A. Farias, B. S. Santos, A. A. Thomaz, R. Ferreira, F. D. Menezes, C. L. Cesar, A. Fontes. Fluorescent II-VI Semiconductor Quantum Dots in Living Cells: Microspectroscopy in an Optical Tweezers System. J. Phys. Chem. B. 2008, 112:2734~2737
    64土层裕.画像计测.东京都昭晃堂株式会社. 1994:178~185
    65 V. A. Ol’Shevskaya, A. V. Zaitsev, V. N. Luzgina, T. T. Kondratieva, O. G.Ivanov, E. G. Kononova, P. V. Petrovskii, A. F. Mironov, V. N. Kalinin, J. Hofmann, A. A. Shtil. Novel Boronated Derivatives of 5, 10, 15, 20-Tetraphenylporphyrin: Synthesis and Toxicity for Drug-Resistant Tumor Cells. Bioorgan. Med. Chem. 2006, 14:109~120
    66石伟民,刘卫敏,陶京朝.用于光动力治疗的四苯基卟啉衍生物研究进展. 2005,16(2):101~105
    67 S. E. J. Bell, J. M. Hegarty, F. Morvan. Two-Colour Pulsed Raman Studies of the Lowest Excited Singlet Sate of Tetraphenylporphyrin: Band Assignments and Electronic Structure. J. Raman Spectrosc. 2000, 31:289~294
    68 R. E. Oakes, S. E. J. Bell. DFT Studies of the Resonance Raman Spectra of Ground and Excited Triplet State Free Base Meso-Tetraphenylporphyrin (H2TPP). J. Phys. Chem. A. 2003, 107:10953~10959
    69 R. Schneider, F. Schmitt, C. Frochot, Y. Fort, N. Lourette, F. Guillemin, J. Müller and M. Barberi-Heyob. Design, Synthesis, and Biological Evaluation of Folic Acid Targeted Tetraphenylporphyrin as Novel Photosensitizers for Selective Photodynamic Therapy. Bioorgan. Med. Chem. 2005, 13:2799~2808
    70 M. M. El-Nahass, H. M. Zeyada, M. S. Aziz, M. M. Makhlouf. Optical Absorption of Tetraphenylporphyrin Thin Films in UV-Vis-NIR Region. Spectrochim. Acta. A. 2005, 62:11~15
    71 M. M. El-Nahass, H. M. Zeyada, M. S. Aziz, M. M. Makhlouf. Influence of High-Energy X-Ray Irradiation on the Optical Properties of Tetraphenylporphyrin Thin Films. Opt. Laser Technol. 2007, 39:347~352
    72 M. Ko?ínek, P. Klinger, R. D?dic, J. P?en?ík, A. Svoboda, J. Hála. Delayed Fluorescence of Meso-Tetraphenylporphyrin in Acetone and in Dimethylsulphoxide. J. Lumin. 2007, 122:247~249
    73 M. Scarselli, P. Castrucci, D. Monti, M. De Crescenzi. Studies of the Absorption of Tetraphenylporphyrin Molecules on Graphite. Surf. Sci. 2007, 601:5526~5532
    74肖竦.四苯基卟啉类化合物电子吸收光谱的研究.贵阳医学院学报. 2004,29(10):430~433
    75肖竦.四苯基卟啉类化合物荧光光谱的性质.贵阳医学院学报. 2005, 30(2):49~52
    76 L. C. Xu, Z. Y. Li, W. Tan, T. J. He, F. C. Liu, D. M. Chen. Density Functional Theory Studies on the Raman and IR Spectra of Meso-Tetraphenylporphyrin Diacid. Spectrochim. Acta. A. 2005, 62:850~862
    77 J. N. Tian, X. H. Liu, Y. C. Zhao, S. L. Zhao. Studies on the Interaction between Tetraphenylporphyrin Compounds and Bovine Serum Albumin.Luminescence. 2007, 22:446~454
    78 M. Gouterman. In the Porphyrins. Academic press. 1978:1~10
    79 Y. Kurbayasi, K. H. Kikuchi, Y. K. Kokubum, H. Kobayashi. S2-S0 Fluorescence of Some Metallotetraphenylporphyrins. J. Phys. Chem. 1984, 88:1308~1310
    80 W. Denk, J. H. Strickler, W. W. Webb. 2-Photon Laser Scanning Fluorescence Microscopy. Science. 1990, 248:73~76
    81 H. Stiel, K. Tenchner, A. Paul. Two-Photon Excitation of Alkaly-Substituted Magnesium Phthalocyanine: Radical Formation via Higher Excited States. J. Photochem. Photobiol. A. 1994, 80:289~298
