吖啶类化合物电致化学发光及离子液体功能化纳米复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先综述了电致化学发光、离子液体、金属纳米材料/纳米复合材料以及纳米电致化学发光生物传感器的发展现状。电致化学发光新体系和机理研究一直受到人们的关注,新的电致化学发光体系的发现,有利于进一步拓展电致化学发光的分析应用潜力。而金属纳米材料作为纳米生物传感器中新型的建筑单元,对传感器的稳定性、重现性和灵敏度均起着重要作用。因此,本论文一方面针对吖啶类化合物,探索其电致化学发光新体系,并研究其发光规律和机理,最终将新体系作为检测手段构建纳米电致化学发光DNA传感器;另一方面合成离子液体保护的金属纳米粒子和复合纳米材料,对新材料中的作用机理进行研究。
     主要研究内容如下
     1.与水相中的电致化学发光行为相比较,光泽精在乙醇溶液中可以得到三个新的阳极发光峰(ECL-2-4)。对所得循环伏安曲线进行微分处理,并借助于线性扫描、预电解等多种电化学手段,对多个发光峰进行表征和分析,提出了各个发光通道的反应机理。ECL-2 (-0.53 V vs. SCE)可能对应于光泽精与过氧化氢电还原过程中产生的自由基O2·-之间的发光反应;ECL-3 (0.20 Vvs. SCE)可能对应于N,N-二甲基-9,9'-双吖啶烯(DBA)电氧化产生的自由基Luc·+与溶解氧之间的发光反应;ECL-4(0.51 Vvs. SCE)则为在溶解氧存在下,自由基Luc·+去质子化产生的DBA异构体与光泽精之间的发光反应。新产生的发光峰都与自由基相关,可能因为相对于水相而言,自由基可以在乙醇相中存活更长时间;另一方面光泽精的还原产物在乙醇中有更好的溶解性,因而更容易被电氧化并诱导电致化学发光。该项研究对光泽精电致化学发光基础理论研究具有重要意义。
     2.首次发现了光泽精与三丁胺体系的电致化学发光行为,在阳极可以产生一个新的电致化学发光峰并伴有两个肩峰。通过研究溶剂、电极材料、试剂浓度、气氛、电解质等因素的影响,我们推测ECL-1 (0.91 Vvs. SCE)和S1(0.52 V vs.SCE)对应于光泽精与TBA电氧化产物之间的发光反应,而反应所得的中间体则可进一步与光泽精发光并产生S2(1.19 V vs.SCE)。ECL-2 (0.66 Vvs. SCE)、S3(0.33 V vs.SCE)、S4(1.07 V vs.SCE)则为ECL-1、S1、S2各自的对峰,具有同样的反应机理。另外我们还研究了多种胺类化合物如三丙胺、三乙胺等与光泽精之间的电致化学发光行为。发现对于脂肪胺而言,随着三级胺脂肪链长的增加,发光光强也随之增加。随着脂肪链数量的减少,发光光强表现为叔胺大于仲胺大于伯胺。该项研究为设计吖啶类发光化合物新型电致化学发光反应体系提供了新的研究思路。
     3.首次发现三丙胺可以引发吖啶酯标记物的电致化学发光。推测该过程为三丙胺电氧化后产生的自由基进攻吖啶环9位,诱导吖啶环发生多重键裂生成激发态的N-甲基吖啶酮,并最终跃迁回基态产生发光。成功将该反应作为检测体系,以“夹心法”构建新型电致化学发光DNA传感器。对基于吖啶酯/三丙胺体系构建的DNA传感器进行初步的实验条件优化后,对模板DNA链进行定量分析。最优条件下,该DNA传感器的线性范围在5.0×10-15.mol·L~5.0×10-12 mol·L-1之间,检测限(S/N=3)为3.0×10-15mol·L-1,并且对单碱基错配、双碱基错配和完全错配DNA序列进行了研究,发现这些序列产生的ECL信号明显低于完全互补配对的目标DNA序列,表明该传感器具有良好的选择性。该项研究在临床分析中具有重要的应用潜力。
     4.成功地在水相中合成了羧基和氨基功能化离子液体保护的金/铂纳米颗粒。当用硼氢化钠作还原剂时,可以得到较小粒径的纳米金(3.5nm)和纳米铂(2.5 nm);当柠檬酸钠作还原剂时,可以得到多种粒径的较大颗粒纳米金(23,42和98 nm)。我们采用透射电镜、紫外-可见吸收光谱、X射线光电子能谱等手段表征所得纳米粒子的形貌和表面状态,发现离子液体在保护纳米颗粒时,会使金属表面的电子云向咪唑环偏移,导致离子液体的C 1s和N 1s电子能谱发生负移。我们推测其保护机理可能有三种模型:(1)通过咪唑阳离子与金属表面负电荷之间的静电相互作用。(2)功能化基团与金属表面原子间的作用。(3)模型1和2两种作用力共同作用。所合成的金属纳米颗粒均可以吸附于未处理的多壁碳纳米管之上,形成复合纳米材料。该材料的形成可能与咪唑环和碳管表面之间的阳离子-π或π-π共轭作用有关,离子液体在金属纳米颗粒和碳管之间相当于起了一个连接试剂的作用。吸附实验过程中没有加其它的化学试剂,碳纳米管也不用经过酸化或其它处理步骤,而所得到的复合纳米材料仍然有较好的亲水能力,这种材料在催化、纳米电子学及传感器等领域具有重要的应用潜力。另外,与相同粒径柠檬酸钠保护的纳米金相比,离子液体保护的纳米金有更低的散射强度,这为进一步提高基于纳米金光散射测定DNA、氨基酸及染料的分析方法的灵敏度奠定了良好基础。
     5.首次成功地在室温下,在水相中用化学法一步还原出离子液体保护的多晶形纳米金。在氨基功能化离子液体存在的情况下,用单宁酸室温下还原氯金酸,可以得到在长波处(大于600 nm)有明显表面等离子体共振吸收峰的纳米金。由透射电镜照片可知,该吸收峰由金溶胶中的非球形纳米金导致。溶胶中非球形金主要由金三角片、十面体和二十面体组成。通过改变还原剂的量,可以实现对多晶形纳米金的晶形组成和尺寸进行调控。我们推测多晶形的产生跟多羟基还原剂单宁酸有关,而离子液体由于其自身的特性,对非球形纳米金的生成也有很大贡献,起到了合成模板的作用。此项工作丰富了人们对离子液体在纳米金形貌控制上的认识。
In this dissertation, the state of arts in the field of electrochemiluminescence (ECL), ionic liquid (IL). metal nano-materials/nano-hybrids and nano-based ECL biosensor were reviewed.For ECL-based biassays, new electrochemiluminescent system is an important subject. Besides, metal nanoparticles play an important role in the nano-based biosensor, which can affect the stability, repeatability, and sensitivity of the sensor. Therefore, in the present dissertation, acridine compounds were utilized to design new ECL systems. The ECL behaviors, rules, and mechanisms of these novel ECL systems were investigated. Moreover, based on the new ECL system, a biosensor was developed to determine DNA. On the other hand, IL stabilized metal nanoparticles/nanohybrids were synthesized. The interactions among metal nanoparticles, IL and carbon nanotubes were also explored.
     The main results are as follows:
     1. Compared with the ECL of lucigenin in aqueous solution, three new anodic ECL peaks (ECL-2 at-0.53 V, ECL-3 at 0.20 V, and ECL-4 at 0.51 V) were observed. Depending on the semi-derivative voltammogram curves and different electrochemical techniques such as pre-electrolyzing and linear sweep voltammetry, the ECL peaks were characterized and the mechanisms were proposed. ECL-2 was likely due to the luminescent reactions between lucigenin and the radicals O2 generated during the electro-reduction of hydrogen peroxide. ECL-3 was possibly due to the luminescent reactions between Luc*+generated by the electro-oxidation of N,N'-dimethyl-9,9'-biacrylidene (DBA) and dissolved oxygen. ECL-4 was possibly due to the reaction between the DBA isomer and lucigenin in the presence of dissolved oxygen. The novel ECL peaks were related to radicals. The radicals can exist longer in non-aqueous solution than aqueous solution. And the reduction products of lucigenin have preferred dissolution ability in ethanol than H2O. Therefore, these differences might induce the novel ECL peaks in ethanol solution.
     2. The ECL behavior between lucigenin and tributylamine (TBA) was firstly studied. A novel anodic ECL peaks with two shoulders was observed. The effects of various factors such as media, material of electrode, concentration of lucigenin and TBA, atmosphere, and electrolytes on ECL peaks were examined and the mechanisms were proposed. ECL-1 (0.91 V vs. SCE) and S1 (0.52 V vs. SCE) were possibly due to the luminescent reactions between lucigenin and the electro-oxidized products of TBA. And the intermediate species could also react with lucigenin and generate S2 (1.19 V vs. SCE). ECL-2 (0.66 V vs. SCE), S3 (0.33 V vs. SCE), and S4 (1.07 V vs. SCE) were the counter-peaks of ECL-1, S1, and S2, respectively. Therefore, those peaks had the same luminescent processes with the counter-peaks. Moreover, the ECL behavior between several amines (such as tripropylamine and triethylamine, etc.) and lucigenin was examined. It was found that the ECL intensity decreased either as the length of aliphatic substituents decreased, or as the number of aliphatic chains decreased. The present work provides a way to design the ECL system of acridine compounds.