    82 W. R. Dichtel, J. M. Serin, C. Edder. Singlet Oxygen Generation via Two-Photon Excited FRET. J. Am. Chem. Soc. 2004, 126:5380~5381
    83 S. S. Xie. Design of the Optical Phantom of Tissue for Photodynamic Therapy Research. Proc. SPIE. 1990, 1616:246~251
    84 J. Moam, T. Christensen, P. B. Jacobsen. Porphyrin Sensitized Photoinactivation of Cells in Vitro. Prog. Clin. Boil. Res. 1984, 170:419~412
    85 T. S. Mang., T. J. Dougherty, W. R. Potter, D. G. Boyle, S. Sommer, J. Moan. Photobleaching of Porphyrins Used in Photodynamic Therapy and Implication for Therapy. Photochem. Photobiol. 1987, 45:501~506
    86 J. Moan, D. Kessel. Photoproducts Formed from Photofrin II in Cells. J. Photochem. Photobiol. B: Biol. 1988, 1:429~436
    87 J. Moan. Effect of Bleaching of Porphyrin Sensitizers during Photodynamic Therapy. Cancer Lett. 1986, 33:45~53
    88 M. Krieg, D. G. Whitten. Self-Sensitized Photooxidation of Protoporphyrin IX and Related Free-Base Porphyrins in Natural and Model Membrane Systems, Evidence of Novel Photooxidation Pathways Involving Amino Acids. J. Am. Chem. Soc. 1984, 106:2477~2479
    89 P. D. Zhao, P. Chen, G. Q. Tang, G. L. Zhang, W. J. Chen. Two-Photon Spectroscopic Properties of a New Chlorin Derivative Photosensitizer. Chem. Phys. Lett. 2004, 390:41~44
    90赵培德,陈平,汤国庆,姚建忠,傅汝廉,张桂兰,陈文驹.光电子激光. 2005, 16(7):881~886
    91 J. Widengren, R. Rigler. Mechanisms of Photobleaching Investigated by Fluorescence Correlation Spectroscopy. Bioimaging. 1996, 4:149~157
    92李国成.水溶性氨基卟啉和磺酸卟啉的合成研究.湖南大学硕士学位论文. 2005:1~2
    93 R. R. Das, R. F. Pasternack, R. A. Plane. Fast Reaction Kinetics of PorphyrinDimerization in Aqueous Solution. J. Am. Chem. Soc. 1970, 92:3312~3316
    94 P. Hambright, R. Fawwaz, P. Valk, J. McRae, A. J. Bearden. Distribution of Various Water Soluble Radioactive Metalloporphyrins in Tumor Bearing Mice. Bioinorg. Chem. 1975, 5:87~92
    95 G. F. Sueta, I. B. Haberle, I. Spasojevic, I. Fricovich, R. Radi. Catalytic Scavenging of Peroxynitrite by Isomeric Mn(III) N-Methylpyridylporphyrins in the Presence of Reductants. Chem. Res. Toxicol. 1999, 12:442~449
    96 J. A. Nelson, U. Schmiedl. Porphyrins as Contrast Media. Magn. Reson. Med. 1991, 22:366~371
    97 C. Lottner, K. C. Bart, G. Bernhardt, H. Brunner. Soluble Tetraarylporphyrin-Platinum Conjugates as Cytotoxic and Phototoxic Antitumor Agents. J. Med. Chem. 2002, 45:2079~2089
    98 C. Lottner, K-C. Bart, G. Bernhardt, H. Brunner. Hematoporphyrin-Derived Soluble Porphyrin-Platinum Conjugates with Combined Cytotoxic and Phototoxic Antitumor Activity. J. Med. Chem. 2002, 45:2064~2078
    99韩高义,杨频.水溶性有机锡卟啉酯的合成及其体外抗肿瘤活性.科学通报. 2001, 46:1002~1005
    100郭喜明.卟啉二联体的合成及其性质研究.吉林大学博士学位论文. 2006:50
    101 B. A. Gregg, M. A. Fox, A. J. Bard. 2, 3, 7, 8, 12, 13, 17, 18-Octakis(Beta–hydroxyethyl) Porphyrin(Octaethanolporphyrin) and Its Liquid Crystalline Derivatives: Synthesis and Characterization. J. Am. Chem. Soc. 1989, 111:3024~3029
    102 Bruce, D. W, M. A. Wali, Q. M. Wang. Calamitic Nematic Liquid Crystal Phases from Zn Complexes of 5, 15-Disubstituted Porphyrins. J. Chem. Soc. Chem. Commun. 1994, 18:2089~2090
    103文柯,曹锡章.两亲性卟啉的合成及其L-B膜.应用化学. 1992, 9(3): 70~71
    104 R. A. Neal. Phthalocyanines and Porphyrins as Materials. J. Porphyr. Phthalocya. 2000, 4:414~417
    105 D. Kessel. Proposed Structure of the Tumor-Localizing Fraction of HpD(Hematoporphyrin Derivative). Photochem. Photobiol. 1986, 44:193~196
    106 R. K. Pandey, F. Y. Shiau, C. J. Medforth, T. J. Dougherty, K. M. Smith. Efficient Synthesis of Porphyrin Dimers with Carbon-Carbon Linkages. Tetrahedron Lett. 1990, 31:789~792
    107 H. L. Anderson, C. A. Hunter, J. K. M. Sanders. Synthesis of a Cyclic Porphyrin Timer with a Semi-Rigid Cavity. J. Chem. Soc. Chem. Commun.1989, 226:1714~1715
    108 M. Y. Okamura, G. Feher, N. Nelson. Photosynthesis. Academic Press. 1982:195
    109 W. I. White. In the Porphyrins. Academic Press. 1979:303
    110 J. J. Katz, L. L. Shipman, T. M. Cotton, T. R. Janson. In the Porphyrins. Academic Press. 1978:401
    111 P. Hambright. In the Porphyrin Handbook. Academic Press. 2000:129
    112 H. L. Anderson, J. K. M. Sanders, A. Bashall, K. Henrick, M. McPartlin. Crystal Structure of a Cyclic Porphyrin Trimer with Three Pyridine Guests in Its Cavity. Angew. Chem. Int. Ed. Engl. 1994, 33:429~431
    113 J. S. Lindsey, I. C. Schreiman, H. C. Hsu. Rothemund and Adler-Longo Reactions Revisited: Synthesis of Tetraphenylporphyrins under Equilibrium Conditions. J. Org. Chem. 1987, 52:827~836
    114 K. Driaf, R. Granet, P. Krausz. Synthesis of Glycosylated Cationic Porphyrins as Potential Agents in Photodynamic Therapy. Can. J. Chem. 1964, 4:15550~15563
    115 E. B. Fleischer, J. M. Palmer, T. S. Srivastava, A. Chatterjee. Thermodynamic and Kinetic Properties of an Iron-Porphyrin System. J. Am. Chem. Soc. 1971, 93:3162~3167
    116 R. Panicucci, T. C. Bruice. Dynamic of the Reaction of Hydrogen Peroxide with a Water Soluble Non.mu.oxo Dimmer Forming Iron(III) Tetraphenylporphyrin. 2. The Reaction of Hydrogen Peroxide with 5, 10, 15, 20-Tetrakis(2,6-Dichloro-3-Sulfonatophenyl) Porphinato Iron(III) in Aqueous Solution. J. Am. Chem. Soc. 1990, 112:6063~6071
    117肖玲,张华山,张传轴,程介克.新水溶性卟啉试剂的合成及其与金属离子显色反应的研究.化学试剂. 1990, 12(5):265~269
    118汤福隆,陈秀华,王朝纲,谢丽媛. 5, 10, 15, 20-四(4-羟基-3-磺酸苯基)卟啉的合成及其酸碱平衡的研究.化学试剂. 1992, 14(1):7~9
    119 T. S. Srivastava, M. Tsutsui. Unusual Metalloporphyrins. XVI. Preparation and Purification of Tetrasodium Meso-Tetra(P-Sulfophenyl) Porphine. Easy Procedure. J. Org. Chem. 1973, 38:2103~2103
    120陈秀华,王莉红,陈章弟,梅盛华. Meso-四(4-甲基-3-磺酸苯基)卟啉的合成及其分度法测定痕量锌、铜的研究.杭州大学学报(自然科学版). 1992, 19(4):420~423
    121 R. F. Pasternack, P. R. Huber, P. Boyd, G. Engasser, L. Francesconi, E. Gibbs, G. C. Venturo. On the Aggregation of Meso-Substituted Water-Soluble Porphyrins. J. Am. Chem. Soc. 1972, 94:4511~4517
    122 G. Moschetto, R. Lauceri, F. G. Gulino, D. Sciotto, R. Purrello. Non-Covalent Synthesis in Aqueous Solution of Discrete Multi-Porphyrin Aggregates with Programmable Stoichiometry and Sequence. J. Am. Chem. Soc. 2002, 124:14536~14537