     3. It was found that tripropylamine (TPA) could induce the ECL behavior of acridinium ester (AE) labels. The radicals generated in the electro-oxidation process of TPA attacked 9 position of acridine, which would induce the multiple bond cleavage of acridine and generate excited.N-methylacridone. The excited N-methylacridone returned to ground state and released photons. The AE/TPA ECL system was used as the detection system for developing a sandwich-type ECL-based DNA sensor. The experimental conditions were optimized when a model DNA was chosen as a target analyte. Under the optimized conditions, the linear range of the DNA sensor was from 5.0×10-15 mol·L-1 to 5.0×10-12 mol·L-1. The detection limit (S/N= 3) was 3.0×10-15 mol·L-1. Moreover, the ECL-DNA sensor could selectively detect the model DNA among the one-base mismatched DNA, two-based mismatched DNA, and non-complementary DNA. It is of great application potential in clinic analysis.
     4. Carboxylic acid-and amino-functionalized ionic liquids were used as the stabilizer for the systhesis of metal nanoparticles in aqueous solution. Smaller gold nanoparticles (3.5 nm) and platinum nanoparticles (2.5 nm) were prepared with NaBH4 as the reductant. Larger gold nanospheres (23,42, and 98 nm) were synthesized using different quantities of trisodiumcitrate reductant. The morphology and the surface state of the metal nanoparticles were characterized by high-resolution transmission electron microscropy, UV-visible spectroscopy, and X-ray photoelectron spectroscopy. It was found that the electron clouds inclined to transfer from the metal surface to imidazolium ring, which induced the negative shifts in C 1s and N 1s binding energies. It was deduced that the nanoparticles were stabilized via three possible modes:(1) The electrostatic interaction between the imidazolium cation in ILs and the negatively charged metal atom. (2) The coordination between the functional group in ILs and metal atoms. (3) The simultaneous coordination mode involved in both (1) and (2). All the IL-stabilized metal nanoparticles were found to easily decorate on untreated multiwalled carbon nanotubes. In the microstructure of the nanohybrids, the imidazolium ring moiety of ILs might interact with theπ-electronic nanotube surface by virtue of cation-πand/orπ-πinteractions, and the functionalized group moiety might interact with the metal nanoparticles surface. The ILs acted as a linker. During all the decoration procedures, no additional reagents were needed, and the carbon nanotubes were used without any treatment. Moreover, the obtained nanohybrids had a remarkable hydrophilic ability, which might find future applications in fields such as catalysis, nanoscale electronics, as well as sensors. Additionally, amino-functionalized IL stabilized gold nanoparticles showed lower resonance Rayleigh scattering intensity than trisodiumcitrate stabilized gold nanoparticles, which may have potential application in DNA, amino acid, and dye analysis based on resonance Rayleigh scattering technique.
     5. Ionic liquid stabilized anisotropic gold nanoparitcles were synthesized by one-step chemical reduction method in aqueous solutions at room temperature. In the presence of amino-functionalized ILs, gold nanoparitcles with long-wavelength surface plasmon resonance (SPR) absorption (> 600 nm) could be obtained by using of tannic acid as a reductant. The specific SPR absorption was related to the non-spherical gold nanoparticles including gold triangle, decahedra, and icosahedra nanocrystals, which could be observed by transmission electron microscropy. The component and the size of the anisotropic gold nanoparitcles could be adjusted by the amount of reducing agent. It was deduced that the formation of non-spherical gold nanoparticles was related the hydroxyls in tannic acid, and ILs acted as the synthesis template because of the specific interactions between IL and gold surface.
引文
[1]Radziszewski BR. Untersuchungen fiber hydrobenzamid, amarin und lophin. Chem. Ber., 1877,10:70-75.
    [2]Albrecht HO. Chemiluminescence of aminophthalic hydrazide. Z. Phys. Chem.,1928, 136:321-330.
    [3]Gleu K, Petsch W. The chemiluminescence of the dimethylbiacridylium salts. Angew. Chem.-Int. Edit.,1935,48:57-59.
    [4]Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as a diagnostic tool. A review. Talanta,2000,51:415-439.
    [5]Aboul-Enein HY, Stefan RI, van Staden JF. Chemiluminescence-based (bio) sensors-An overview. Crit. Rev. Anal. Chem.,1999,29:323-331.
    [6]Robards K, Worsfold PJ. Analytical applications of liquid-phase chemiluminescence. Anal. Chim. Acta,1992,266:147-173.
    [7]Campbell AK. Chemiluminescence:Principles and applications in biology and medicine. Chichester:Horwood/VCH.1988.
    [8]Li FM, Zhang CH, Guo XJ, et al. Chemiluminescence detection in HPLC and CE for pharmaceutical and biomedical analysis. Biomed. Chromatogr.,2003,17:96-105.
    [9]Velasco JG. Electroluminescence. Electroanalysis,1991,3:261-271.
    [10]Kricka LJ, Stroebel J, Stanley PE. Sonoluminescence:1996-1998. Luminescence,1999, 14:107-112.
    [11]Knight AW, Greenway GM. Occurrence, Mechanisms and Analytical Applications of Electrogenerated Chemiluminescence-Review. Analyst,1994,119:879-890.
    [12]Knight AW. A review of recent trends in analytical applications of electrogenerated chemiluminescence. Trends Anal. Chem.,1999,18:47-62.
    [13]Gerardi RD, Barnett NW, Lewis SW. Analytical applications of tris(2,2'-bipyridyl)ruthenium(Ⅲ) as a chemiluminescent reagent. Anal. Chim. Acta,1999, 378:1-3.
    [14]Fahnrich KA, Pravda M, Guilbault GG. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta,2001,54:531-559.
    [15]Richter MM. Electrochemiluminescence (ECL). Chem. Rev.,2004,104:3003-3036.
    [16]Gorman BA, Francis PS, Barnett NW. Tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence. Analyst 2006,131:616-639.
    [17]Zweg A, Metzler G, Maurer A, et al. Electrochemiluminescence of aryl-substituted isobenzofurans, isoindoles, and related substances. J. Am. Chem. Soc.,1967,89: 4091-4098.
    [18]Faulkner LR. Diss. Abstr. Int.,1970,30:5449.
    [19]Rubinstein I, Bard AJ. Electrogenerated chemiluminescence.37. Aqueous ecl systems based on tris(2,2'-bipyridine)ruthenium(2+) and oxalate or organic acids. J. Am. Chem. Soc.,1981,103:512-516.
    [20]White HS, Bard AJ. Electrogenerated chemiluminescence.41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2'-bpy)32+-S2O82- system in acetonitrile-water solutions. J. Am. Chem. Soc.,1982,104 6891-6895.
    [21]Campell AK. Chemiluminescence:Principles and Applications in Biology and Medicine. Chichester:Horwood.1998.
    [22]Navas MJ, Jimenez AM. Review of chemiluminescent methods in food analysis. Food. Chem.,1996,55:7-15.
    [23]Imai K, Nishitani A, Akitomo H, et al. J. Biolumin. Chemilumin.,1989,4:422.
    [24]Worsfold PJ, Nabi A. Trends Anal. Chem.,1983,5:183.
    [25]Grayeski ML. Chemiluminescence analysis. Anal. Chem.,1987,59:1243A-1256A.
    [26]Lee WY. Tris (2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science. Mikrochim. Acta,1997,127:19-39.
    [27]Liang P, Sanchez RI, Martin MT. Electrochemiluminescence-Based Detection of β-Lactam Antibiotics and β-Lactamases. Anal. Chem.,1996,68:2426-2431.
    [28]Chen X, Jia L, Wang XR, et al. Study of the electrochemiluminescence based on the reaction of hydroxyl compounds with ruthenium complex. Anal. Sci.,1997,13:71-75.
    [29]van-Ingen HE, Chan DW, Hubl W, et al. Analytical and clinical evaluation of an electrochemiluminescence immunoassay for the determination of CA 125. Clin. Chem., 1998,44:2530-2536.
    [30]Zhang L, Li D, Meng W, et al. Sequence-specific DNA detection by using biocatalyzed electrochemiluminescence and non-fouling surfaces. Biosens. Bioelectron.,2009,25: 368-372.
    [31]Zhang J, Qi H, Li Y, et al. Electrogenerated Chemiluminescence DNA Biosensor Based on Hairpin DNA Probe Labeled with Ruthenium Complex. Anal. Chem.,2008,80: 2888-2894.
    [32]Li Y, Qi H, Peng Y, et al. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine. Electrochem. Commun.,2007,9:2571-2575.
    [33]Legg KD, Hercules DM. Electrochemically Generated Chemiluminescence of Lucigenin. J. Am. Chem. Soc.,1969,91:1902-1907.
    [34]Haapakka KE, Kankare JJ. Electrogenerated chemiluminescence of lucigenin in aqueous alkaline solutions at a platinum electrode. Anal. Chim. Acta,1981,130:415-418.
    [35]Sun YG, Cui H, Lin XQ. Study of electrochemiluminescence of lucigenin at glassy carbon electrodes in NaOH solution. J. Lumin.,2001,92:205-211.
    [36]Amaro RR, Sanchez M, Munoz E, et al. Electrochemical reduction of lucigenin on mercury in aqueous media. J. Electrochem. Soc.,1996,143:3132-3136.
    [37]Okajima T, Ohsaka T. Electrogenerated chemiluminescence of lucigenin enhanced by the modifications of electrodes with self-assembled monolayers and of solutions with surfactants. J. Electroanal. Chem.,2002,534:181-187.
    [38]Cui H, Zhang H, Shi MJ, et al. Electrogenerated chemiluminescence of lucigenin in ethanol solution at a polycrystalline gold electrode. Electroanalysis,2007,19:1703-1710.
    [39]Spasojevic I, Liochev SI, Fridovich I. Lucigenin:Redox Potential in Aqueous Media and Redox Cycling with O2-Production. Arch. Biochem. Biophys.,2000,373:447-450.
    [40]Chen GN, Zhang L, Lin RE, et al. The electrogenerated chemiluminescent behavior of hemin and its catalytic activity for the electrogenerated chemiluminescence of lucigenin. Talanta,2000,50:1275-1281.
    [41]Su Y, Wang J, Chen GN. The enhanced electrochemiluminescence of lucigenin by some hydroxyanthraquinones. Talanta,2006,68:883-887.
    [42]Su Y, Wang J, Chen GN. Determination of epinephrine based on its enhancement for electrochemiluminescence of lucigenin. Talanta,2005,65:531-536.
    [43]Guo JZ, Cui H, Xu SL, et al. A new electrogenerated chemiluminescence peak of lucigenin in hydrogen evolution region induced by platinum nanoparticles. J. Phys. Chem. C,2007,111:606-611.
    [44]Lin JM, Yamada M. Electrogenerated chemiluminescence of methyl-9-(p-formylphenyl) acridinium carboxylate fluorosulfonate and its applications to immunoassay. Microchem. J,1998,58:105-116.
    [45]Weeks I, Beheshti I, McCapra F, et al. Acridinium Esters as High-specific-activity Labels in Immunoassay. Clin. Chem.,1983,29:1474-1479.
    [46]Weeks I, Sturgess M, Brown RC, et al. Immunoassays using acridinium esters. Methods Enzymol.,1986,133:366-387.
    [47]Litting JS, Nieman TA. Flow-injection Chemiluminescence Study of Acridinium Ester Stability and Kinetics of Decomposition. J. Biolumin. Chemilumin.,1993,8:25-31.
    [48]Lai Y, Qi Y. Wang J, et al. Using acridinium ester as the sonochemiluminescent probe for labeling of protein. Analyst,2009,134:131-137.
    [49]Wilson R, Akhavan-Tafti H, DeSilva R, et al. Electrochemiluminescence of 2,6-difluorophenyl 10-methyl-9,10-dihydroacridine-9-carboxylate. Chem. Commun., 2000,2067-2068.
    [50]Jr. LJA, Hammond PW, Wlese WA, et al. Assay formats involving acridinium-ester-labeled DNA probes. Clin. Chem.,1989,35:1588-1594.
    [51]Wilson R, Akhavan-Tafti H, DeSilva R, et al. Electrochemiluminescence Determination of 2',6'-Difluorophenyl 10-Methylacridan-9-carboxylate. Anal. Chem.,2001,73:763-767.
    [52]Yang M, Liu C, Hu X, et al. Electrochemiluminescence assay for the detection of acridinium esters. Anal. Chim. Acta,2002,461:141-146.
    [53]Littig JS, Nieman TA. Quantitation of Acridinium Esters Using Chemiluminescence and Flow Injection. Anal. Chem.,1992,64:1140-1144.
    [54]Pons OR, Gregorio DM, Mateo JVG, et al. Flow-injection analysis study of the chemiluminescent behaviour of proflavine and acriflavine. Anal. Chim. Acta,2001,438: 149-156.
    [55]安镜如,陈曦,陈恒. Investigation of electrochemiluminescence of luminol in aqueous alkaline solution.分析化学,1988,16:127-132.
    [56]Vitt JE, Johnson DC. The effect of electrode material on the electrogenerated chemiluminescence of luminol. J. Electrochem. Soc.,1991,138:1637-1643.
    [57]Sakrua S, Terao J. Anal. Chim. Acta,1982,261:217.
    [58]Wroblewska A, Reshetnyak OV, Kovalchuk EP, et al. Origin and features of the electrochemiluminescence of luminol-Experimental and theoretical investigations. J. Electroanal. Chem.,2005,580:41-49.
    [59]Haapakka KE, Kankare JJ. The mechanism of the electrogenerated chemiluminescence of luminol in aqueous alkaline solution. Anal. Chim. Acta,1982,138:263-275.
    [60]McCord P, Bard AJ. Electrogenerated chemiluminescence 54. Electrogenerated Chemiluminescence of Ruthenium (Ⅱ) 4,4'-diphenyl-2,2'-bipyridine and Ruthenium (II) 4,7-diphenyl-1,10-phenanthroline systems in aqueous and acetonitrile solutions. J. Electroanal. Chem.,1991,318:91-99.
    [61]Tokel-Takvoryan NE, Hemingway RE, Bard AJ. Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates. J. Am. Chem. Soc.,1973,95:6582-6589.
    [62]Wang P, Jing XY, Wang XP, et al. Synthesis,2D NMR, electrochemistry and luminescence of ruthenium(Ⅱ) complexes with 2,2'-bipyridine and 5-(omega-bromoalkylamido)-1,10-phenanthroline. Asian J. Chem.,2000,12:643-649.
    [63]Richter MM, Debad JD, Striplin DR, et al. Electrogenerated Chemiluminescence.59. Rhenium Complexes. Anal. Chem..1996,68:4370-4376.
    [64]Michel PE, Fiaccabrino GC, de Rooij NF, et al. Integrated sensor for continuous flow electrochemiluminescent measurements of codeine with different ruthenium complexes. Anal. Chim Acta 1999,392:95-103.
    [65]Tokel NE, Bard AJ. Electrogenerated chemiluminescence. Ⅸ. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(Ⅱ) dichloride. J. Am. Chem. Soc.,1972,94:2862-2863.
    [66]Rubinstein I, Martin CR, Bard AJ. Electrogenerated chemiluminescent determination of oxalate. Anal. Chem.,1983,55:1580-1582.
    [67]Zu Y, Bard AJ. Electrogenerated Chemiluminescence.66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the emission Intensity. Anal. Chem.,2000,72:3223-3232.
    [68]Wightman RM, Forry SP, Maus R, et al. Rate-Determining Step in the Electrogenerated Chemiluminescence from Tertiary Amines with Tris(2,2'-bipyridyl)ruthenium(Ⅱ). J. Phys. Chem.B,108,2004,19119-19125.
    [69]Honda K, Yoshimura M, Rao TN, et al. Electrogenerated Chemiluminescence of the Ruthenium Tris-2,2'-bipyridyl/Amines System on a Boron-Doped Diamond Electrode. J. Phys. Chem. B,2003,107:1653-1663.
    [70]Miao W, Choi JP, Bard AJ. Electrogenerated Chemiluminescence 69:The Tris-2,2'-bipyridine-ruthenium(Ⅱ), (Ru(bpy)3 2+)/Tri-n-propylamine (TPrA) System Revisited-A New Route Involving TPrA'+Cation Radicals. J. Am. Chem. Soc.,2002,124: 14478-14485.
    [71]Zu Y, Bard AJ. Electrogenerated Chemiluminescence.67. Dependence of Light Emission of the Tris(2,2')bipyridylruthenium(Ⅱ)/Tripropylamine system on Electrode Surface Hydrophobicity. Anal. Chem.,2001,73:3960-3964.
    [72]Michael PR, Faulkner LR. Electrochemiluminescence from the thianthrene-2,5-diphenyl-1,3,4-oxadiazole system. Evidence for light production by the T route. J. Am. Chem. Soc.,1977,99:7754-7761.
    [73]Faulkner LR. Chemiluminescence from electron-transfer processes. Methods Enzymol., 1978,57:494-526.
    [74]Braun F. Ann. Phys. Chem.,1898,65:361.
    [75]Ikonopisov S. Problems and contradictions in galvanoluminescence, a critical review. Electrochim. Acta,1975,20:783-793.
    [76]Tajima S. Luminescence, breakdown and colouring of anodic oxide films on aluminium. Electrochim. Acta,1977,995-1011.
    [77]Kovalchuk EP, Reshetnyak OV, Chernyak AO, et al. Electrochemiluminescence on npl-metals:1. The analysis of chemiluminescent reactions. Electrochim. Acta,1999,44: 4079-4086.
    [78]Sung YE, Gaillard F, Bard AJ. Demonstration of electrochemical generation of solution-phase hot electrons at oxide-covered tantalum electrodes by direct electrogenerated chemiluminescence. J. Phys. Chem. B 1998,102:9797-9805.
    [79]Kulmala S, Ala-Kleme T, Vare L, et al. Hot electron-induced electrogenerated luminescence of T1(Ⅰ) at disposable oxide-covered aluminum electrodes. Anal. Chim. Acta, 1999,398:41-47.
    [80]Kulmala S, Helin M, Ala-Kleme T, et al. Electrochemiluminescent labels for applications in fully aqueous solutions at oxide-covered aluminium electrodes. Anal. Chim. Acta,1999, 386:1-6.
    [81]Kulmala S, Ala-Kleme T, Joela H, et al. Hot electron injection into aqueous electrolyte solution from thin insulating film-coated electrodes. J. Radioanal. Nucl. Ch.,1998,232: 91-95.
    [82]Kulmala S, Kulmala A, Ala-Kleme T, et al. Primary cathodic steps of electrogenerated chemiluminescence of lanthanide(Ⅲ) chelates at oxide-covered aluminum electrodes in aqueous solution. Anal. Chim. Acta,1998,367:17-31.
    [83]Ding Z, Quinn BM, Haram SK, et al. Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots. Science,2002,296: 1293-1297.
    [84]Wang C, Zhang H, Xu S, et al. Sodium-Citrate-Assisted Synthesis of Aqueous CdTe Nanocrystals:Giving New Insight into the Effect of Ligand Shell. J. Phys. Chem. C,2009, 113:827-833.
    [85]Myung N, Ding Z, Bard AJ. Electrogenerated Chemiluminescence of CdSe Nanocrystals. Nano. Lett.,2002,2:1315-1319.
    [86]Voitekhovich SV, Talapin DV, Klinke C, et al. CdS Nanoparticles Capped with 1-Substituted 5-Thiotetrazoles:Synthesis, Characterization, and Thermolysis of the Surfactant. Chem. Mater.,2008,20:4545-4547.