    123 I. H. Wasbotten, J. Conradie, A. Ghosh. Electronic Absorption and Resonance Raman Signatures of Hyperporphyrins and Nonplanar Porphyrins. J. Phys. Chem. B. 2003, 107:3613~3623
    124 N. C. Maiti, M. Ravikanth. Fluorescence Study of Some Deformed Zine(II) Porphyrins. J. Photochem. Photobiol. A. Chem. 1996, 101:7~10
    125 Y. Kureishi, H. Tamiaki. Synthesis and Self-Aggregation of Zinc 20-Halogeno-Chlorins as a Model for Bacteriochlorophylls C/D. J. Porphyr. Phthalocya. 1998, 2:159~169
    126 J. Karolczak, D. Kowalska, A. Lukaszewicz, A. Maciejewski, R. P. Steer. Photophysical Studies of Porphyrins and Metalloporphyrins: Accurate Measurements of Fluorescence Spectra, and Fluorescence Quantum Yields for Soret Band Excitation of Zinc Tetraphenyl Porphyrin. J. Phys. Chem. A. 2004,
    108:4570~4575
    127 M. S. Lavine. Chemistry: Almost as Bright. Science. 2005, 307:18~25
    128 A. Ueda, T. Tayagaki, Y. Kanemitsua. Energy Transfer from Semiconductor Nanocrystal Monolayers to Metal Surfaces Revealed by Time-Resolved Photoluminescence Spectroscopy. Appl. Phys. Lett. 2008, 92:113118~113121
    129 Y. C. Yeh, C. T. Yuan, C. C. Kang. Influences of Light Intensity on Fluorescence Lifetime of Nanorods and Quantum Dots. Appl. Phys. Lett. 2008, 93:223110~220113
    130 N. N. Hewa-Kasakarage, P. Z. El-Khoury, A. N. Tarnovsky, M. Kirsanova, I. Nemitz, A. Nemchinov, M. Zamkov. Ultrafast Carrier Dynamics in Type II ZnSe/CdS/ZnSe Nanobarbells. ACS Nano. 2010, 4:1837~1844
    131 J. Johansen, B. Julsgaard, S. Stobbe, J. M. Hvam, P. Lodahl. Probing Long-Lived Dark Excitons in Self-Assembled Quantum Dots. Phys. Rev. B. 2010,
    81:081304~081308
    132 J. M. Perkel. Business Office Feature: Cell Signaling: In Vivo Veritas. Science. 2007, 316:1763~1768
    133 E. F. Hilinski, Y. Wang, P. A Lucas. A Picosecond Bleaching Study of Quantum-Confined Cadmium Sulfide Microcrystallites in a Polymer Film. J. Chem. Phys. 1988, 89:3435~3441
    134 D. Mandal, H. Hosoi, U. Chatterjee, T. Tahara. Direct Observation of Time-Dependent Photoluminescence Spectral Shift in CdS Nanoparticles Synthesized in Polymer Solutions. J. Chem. Phys. 2009,130:3492~3500
    135 P. Horodyská, P. Němec, D. Sprinzl, P. Maly, V. N. Gladilin, J. T. Devreese. Exciton Spin Dynamics in Spherical CdS Quantum Dots. Phys. Rev. B. 2010, 81:045301~045313
    136 B. Q. Yang, J. E. Schneeloch, Z. W. Pan, M. Furis, M. Achermannl. Radiative Lifetimes and Orbital Symmetry of Electronic Energy Levels of CdS Nanocrystals: Size Dependence. Phys. Rev. B. 2010, 81:073401~073405
    137 Z. J. Jakubek, J. de Vries, S. Q. Lin, J. Ripmeester, K. Yu. Exciton Recombination and Upconverted Photoluminescence in Colloidal CdSe Quantum Dots. J. Phys. Chem. C. 2008, 112:8153~8158
    138 A. A. Salman, A. Tortschanoff, G. van der Zwan, F. Van Mourik, M. Chergui. A Model for the Multi-Exponential Excited-state Decay of CdSe Nanocrystals. Chem. Phys. 2009, 357:96~101
    139 Y. L. Zhang, P. T. Jing, Q. H. Zeng, Y. J. Sun, H. P. Su, Y. A. Wang, X. G. Kong, J. L. Zhao, H. Zhang. Photoluminescence Quenching of CdSe Core/Shell Quantum Dots by Hole Transporting Materials. J. Phys. Chem. C. 2009, 113:1886~1890
    140 F. S. Riehle, R. Bienert, R. Thomann, G. A. Urban, M. Krüger. Blue Luminescence and Superstructures from Magic Size Clusters of CdSe. Nano Lett, 2009, 9:514~518
    141 J. Huang, D. Stockwell, Z. Q. Huang, D. L. Mohler, T. Q. Lian. Photoinduced Ultrafast Electron Transfer from CdSe Quantum Dots to Re-Bipyridyl Complexes. J. Am. Chem. Soc. 2008, 130:5632~5633
    142 K. Kumari, S. Chand, P. Kumar, S. N. Sharma, V. D. Vankar, V. Kumar. Effect of CdSe Quantum Dots on Hole Transport in Poly, 3-Hexylthiophene Thin Films. Appl. Phys. Lett. 2008, 92:263504~263507
    143 A. Franceschetti, Y. Zhang. Multiexciton Absorption and Multiple Exciton Generation in CdSe Quantum Dots. Phys. Rev. Lett. 2008, 100:136805~136809
    144 L. Zhou, C. Gao, W. J. Xu. Amphibious Polymer-Functionalized CdTe Quantum Dots: Synthesis, Thermo-Responsive Self-Assembly, and Photoluminescent Properties. J. Mater. Chem. 2009, 19:5655~5664
    145 H. Z. Zhong, M. Nagy, M. Jones, G. D. Scholes. Electronic States and Exciton Fine Structure in Colloidal CdTe Nanocrystals. J. Phys. Chem. C. 2009, 113:10465~10470
    146 S. Neretina, W. Qian, E. C. Dreaden, M. A. El-Sayed, R. A. Hughes, J. S. Preston, P. Mascher. Exciton Lifetime Tuning by Changing the Plasmon Field Orientation with Respect to the Exciton Transition Moment Direction: CdTe-Au Core-Shell Nanorods. Nano Lett. 2009, 9:1242~1248
    147 D. Gross, A. S. Susha, T. A. Klar, E. D. Como, A. L. Rogach, J. Feldmann. Charge Separation in Type II Tunneling Structures of Close-Packed CdTe and CdSe Nanocrystals. Nano Lett. 2008, 8:1482~1485
    148 C. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105:1025~1102
    149谢闯. CdSe纳米晶体的研究.天津大学博士学位论文. 2007:139~141
    150 A. Javier, D. Magana, T. Jennings, G. F. Strouse. Nanosecond Exciton Recombination Dynamics in Colloidal Cdse Quantum Dots Under Ambient Conditions. Appl. Phys. Lett. 2003, 83:1423~1425
    151 M. Nirmal, D. Norris, M. Kuno, M. G. Bawendi, A. Efros, M. Rosen. Observation of the“Dark Exciton”in CdSe Quantum Dots. Phys. Rev. Lett. 1995, 75:3728~3731
    152 Q. D. Chen, Q. Ma, Y. Wan, X. G. Su, Z. B. Lin and Q. H Jin. Studies on Fluorescence Resonance Energy Transfer between Dyes and Water-Soluble Quantum Dots. Luminescence. 2005, 20:251~255
    153 N. Gaponik, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller. Thiol-Capping of CdTe Nanocrystals: an Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B. 2002, 106:7177~7185
    154 J. Perez-Conde, A. K. Bhattacharjee, M. Chamarro and P. Lavallard, V. D. Petrikov, A. A. Lipovskii. Photoluminescence Stokes Shift and Exciton Fine Structure in Cdte Nanocrystals. Phys. Rev. B. 2001, 64:113303~113306
    155 Y. William, X. G. Peng. Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating. Angew. Chem. 2002, 114:2474~2477
    156 Y. Kayanuma. Quantum-Size Effects of Interacting Electrons and Holes in Semiconductor Microcrystals with Spherical Shape. Phys. Rev. B. 1988, 38:9797~9805