    [87]Chen Y, Zhang X, Jia C, et al. Synthesis and Characterization of ZnS, CdS, and
    Composition-Tunable ZnxCdl-xS Alloyed Nanocrystals via a Mix-Solvothermal Route. J. Phys. Chem. C,2009,113:2263-2266.
    [88]Hemmateenejad B, Nezhad MRH. Investigating the Shape Evolution Mechanism of CdSe Quantum Dots by Chemometrics Analysis of Spectrophotometric Data. J. Phys. Chem. C, 2008,112:18321-18324.
    [89]Lupo MG, Sala FD, Carbone L,et al. Ultrafast Electron-Hole Dynamics in Core/Shell CdSe/CdS Dot/Rod Nanocrystals. Nano. Lett.,2008,8:4582-4587.
    [90]Jie G, Zhang J, Wang D, et al. Electrochemiluminescence Immunosensor Based on CdSe Nanocomposites. Anal. Chem.,2008,80:4033-4039.
    [91]Fang YM, Sun JJ, Wu AH, et al. Catalytic Electrogenerated Chemiluminescence and Nitrate Reduction at CdS Nanotubes Modified Glassy Carbon Electrode. Langmuir,2009, 25:555-560.
    [92]Seddon KR. Ionic liquid for clean technology. J. Chem. Technol. Biotech.,1997,68: 351-356.
    [93]张锁江,吕兴梅,等.离子液体-从基础研究到工业应用.北京:科学出版社.2006.
    [94]Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem. Commun.,1992,13:965-966.
    [95]Dean JA. Lange's Handbook of Chemistry (the 15th edition). New York:McGraw-Hill. 1999.
    [96]Brennecke JF, Maginn EJ. Ionic liquids:Innovative fluids for chemical processing. AICHEJ,2001,47:2384-2389.
    [97]Wilkes JS, Levisky JA, Wilson RA. Dialkylimidazolium chloroaluminate melts:A new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem.,1982,21:1263-1264.
    [98]Fuller J, Carlin RT, Osteryoung RA. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate:electrochemical couples and physical properties. J. Electrochem. Soc.,1997,144:3881-3886.
    [99]Nanjundiah C, McDevitt F, Koch VR. Differential capacitance measurements in solvent-free ionic liquids at Hg and C interfaces. J. Electrochem. Soc.,1997,144: 3392-3397.
    [100]Carlin RT, Fuller J. Ionic liquid-polumer gel catalytic membrane. Chem. Commun.,1997, 15:1345-1347.
    [101]Kato R, Krummen M, Gmehling J. Measurement and correlation of vapor-liquid equilibria and excess enthalpies of binary systems containing ionic liquids and
    hydrocarbons. Fluid Phase Equilibria,2004,224:47-54.
    [102]Cole AC, Jensen JL, Ntai I. Novel Bronsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc.,2002,124:5962-5963.
    [103]Bao WL, Wang ZM, Li YX. Synthesis of chiral ionic liquids from natural amino acids. J. Org. Chem.,2003,68:591-593.
    [104]Zhao DB, Fei ZF, Geldbach TJ. Nitrile-functionalized pyridinium ionic liquids:synthesis, characterization, and their application in carbon-carbon coupling reactions. J. Am. Chem. Soc.,2004,126:15876-15882.
    [105]Leone AM, Weatherly SC, Williams ME, et al. An ionic liquid form of DNA:redox-active molten salts of nucleic acids. J. Am. Chem. Soc.,2001,123:218-222.
    [106]Huang J, Jiang T, Gao HX. Active and stable catalyst-Pd nanoparticles immobilized onto molecular sieve by ionic liquid as heterogenerous catalyst for solvent-free hydrogenation. Angew. Chem. Int. Ed.,2004,43:1397-1399.
    [107]Dai LY, Yu SY, Shan YK, et al. Novel room temperature inorganic ionic liquids. Eur. J. Inorg. Chem.,2004,237-241.
    [108]顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料.科学通报,2004,49:515-521.
    [109]Zhou Y, Schattka JH, Antonietti M. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel Nanocasting Technique. Nano Lett.,2004,4:477-481.
    [110]Li Z, Liu Z, Zhang J, et al. Synthesis of Single-Crystal Gold Nanosheets of Large Size in Ionic Liquids. J. Phys. Chem. B,2005,109:14445-14448.
    [111]Zhu J, Shen Y, Xie A, et al. Photoinduced Synthesis of Anisotropic Gold Nanoparticles in Room-Temperature Ionic Liquid. J. Phys. Chem. C,2007,111:7629-7633.
    [112]Kim KS, Demberelnyamba D, Lee H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir,2004,20:556-560.
    [113]Itoh H, Naka K, Chujo Y. Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation. J. Am. Chem. Soc.,2004,126:3026-3027.
    [114]Gao S, Zhang H, Wang X, et al. Palladium nanowires stabilized by thiol-functionalized ionic liquid:seed-mediated synthesis and heterogeneous catalyst for Sonogashira coupling reaction. Nanotechnology,2005,16:1234-1237.
    [115]Marcilla R, Mecerreyes D, Odriozola I, et al. New amine functional ionic liquid as building block in nanotechnology. Nano,2007,2:169-173.
    [116]Zhang SM, Li J, Zhang CL, et al. Preparation and structural characterization of
    carboxyl-functional ionic liquid modified Pd nanoparticles. Chinese J. Inorg. Chem.,2007, 23:729-732.
    [117]Dai C, Zhang SM, Li J, et al. Preparation and structure characterization of Pd nanoparticles in hydroxyl-functionalized ionic liquids. Chinese J. Inorg. Chem.,2007,23: 1653-1656.
    [118]Liu YM, Tian W, Jia YX, et al. The use of CE ECL with ionic liquid for the determination of drug alkaloids and applications in human urine. Electrophoresis,2009,30:1406-1411.
    [119]Zheng L, Chi Y, Dong Y, et al. Electrochemiluminescent Behavior of Tris(2,2'-bipyridine) Ruthenium(II)/Triethylamine in Ionic Liquid Solution. J. Phys. Chem. C,2008,112: 15570-15575.
    [120]Xu Y, Gao Y, Li T, et al. Highly Efficient Electrochemiluminescence of Functionalized Tris(2,2'-bipyridyl)ruthenium(Ⅱ) and Selective Concentration Enrichment of Its Co-reactants. Adv. Funct. Mater.,2007,17:1003-1009.
    [121]Dai H, Wang Y, Wu X, et al. An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode. Biosens. Bioelectron.,2009,24:1230-1234.
    [122]Li J, Huang M, Liu X, et al. Enhanced electrochemiluminescence sensor from tris(2,2'-bipyridyl)ruthenium(Ⅱ) incorporated into MCM-41 and an ionic liquid-based carbon paste electrode. Analyst,2007,132:687-691.
    [123]Rong J, Chi Y, Zhang Y, et al. Enhanced electrochemiluminescence of luminol-O2 system at gold-hydrophobic ionic liquidjwater interface. Electrochem. Commun.,2010,12: 270-273.
    [124]Rantwijk Fv, Sheldon RA. Biocatalysis in Ionic Liquids. Chem. Rev.,2007,107: 2757-2785.
    [125]Parvulescu Ⅵ, Hardacre C. Catalysis in ionic liquid. Chem. Rev.,2007,107:2615-2665.
    [126]Chowdhury S, Mohan RS, Scott JL. Reactivity of Ionic Liquids. Tetrahedron,2007,63: 2363-2389.
    [127]Wasserscheid P, Keim W. Ionic liquid-new "solutions" for transition metal catalysis. Angew. Chem., Int. Ed.,2000,39:3772-3789.
    [128]Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem.,2000,19:409-453.
    [129]Millstone JE, Park S, Shuford KL, et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc.,2005,127:5312-5313.
    [130]Shankar SS, Rai A, Ankamwar B, et al. Biological synthesis of triangular gold
    nanoprisms. Nat. Mater.,2004,3:482-488.
    [131]Seo D, Yoo CI, Chung IS, et al. Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals:decahedra, icosahedra and truncated tetrahedra. J. Phys. Chem. C,2008,112:2469-2475.
    [132]Duteil A, Schmid G, Meyer-Zaika W. Ligand stabilized nickel colloids. J. Chem. Soc., Chem. Commun.,1995,31-32.
    [133]Vidoni O, Philippot K, Amiens C, et al. Novel, spongelike ruthenium particles of controllable size stabilized only by organic solvents. Angew. Chem.-Int. Edit.,1999,38: 3736-3738.
    [134]Kroto HW, Heath JR, Brien SCO, et al. C-60-Buckminsterfullerene. Nature,1985,318: 162-163.
    [135]Iijima S. Helical Microtubules of Graphitic Carbon. Nature,1991,354:56-58.
    [136]Baughman RH, Zakhidov AA, De-Heer WA. Carbon nanotubes-the route toward applications. Science,2002,297:787-792.
    [137]Li WZ, Xie SS, Qian LX. Large-scale synthesis of aligned carbon nanotubes. Science, 1996,274:1701-1703.
    [138]Xu DS, Guo GL, Gui LL, et al. Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates. Appl. Phys. Lett.,1999,75:481-483.
    [139]王茂章,贺福.碳纤维的制造、性质及应用.北京:科学出版社.1984.
    [140]Britto PJ, Santhanan KSV, Rubio A, et al. Improved Charge Transfer at Carbon Nanotube Electrodes. Adv. Mater.,1998,11:154-157.
    [141]Peigney A, Laurent CH, Flahaut E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon,2000,39:507-514.
    [142]Gao GH, Cagin T, Goddard WA. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology,1998,9:184-191.
    [143]Pederson MR, Broughton JQ. Nanocapillarity in Fullerene Tubules. Phys. Rev. Lett., 1992,69:2689-2692.
    [144]Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature,1996,381:678-680.
    [145]Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes:Instabilities beyond linear response. Phys. Rev. Lett.,1996,76:2511-2514.
    [146]Yakobson BI, Samlley RE. Fullerene nanotubes:C-1000000 and beyond. Am. Sci.,1997, 85:324-337.
    [147]Georgakilas V, Gournis D, Tzitzios V, et al. Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem.,2007,17:2679-2694.
    [148]Wildgoose GG, Banks CE, Compton RG. Metal nanopartictes and related materials supported on carbon nanotubes:Methods and applications. Small,2006,2:182-193.
    [149]Ye JS, Cui HF, Liu X. et al. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small,2005,1:560-565.
    [150]Kong J, Chapline MG, Dai HJ. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater.,2001,13:1384-1386.
    [151]Yoo E, Gao L, Komatsu T, et al. Atomic hydrogen storage in carbon nanotubes promoted by metal catalysts. J. Phys. Chem. B,2004,108:18903-18907.
    [152]Kim HS, Lee H, Han KS, et al. Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes. J. Phys. Chem. B,2005,109:8983-8986.
    [153]Raghuveer MS, Agrawal S, Bishop N, et al. Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles. Chem. Mater.,2006,18:1390-1393.
    [154]Xue B, Chen P, Hong Q, et al. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J. Mater. Chem.,2001,11:2378-2381.
    [155]Lin Y, Cui X, Yen C, et al. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J. Phys. Chem. B, 2005,109:14410-14415.
    [156]Xing YC. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes. J. Phys. Chem. B, 2004,108:19255-19259.
    [157]Chun YS, Shin JY, Song CE, et al. Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chem. Commun.,2008,8: 942-944.
    [158]Wang Z, Zhang Q, Keuhner D, et al. The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis. Carbon,2008,46:1687-1692.
    [159]Chen J, Hamon MA, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science,1998,282:95-98.
    [160]Azamian BR, Coleman KS, Davis JJ, et al. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun.,2002,366-367.
    [161]Zanella R, Basiuk EV, Santiago P, et al. Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes. J. Phys. Chem. B,2005,109:
    16290-16295.
    [162]Coleman KS, bailey SR, Fogden S, et al. Functionalization of single-walled carbon nanotubes via the Bingel reaction. J. Am. Chem. Soc.,2003,125:8722-8723.
    [163]Han XG, Li YL, Deng ZX. DNA-Wrapped Single-Walled Carbon Nanotubes as Rigid Templates for Assembling Linear Gold Nanoparticle Arrays. Adv. Mater.,2007,19: 1518-1522.
    [164]Chen YS, Liu HP, Ye T, et al. DNA-directed assembly of single-wall carbon nanotubes. J Am. Chem. Soc.,2007,28:8696-8697.
    [165]Smorodin T, Beierlein U, Kotthaus JP. Contacting gold nanoparticles with carbon nanotubes by self-assembly. Nanotechnology,2005,16:1123-1125.
    [166]Ellis AV, Vijayamohanan K, Goswami R, et al. Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes. Nano. Lett.,2003,3: 279-282.
    [167]Rahman GMA, Guldi DM, Zambon E, et al. Dispersable carbon nanotube/gold nanohybrids:Evidence for strong electronic interactions. Small,2005,1:527-530.
    [168]Han L, Wu W, Kirk FL, et al. A direct route toward assembly of nanoparticle-carbon nanotube composite materials. Langmuir,2004,20:6019-6025.
    [169]Liu L, Wang T, Li J, et al. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem. Phys. Lett.,2003,367:747-752.
    [170]Yang DQ, Hennequin B, Sacher E. XPS demonstration of pi-pi interaction between benzyl mercaptan and multiwalled carbon nanotubes and their use in the adhesion of Pt nanoparticles. Chem. Mater.,2006,18:5033-5038.
    [171]Guldi DM, Rahman GMA, Jux N, et al. Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. Angew. Chem., Int. Ed.,,2004,43:5526-5530.
    [172]Guldi DM, Rahman GMA, Jux N, et al. Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. Angew. Chem. Int. Ed.,2005,44: 2015-2018.
    [173]Georgakilas V, Tzitzios V, Gournis D, et al. Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem. Mater.,2005,17:1613-1617.
    [174]Mu Y, Liang H, Hu J, et al. Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells. J. Phys. Chem. B,2005, 109:22212-22216.
    [175]Jiang KY, Eitan A, Schadler LS, et al. Selective attachment of gold nanoparticies to nitrogen-doped carbon nanotubes. Nano. Lett.,2003,3:215-277.
    [176]Correa-Duarte MA, Perez-Juste J, Sanchez-Iglesias A, el al. Aligning an nanorods by using carbon nanotubes as templates. Angew. Chem., Int. Ed..,2005,44:4375-4378.
    [177]Stoffelbach F, Aqil A, Jerome C, et al. An easy and economically viable route for the decoration of carbon nanotubes by magnetite nanoparticles, and their orientation in a magnetic field. Chem. Commun.,2005,4532-4533.
    [178]Fullam S, Cottell D, Rensmo H, et al. Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv. Mater.,2000,12:1430-1432.
    [179]Martin CR, Mitchell DT. Nanomaterials in analytical chemistry. Anal. Chem.,1998,70: 322A-327A.
    [180]汪尔康,陈义.生命分析化学.北京:科学出版社.2006.
    [181]Cosnier S.Mailley P. Recent advances in DNA sensors. Analyst,2008,133:984-991.
    [182]Yang X, Yuan R, Chai Y, et al. Ru(bpy)32+-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Biosens. Bioelectron.,2010,25: 1851-1855.
    [183]Li M, Sun Y, Chen L, et al. Ultrasensitive Eletrogenerated Chemiluminescence Immunoassay by Magnetic Nanobead Amplification. Electroanalysis,2010,22:333-337.
    [184]Xu XH, Yang HC, Mallouk TE, et al. Immobilization of DNA on an Aluminum(Ⅲ) Alkanebisphosphonate Thin Film with Electrogenerated Chemiluminescent Detection. J. Am. Chem. Soc.,1994,116:8386-8387.
    [185]Wang H, Zhang C, Li Y, et al. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes. Anal. Chim. Acta,2006,575:205-211.
    [186]Zhou X, Xing D, Zhu D, et al. Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity. Anal. Chem.,2009,81:255-261.
    [187]Qi H, Zhang Y, Peng Y, et al. Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode. Talanta,2008,75:684-690.
    [188]Tian DY, Duan CF, Wang W, et al. Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification. Talanta,2009,78:399-404.
    [189]Calvo-Munoz ML, Dupont-Filliard A, Billon M, et al. Detection of DNA hybridization by ABEI electrochemiluminescence in DNA-chip compatible assembly. Bioelectrochemistry,
    2005,66:139-143.
    [190]Zhang S, Zhong H, Ding C. Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using Signal DNA Probe Modified with Au and CuS Nanoparticles. Anal. Chem.,2008,80:7206-7212.
    [191]Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-Functionalized Au Nanoparticles for the Amplified Detection of DNA or Telomerase Activity. Nano. Lett.,2004,4:1683-1687.
    [192]Bi S, Yan Y, Yang X, et al. Gold Nanolabels for New Enhanced Chemiluminescence Immunoassay of Alpha-Fetoprotein Based on Magnetic Beads. Chem. Eur. J.,2009,15: 4704-4709.
    [193]Jie G, Huang H, Sun X, et al. Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin. Biosens. Bioelectron.,2008,23:1896-1899.
    [194]Jie G, Zhang J, Wang D, et al. Electrochemiluminescence Immunosensor Based on CdSe Nanocomposites. Anal. Chem.,2008,80:4033-4039.
    [195]Jie G, Li L, Chen C, et al. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens. Bioelectron., 2009,24:3352-3358.
    [196]Jie GF, Liu P, Zhang SS. Highly enhanced electrochemiluminescence of novel gold/silica/CdSe-CdS nanostructures for ultrasensitive immunoassay of protein tumor marker. Chem. Commun.,2010,46:1323-1325.
    [1]Faulkner LR, Bard AJ. Electrogenerated chemiluminescence. I. Mechanism of anthracene chemiluminescence in N,N-dimethvlformamide solution. J. Am. Chem. Soc.,1968,90: 6284-6290.
    [2]Kihara T, Sukigara M, Honda K. Electrochemiluminescence of pyrene in acetonitrile. J. Electroanal. Chem.,1973,47:161-166.
    [3]Richter MM, Debad JD, Striplin DR, et al. Electrogenerated Chemiluminescence.59. Rhenium Complexes. Anal. Chem.,1996,68:4370-4376.
    [4]Ritchie EL, Pastore P, Wightman RM. Free Energy Control of Reaction Pathways in Electrogenerated Chemiluminescence. J. Am. Chem. Soc.,1997,119:11920-11925.
    [5]Bae Y, Myung N, Bard AJ. Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles. Nano Lett.,2004,4:1153-1161.
    [6]Yu HX, Cui H, Guan JB. Cathodic electrochemiluminescence of acetonitrile, acetonitrile-1,10-phenanthroline and acetonitrile-ternary Eu(Ⅲ) complexes at a gold electrode. Luminescence,2006,21:81-89.
    [7]Shi MJ, Cui H. Electrochemiluminescence of luminol in dimethyl sulfoxide at a polycrystalline gold electrode. Electrochimica. Acta,2006,52:1390-1397.
    [8]Gleu K, Petsch W. The chemiluminescence of dimethylbiacridylium salts. Angew. Chem., 1935,48:57-59.
    [9]Klinger W, Karge E, Kretzschmar M, et al. Luminol-and lucigenin-amplified chemiluminescence with rat liver microsomes-Kinetics and influence of ascorbic acid, glutathione, dimethylsulfoxide, N-t-butyl-a-phenylnitrone, copper-ions and a copper complex, catalase, superoxide dismutase, hexobarbital and aniline. Exp. Toxicol. Pathol., 1996,48:447-460.