    157 E. Collini, C. Ferrante, R. Bozio. Strong Enhancement of the Two-Photon Absorption of Tetrakis(4-Sulfonatophenyl) Porphyrin Diacid in Water upon Aggregation. J. Phys. Chem. B. 2005, 109:2~5
    158 J. L. Humphrey, D. Kuciauskas. Charge Transfer Enhanced Two-Photon Absorption in Transition Metal Porphyrin. J. Am. Chem. Soc. 2006, 128:3902~3903
    159 A. S. M. Noor, A. Miyakawa, Y. Kawata, M. Torizawa. Two-Photon Excited Luminescence Spectral Distribution Observation in Wide-Gap Semiconductor Crystals. Appl. Phys. Lett. 2008, 92:161106~161108
    160 A. M. Funston, J. J. Jasieniak, P. Mulvaney. Complete Quenching of CdSe Nanocrystal Photoluminescence by Single Dye Molecules. Adv. Mater. 2008, 20:4274~4280
    161 H. C. Pan, R. J. Cui, J. J. Zhu. CdTe Quantum Dots as Probes for Near-Infrared Fluorescence Biosensing Using Biocatalytic Growth of Au Nanoparticles. J. Phys. Chem. B. 2008, 112:16895~16901.
    162 A. M. Munro, D. S. Ginger. Photoluminescence Quenching of Single CdSe Nanocrystals by Ligand Absorption. Nano Lett. 2008, 8:2585~2590
    163 S. P. Wang, N. Mamedova, N. A. Kotov. Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. Nano Lett. 2002, 2:817~822
    164 H. C. Lu, O. Sch?ps, U. Woggon, C. M. Niemeyer. Self-Assembled Donor Comprising Quantum Dots and Fluorescent Proteins for Long-Range Fluorescence Resonance Energy Transfer. J. Am. Chem. Soc. 2008, 130:4815~4827
    165 A. M. Dennis, G. Bao. Quantum Dot-Fluorescent Protein Pairs as Novel Fluorescence Resonance Energy Transfer Probes. Nano Lett. 2008, 8:1439~1445
    166 Y. Nagasaki, T. Ishii, Y. Sunaga, Y. Watanabe, H. Otsuka, K. Kataoka. Novel Molecular Recognition via Fluorescent Resonance Energy Transfer Using a Biotin-PEG/Polyamine Stabilized CdS Quantum Dot. Langmuir. 2004, 20:6396~6400
    167 A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrunn, P. E. Dawson, B. R. Fisher, B. O’Rourke, and H. Mattoussi. Two-Photon Excitation of Quantum-Dot-Based Fluorescence Resonance Energy Transfer and Its Applications. Adv. Mater. 2007, 19:1921~1926
    168 M. Suzuki, Y. Husimi, H. Komatsu, K. Suzuk, K. T. Douglas. Quantum Dot FRET Biosensors that Respond to pH, to Proteolytic or Nucleolytic Cleavage, to DNA Synthesis, or to a Multiplexing Combination. J. Am. Chem. Soc. 2008,
    130:5720~5725
    169 S. Dayal, C. Burda. Semiconductor Quantum Dots as Two-Photon Sensitizers. J. Am. Chem. Soc. 2008, 130:2890~2891
    170 L. X. Shi, B. Hemandez, M. Selke. Singlet Oxygen Generation from Water-Soluble Quantum Dot-Organic Dye Nanocomposites. J. Am. Chem. Soc. 2006,
    128:6278~6279
    171 J. R. Lakowicz. Principles of Fluorescence Spectroscopy. Kluwer. 1999
    172 Th. F?rster. Transfer Mechaisms of Electronic Excitation Energy. Discuss Faraday Soc. 1960, 27:326~339
    173 D. L. Dexter. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys.1953, 21:836~851
    174 H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. I. Ipe, M. G. Bawendi, J. V. Frangioni. Renal Clearance of Nanoparticles. Nat. Biotechnol. 2007, 25:1165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700