    [10]Papadopoulos K, Triantis T, Yannakopoulou E, et al. Comparative studies on the antioxidant activity of aqueous extracts of olive oils and seed oils using chemiluminescence. Anal. Chim. Acta.,2003,494:41-47.
    [11]Maskiewicz R, Sogah D, Bruice TC. Chemiluminescent Reactions of Lucigenin.2. Reactions of Lucigenin with Hydroxide Ion and Other Nucleophiles. J. Am. Chem. Soc., 1979,101:5355-5364.
    [12]Totter JR. The quantum yield of the chemiluminescence of dimethylbiacridylium nitrate and the mechanism of its enzymically induced chemiluminescence. Photochem. Photobiol.,1964,3:231-241.
    [13]Maskiewicz R, Sogah D, Bruice TC. Chemiluminescent Reactions of Lucigenin.1. Reactions of lucigenin with hydrogen peroxide. J. Am. Chem. Soc.,1979,101: 5347-5354.
    [14]Chen GN, Zhang L, Lin RE, et al. The electrogenerated chemiluminescent behavior of hemin and its catalytic activity for the electrogenerated chemiluminescence of lucigenin. Talanta,2000,50:1275-1281.
    [15]Legg KD, Hercules DM. Electrochemically Generated Chemiluminescence of Lucigenin. J. Am. Chem. Soc.,1969,91:1902-1907.
    [16]Jiang Q, Hakansson M, Suomi J, et al. Cathodic electrochemiluminescence of lucigenin at disposable oxide-coated aluminum electrodes. J. Electroanal. Chem.,2006,591:85-92.
    [17]Okajima T, Ohsaka T. Electrogenerated chemiluminescence of lucigenin enhanced by the modifications of electrodes with self-assembled monolayers and of solutions with surfactants. J. Electroanal. Chem.,2002,534:181-187.
    [18]Sun YG, Cui H, Lin XQ. Study of electrochemiluminescence of lucigenin at glassy carbon electrodes in NaOH solution. J. Lumin.,2001,92:205-211.
    [19]Cui H, Dong YP. Multichannel electrogenerated chemiluminescence of lucigenin in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled gold electrode. J. Electrochem. Chem.,2006,595:37-46.
    [20]Spasojevic I, Liochev SI, Fridovich I. Lucigenin:Redox Potential in Aqueous Media and Redox Cycling with O2-Production. Arch. Biochem. Biophys.,2000,373:447-450.
    [21]Zhang C, Qi H. Highly sensitive determination of riboflavin based on the enhanced electrogenerated chemiluminescence of lucigenin at a platinum electrode in a neutral aqueous solution. Anal. Sci.,2002,18:819-822.
    [22]Okajima T, Ohsaka T. Chemiluminescence of lucigenin by electrogenerated superoxide ions in aqueous solutions. Luminescence,2003,18:49-57.
    [23]Qi H, Zhang C. Electrogenerated chemiluminescence reaction of lucigenin with isatin at a platinum electrode. Luminescence,2004,19:21-25.
    [24]Cui H, Zhang ZF, Zou GZ, et al. Potential-dependent electrochemiluminescence of luminol in alkaline solution at a gold electrode. J. Electroanal. Chem.,2004,566: 305-313.
    [25]Cui H, Zou GZ, Lin XQ. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal. Chem.,2003,75:324-331.
    [26]Legg KD, Shive DW. Electrochemistry of lucigenin. Anal. Chem.,1972,44:1650-1655.
    [27]Damjanovic A, Genshaw MA, Bockris JOM. Hydrogen peroxide formation in oxygen reduction at gold electrodes:Ⅱ. Alkaline solution. J. Electroanal. Chem.,1967,15: 173-180.
    [28]Haapakka KE, Kankare JJ. The mechanism of the electrogenerated chemiluminescence of luminol in aqueous alkaline solution. Anal. Chim. Acta,1982,138:263-275.
    [29]Rao PS, Hayon E. Redox Potential of Free Radicals. Ⅳ. Superoxide and Hydroperoxy Radicals O2 and HO2. J. Phys. Chem.,1975,79:397-402.
    [30]Tremiliosi-Filho G, Gonzalez ER, Motheo AJ, et al. Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism. J. Electroanal. Chem.,1998,444: 31-39.
    [31]Sawyer DT, Chlerlcato G, Jr., Angells CT, et al. Effects of Media and Electrode Materials on the Electrochemical Reduction of Dioxygen. Anal. Chem.,1982,54:1720-1724.
    [32]Ahlberg E, Hammerich O, Parker VD. Electro-Transfer Reactions Accompanied by Large Structural Changes.1. Lucigenin-10,10'-Dimethyl-9,9'-biacridylidene Redox. J. Am. Chem. Soc.,1981,103:844-849.
    [33]Adzic RR, Markovic NM, Vesovic VB. Structural effects in electrocatalysis:Oxygen reduction on the Au (100) single crystal electrode. J. Electroanal. Chem.,1984,165: 105-120.
    [34]Markovic NM, Adzic RR, Vesovic VB. Structural effects in electrocatalysis:Oxygen reduction on the gold single crystal electrodes with (110) and (111) orientations. J. Electroanal. Chem.,1984,165:121-133.
    [1]Klinger W, Karge E, Kretzschmar M, et al. Luminol-and lucigenin-amplified chemiluminescence with rat liver microsomes-Kinetics and influence of ascorbic acid, glutathione, dimethylsulfoxide, N-t-butyl-a-phenylnitrone, copper-ions and a copper complex, catalase, superoxide dismutase, hexobarbital and aniline. Exp. Toxicol. Pathol., 1996,48:447-460.
    [2]Papadopoulos K, Triantis T, Yannakopoulou E, et al. Comparative studies on the antioxidant activity of aqueous extracts of olive oils and seed oils using chemiluminescence. Anal. Chim. Acta.,2003,494:41-47.
    [3]Maskiewicz R, Sogah D, Bruice TC. Chemiluminescent Reactions of Lucigenin.1. Reactions of lucigenin with hydrogen peroxide.. J. Am. Chem. Soc.,1979,101: 5347-5354.
    [4]Maskiewicz R, Sogah D, Bruice TC. Chemiluminescent Reactions of Lucigenin.2. Reactions of Lucigenin with Hydroxide Ion and Other Nucleophiles. J. Am. Chem. Soc., 1979,101:5355-5364.
    [5]Totter JR. The quantum yield of the chemiluminescence of dimethylbiacridylium nitrate and the mechanism of its enzymically induced chemiluminescence. Photochem. Photobiol.,1964,3:231-241.
    [6]Maeda K, Kashiwabara T, Tokuyama M. Mechanism of the Chemiluminescence of Lucigenin. Ⅱ. The Charge-transfer Structure of Lucigenin and Reaction of 10,10'-Dimethy-9,9'-biacridinium Dication by Electron Transfer from Nuclephiles. Bull. Chem. Soc. Jpn,1977,50:473-481.
    [7]Veazey RL, Nieman TA. Chemiluminescent Determination of Clinically Important Organic Reductants. Anal. Chem.,1979,51:2092-2096.
    [8]Grayeski ML, Moritzen PA. Chemiluminescence Energy Transfer Processes and Micellar Effects. Langmuir,1997,13:2675-2680.
    [9]Sun YG, Cui H, Lin XQ. Study of electrochemiluminescence of lucigenin at glassy carbon electrodes in NaOH solution. J. Lumin.,2001,92:205-211.
    [10]Cui H, Zhang H, Shi MJ, et al. Electrogenerated chemiluminescence of lucigenin in ethanol solution at a polycrystalline gold electrode. Electroanalysis,2007,19:1703-1710.
    [11]Okajima T, Ohsaka T. Electrogenerated chemiluminescence of lucigenin enhanced by the modifications of electrodes with self-assembled monolayers and of solutions with surfactants. J. Electroanal.Chem.,2002,534:181-187.
    [12]Spasojevic I, Liochev SI, Fridovich I. Lucigenin:Redox Potential in Aqueous Media and Redox Cycling with O2-Production. Arch. Biochem. Biophys.,2000,373:447-450.
    [13]Chen GN, Zhang L, Lin RE, et al. The electrogenerated chemiluminescent behavior of hemin and its catalytic activity for the electrogenerated chemiluminescence of lucigenin. Talanta,2000,50:1275-1281.
    [14]Su Y, Wang J, Chen GN. The enhanced electrochemiluminescence of lucigenin by some hydroxyanthraquinones. Talanta,2006,68:883-887.
    [15]Guo JZ, Cui H, Xu SL, et al. A new electrogenerated chemiluminescence peak of lucigenin in hydrogen evolution region induced by platinum nanoparticles. J. Phys. Chem. C,2007,111:606-611.
    [16]Su Y, Wang J, Chen GN. Determination of epinephrine based on its enhancement for electrochemiluminescence of lucigenin. Talanta,2005,65:531-536.
    [17]Wightman RM, Forry SP, Maus R, et al. Rate-Determining Step in the Electrogenerated Chemiluminescence from Tertiary Amines with Tris(2,2'-bipyridyl)ruthenium(Ⅱ).108, 2004,19119-19125.
    [18]Honda K, Yoshimura M, Rao TN, et al. Electrogenerated Chemiluminescence of the Ruthenium Tris(2,2')bipyridyl/Amines System on a Boron-Doped Diamond Electrode. J. Phys. Chem. B,2003,107:1653-1663.
    [19]Miao W, Choi JP, Bard AJ. Electrogenerated Chemiluminescence 69:The Tris(2,2'-bipyridine)ruthenium(Ⅱ), (Ru(bpy3)2+)/Tri-n-propylamine (TPrA) System Revisited-A New Route Involving TPrA·+Cation Radicals. J. Am. Chem. Soc.,2002, 124:14478-14485.
    [20]Papadopoulos K, Triantis T, Dimotikali D, et al. Photo-and radiochemiluminescence: reductive chemiluminescence of lucigenin by photo-or radiooxygenated amines and amides. J. Photochem. Photobio. A:Chemistry,1999,124:85-90.
    [21]Cui H, Zhang ZF, Zou GZ, et al. Potential-dependent electrochemiluminescence of luminol in alkaline solution at a gold electrode. J. Electroanal. Chem.,2004,566: 305-313.
    [22]Cui H, Zou GZ, Lin XQ. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal. Chem.,2003,75:324-331.
    [23]Tremiliosi-Filho G, Gonzalez ER, Motheo AJ, et al. Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism. J. Electroanal. Chem.,1998,444: 31-39.
    [24]Angerstein-Kozlowska H, Conway BE. Elementary steps of electrochemical oxidation of single-crystal planes of Au. J. Electroanal. Chem.,1987,228:429-453.
    [25]Conway BE, Barnett B, Angerstein-Kozlowska H. A surface-electrochemical basis for the direct logarithmic growth law for initial stages of extension of anodic oxide films formed at noble metals. J. Chem. Phvs.,1990,93:8361-8373.
    [26]Kanoufi F, Zu Y, Bard AJ. Homogeneous Oxidation of Trialkylamines by Metal Complexes and Its Impact on Electrogenerated Chemiluminescence in the Trialkylamine/Ru(bpy)3 2+ System. J. Phys. Chem. B,2001,105:210-216.
    [27]Zu Y, Bard AJ. Electrogenerated Chemiluminescence.66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the emission Intensity. Anal. Chem.,2000,72:3223-3232.
    [28]Zu Y, Bard AJ. Electrogenerated Chemiluminescence.67. Dependence of Light Emission of the Tris(2,2')bipyridylruthenium(II)/Tripropylamine system on Electrode Surface Hydrophobicity. Anal. Chem.,2001,73:3960-3964.
    [29]Wang W, Cui H, Deng ZX, et al. A general E-E/C mechanism for the counter-peak in luminol electrochemiluminescence. J. Electroanal. Chem.,2008,612:277-287.
    [1]Zhang CY, Hu J. Single Quantum Dot-Based Nanosensor for Multiple DNA Detection. Anal. Chem.,2010,82:1921-1927.
    [2]He S, Song B, Li D, et al. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater.,2010,20:453-459.
    [3]Wang J. Electrochemical biosensors:Towards point-of-care cancer diagnostics. Biosens. Bioelectron.,2006,21:1887-1892.
    [4]Odenthal KJ, Gooding JJ. An introduction to electrochemical DNA biosensors. Analyst, 2007,132:603-610.
    [5]Mannelli I, Minnunni M, Tombelli S, et al. Direct immobilisation of DNA probes for the development of affinity biosensors. Bioelectrochemistry,2005,66:129-138.
    [6]Zhang S, Zhong H, Ding C. Ultrasensitive Flow Injection Chemiluminescence Detection of DNA Hybridization Using Signal DNA Probe Modified with Au and CuS Nanoparticles. Anal. Chem.,2008,80:7206-7212.
    [7]Qi Y, Li B, Zhang Z. Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluiminescence system. Biosens. Bioelectron.,2009,24: 3581-3586.
    [8]Xu XH, Yang HC, Mallouk TE, et al. Immobilization of DNA on an Aluminum(III) Alkanebisphosphonate Thin Film with Electrogenerated Chemiluminescent Detection. J. Am. Chem. Soc.,1994,116:8386-8387.
    [9]Zhang J, Qi H, Li Y, et al. Electrogenerated Chemiluminescence DNA Biosensor Based on Hairpin DNA Probe Labeled with Ruthenium Complex. Anal. Chem.,2008,80: 2888-2894.
    [10]Wang H, Zhang C, Li Y, et al. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes. Anal. Chim. Acta,2006,575:205-211.
    [11]Zhang L, Li D, Meng W, et al. Sequence-specific DNA detection by using biocatalyzed electrochemiluminescence and non-fouling surfaces. Biosens. Bioelectron.,2009,25: 368-372.
    [12]Calvo-Munoz ML, Dupont-Filliard A, Billon M, et al. Detection of DNA hybridization by ABEI electrochemiluminescence in DNA-chip compatible assembly. Bioelectrochemistry, 2005,66:139-143.
    [13]Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-Functionalized Au Nanoparticles for the Amplified Detection of DNA or Telomerase Activity. Nano. Lett.,2004,4:1683-1687.
    [14]Lin JM, Yamada M. Electrogenerated chemiluminescence of methyl-9-(p-formylphenyl) acridinium carboxylate fluorosulfonate and its applications to immunoassay. Microchem. J,1998,58:105-116.
    [15]Weeks I, Beheshti I, McCapra F, et al. Acridinium Esters as High-specific-activity Labels in Immunoassay. Clin. Chem.,1983,29:1474-1479.
    [16]Weeks I, Sturgess M, Brown RC, et al. Immunoassays using acridinium esters. Methods Enzymol.,1986,133:366-387.
    [17]Litting JS, Nieman TA. Flow-injection Chemiluminescence Study of Acridinium Ester Stability and Kinetics of Decomposition. J. Biolumin. Chemilumin.,1993,8:25-31.
    [18]Lai Y, Qi Y, Wang J, et al. Using acridinium ester as the sonochemiluminescent probe for labeling of protein. Analyst,2009,134:131-137.
    [19]Lackey DB. A Homogeneous Chemiluminescent Assay for Telomerase. Anal. Biochem., 1998,263:57-61.
    [20]Jr. LJA, Hammond PW, Wlese WA, et al. Assay formats involving acridinium-ester-labeled DNA probes. Clin. Chem.,1989,35:1588-1594.
    [21]Martin CR, Mitchell DT. Nanomaterials in analytical chemistry. Anal. Chem.,1998,70: 322A-327A.
    [22]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.,1973,241:20-22.
    [23]Cui H, Zhang ZF, Zou GZ, et al. Potential-dependent electrochemiluminescence of luminol in alkaline solution at a gold electrode. J. Electroanal. Chem.,2004,566: 305-313.
    [24]Cui H, Zou GZ, Lin XQ. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal. Chem.,2003,75:324-331.
    [25]Wilson R, Akhavan-Tafti H, DeSilva R, et al. Electrochemiluminescence Determination of 2',6'-Difluorophenyl 10-Methylacridan-9-carboxylate..Anal. Chem.,2001,73:763-767.
    [26]Maskiewicz R, Sogah D, Bruice TC. Chemiluminescent Reactions of Lucigenin.1. Reactions of lucigenin with hydrogen peroxide. J. Am. Chem. Soc.,1979,101: 5347-5354.
    [27]Maskiewicz R, Sogah D, Bruice TC. Chemiluminescent Reactions of Lucigenin.2. Reactions of Lucigenin with Hydroxide Ion and Other Nucleophiles. J. Am. Chem. Soc., 1979,101:5355-5364.
    [28]Littig JS, Nieman TA. Quantitation of Acridinium Esters Using Chemiluminescence and Flow Injection. Anal. Chem.,1992,64:1140-1144.
    [29]Cui H, Dong YP. Multichannel electrogenerated chemiluminescence of lucigenin in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled gold electrode. J. Electrochem. Chem.,2006,595:37-46.
    [30]Okajima T, Ohsaka T. Chemiluminescence of lucigenin by electrogenerated superoxide ions in aqueous solutions. Luminescence,2003,18:49-57.
    [31]Su Y, Wang J, Chen GN. Determination of epinephrine based on its enhancement for electrochemiluminescence of lucigenin. Talanta,2005,65:531-536.
    [32]Yang M, Liu C, Hu X, et al. Electrochemiluminescence assay for the detection of acridinium esters. Anal. Chim. Acta,2002,461:141-146.
    [33]Zu Y, Bard AJ. Electrogenerated Chemiluminescence.66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the emission Intensity. Anal. Chem.,2000,72:3223-3232.
    [34]Zu Y, Bard AJ. Electrogenerated Chemiluminescence.67. Dependence of Light Emission of the Tris(2,2')bipyridylruthenium(II)/Tripropylamine system on Electrode Surface Hydrophobicity. Anal. Chem.,2001,73:3960-3964.
    [35]Wang HS, Ju HX,Chen HY. Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode. Anal. Chim. Acta,2002, 461:243-250.
    [36]Wu K, Fei J, Bai W, et al. Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal. Bioanal. Chem.,2003,376:205-209.
    [1]Seddon KR. Ionic liquid for clean technology. J. Chem. Technol. Biotech.,1997,68: 351-356.
    [2]Wasserscheid P, Keim W. Ionic liquid-new "solutions" for transition metal catalysis. Angew. Chem., Int. Ed.,2000,39:3772-3789.
    [3]Parvulescu VI, Hardacre C. Catalysis in ionic liquid. Chem. Rev.,2007,107:2615-2665.
    [4]Rantwijk FV, Sheldon RA. Biocatalysis in Ionic Liquids. Chem. Rev.,2007,107: 2757-2785.
    [5]Chowdhury S, Mohan RS, Scott JL. Reactivity of Ionic Liquids. Tetrahedron,2007,63: 2363-2389.
    [6]Dupont J, Fonseca GS, Umpierra AP, et al. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions. J. Am. Chem. Soc.,2002,124:4228-4229.
    [7]Fonseca GS, Umpierre AP, Fichtner PFP, et al. The use of imidazolium ionic liquids for the formation and stabilization of Ir-0 and Rh-0 nanoparticles:Efficient catalysts for the hydrogenation of arenes. Chem. Eur. J.,2003,9:3263-3269.
    [8]Silveira ET, Umpierre AP, Rossi LM, et al. The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids. Chem. Eur. J., 2004,10:3734-3740.
    [9]Endres F, Bukowski M, Hempelmann R, et al. Electrodeposition of nanocrystalline metals and alloys from ionic liquids. Angew. Chem. Int. Ed.,2003,42:3428-3430.
    [10]Bhatt AI, Mechler A, Martin LL, et al. Synthesis of Ag and Au nanostructures in an ionic liquid:thermodynamic and kinetic effects underlying nanoparticle, cluster and nanowire formation. J. Mater. Chem.,2007,17:2241-2250.
    [11]Scheeren CW, Machado G, Dupont J, et al. Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids:Synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions. Inorg. Chem.,2003, 42:4738-4742.
    [12]Itoh H, Naka K, Chujo Y. Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation. J. Am. Chem. Soc.,2004,126:3026-3027.
    [13]Chen HJ, Dong SJ. Self-assembly of ionic liquids-stabilized Pt nanoparticles into two-dimensional patterned nanostructures at the air-water interface. Langmuir,2007,23: 12503-12507.
    [14]Lewis LN. Chemical Catalysis by Colloids and Clusters. Chem. Rev.,1993.93: 2693-2730.
    [15]Marcilla R, Mecerreyes D, Odriozola I, et al. New amine functional ionic liquid as building block in nanotechnology. Nano,2007,2:169-173.
    [16]Gao S, Zhang H, Wang X, et al. Palladium nanowires stabilized by thiol-functionalized ionic liquid:seed-mediated synthesis and heterogeneous catalyst for Sonogashira coupling reaction. Nanotechnology,2005,16:1234-1237.
    [17]Kim KS, Demberelnyamba D, Lee H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir,2004,20:556-560.
    [18]Iijima S. Helical Microtubules of Graphitic Carbon. Nature,1991,354:56-58.
    [19]Ajayan P. Nanotubes from carbon. Chem. Rev.,1999,99:1787-1799.
    [20]Baughman RH, Zakhidov AA, De-Heer WA. Carbon nanotubes-the route toward applications. Science,2002,297:787-792.
    [21]Chen SW, Ingram RS, Hostetler MJ, et al. Gold Nanoelectrodes of Varied Size:Transition to Molecule-Like Charging. Science,1998,280:2098-2101.
    [22]Andres RP, Bein T, Dorogi M, et al. "Coulomb staircase" at room temperature in a self-assembled molecular nanostructure. Science,1996,272:1323-1325.
    [23]Shevchenko EV, Talapin DV, Kotov NA, et al. Structural diversity in binary nanoparticle superlattices. Nature,2006,439:55-59.
    [24]Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science,2006,312:1027-1030.
    [25]Chun YS, Shin JY, Song CE, et al. Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chem. Commun.,2008,8: 942-944.
    [26]Wang Z, Zhang Q, Keuhner D, et al. The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis. Carbon,2008,46:1687-1692.
    [27]Kocharova N, Leiro J, Lukkari J, et al. Self-assembled carbon nanotubes on gold: Polarization-modulated infrared reflection-absorption spectroscopy, high-resolution X-ray photoemission spectroscopy, and near-edge X-ray absorption-fine structure spectroscopy study. Langmuir,2008,24:3235-3243.
    [28]Kocharova N, Aaritalo T, Leiro J, et al. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold. Langmuir,2007,23:3363-3371.
    [29]Han XG, Li YL, Deng ZX. DNA-Wrapped Single-Walled Carbon Nanotubes as Rigid Templates for Assembling Linear Gold Nanoparticle Arrays. Adv. Mater.,2007,19: 1518-1522.
    [30]Dyke CA, Tour JM. Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano. Lett.,2003,3:1215-1218.
    [31]Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem. Rev., 2006,106:1105-1136.
    [32]Brown KR, Fox AP, Natan MJ. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J. Am. Chem. Soc.,1996,118:1154-1157.
    [33]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.,1973,241:20-22.
    [34]Zhang ZF, Cui H, Lai CZ, et al. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Analytical Chemistry,2005,77:3324-3329.
    [35]Cui H, Zhang ZF, Shi MJ. Chemiluminescent reactions induced by gold nanoparticles. Journal of Physical Chemistry B,2005,109:3099-3103.
    [36]Henglein A, Ershov B, Malow M. Absorption-Spectrum and some Chemical-Reactions of Colloidal Platinum in aqueous-solution. J. Phys. Chem.,1995,99:14129-14136.
    [37]Xu SL, Cui H. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence,2007,22:77-87.
    [38]Lee K, Pan F, Carroll GT, et al. Photolithographic technique for direct photochemical modification and chemical micropatterning of surfaces. Langmuir,2004,20:1812-1818.
    [39]Jiang P, Zhou JJ, Li R, et al. PVP-capped twinned gold plates from nanometer to micrometer. J. Nanopart. Res.,2006,8:927-934.
    [40]Caporali S, Bardi U, Lavacchi A. X-ray photoelectron spectroscopy and low energy ion scattering studies on 1-buthyl-3-methyl-imidazolium bis(trifluoromethane) sulfonimide. J. Electron Spectrosc. Relat. Phenom.,2006,151:4-8.
    [41]Deliyanni EA, Nalbandian L, Matis KA. Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent. J. Colloid Interf. Sci.,2006,302: 458-466.
    [42]Harriman A, Millward GR, Neta P, et al. Interfacial electron-transfer reactions between platinum colloids and reducing radicals in aqueous solution. J. Phys. Chem.,1988,92: 1286-1290.
    [43]Lin SY, Tsai YT, Chen CC, et al. Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles. J. Phys. Chem. B,2004,108:
    2134-2139.
    [44]Cui H. Wang W, Duan CF, et al. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor. Chem. Eur. J.,2007,13:6975-6984.
    [45]Teranishi T, Kurita R, Miyakel M. Shape control of Pt nanoparticles. J. Inorg. Organomet. P.,2000,10:145-156.
    [46]Miyazaki A, Balint I, Nakanol Y. Morphology control of platinum nanoparticles and their catalytic properties. J. Nanopart. Res.,2003,5:69-80.
    [47]Liu W, Yang XL, Huang WQ. Catalytic properties of carboxylic acid functionalized-polymer microsphere-stabilized gold metallic colloids. J. Colloid Interf. Sci.,2006,304:160-165.
    [48]Newman JDS, Blanchard GJ. Formation of gold nanoparticles using amine reducing agents. Langmuir,2006,22:5882-5887.
    [49]Schrekker HS, Gelesky MA, Stracke MP, et al. Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold(0) nanoparticles. J. Colloid Interf. Sci.,2007,316:189-195.
    [50]Alvarez-Puebla RA, Arceo E, Goulet PJG, et al. Role of nanoparticle surface charge in surface-enhanced Raman scattering. J. Phys. Chem. B,2005,109:3787-3792.
    [51]Khatri OP, Adachi K, Murase K, et al. Self-assembly of ionic liquid (BMI-PF6)-stabilized gold nanoparticles on a silicon surface:Chemical and structural aspects. Langmuir,2008, 24:7785-7792.
    [52]Du BA, Li ZP, Liu CH. One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique. Angew. Chem. Int. Ed., 2006,45:8022-8025.
    [53]Taton TA, Lu G, Mirkin CA. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc.,2001,123: 5164-5165.
    [54]Li ZP, Duan XR, Liu CH, et al. Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Anal. Biochem.,2006, 351:18-25.
    [55]Wu LP, Li YF, Huang CZ, et al. Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal. Chem.,2006,78: 5570-5577.
    [56]Fukushima T, Aida T. Ionic liquids for soft functional materials with carbon nanotubes. Chem. Eur. J.,2007,13:5048-5058.
    [57]Guldi DM, Rahman GMA, Jux N, et al. Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. Angew. Chem. Int. Ed.,2005,44: 2015-2018.
    [58]Guldi DM, Rahman GMA, Jux N, et al. Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids. Angew. Chem., Int. Ed.,2004,43:5526-5530.
    [59]Yang DQ, Hennequin B, Sacher E. XPS demonstration of pi-pi interaction between benzyl mercaptan and multiwalled carbon nanotubes and their use in the adhesion of Pt nanoparticles. Chem. Mater.,2006,18:5033-5038.
    [60]Liu L, Wang T, Li J, et al. Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chem. Phys. Lett.,2003,367:747-752.
    [61]Fukushima T, Kosaka A, Ishimura Y, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science,2003,300:2072-2074.
    [1]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.,1973,241:20-22.
    [2]Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281:2013-2016.
    [3]Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science,2003,301:1884-1886.
    [4]Elghanian R, Storhoff JJ, Mucic RC, et al. Science,1997,277:1078-1081.
    [5]Han MY, Gao XH, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol.,2001,19:631-635.
    [6]Sau TK, Murphy CJ. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir,2004,20:6414-6420.
    [7]Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater.,2001,13:1389-1393.
    [8]Zhou Y, Wang CY, Zhu YR. A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem. Mater.,1999,11:2310-2312.
    [9]Millstone JE, Park S, Shuford KL, et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc.,2005,127:5312-5313.
    [10]Sajanlal PR, Pradeep T. Electric-Field-Assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv. Mater.,2008,20:980-983.
    [11]Shankar SS, Rai A, Ankamwar B, et al. Biological synthesis of triangular gold nanoprisms. Nat. Mater.,2004,3:482-488.
    [12]Jena BK, Raj CR. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir,2007, 23:4064-4070.
    [13]Xie J, Zhang Q, Lee JY, et al. The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS nano,2008,2:2473-2480.
    [14]Guo SJ, Wang EK. One-pot, high-yield synthesis of size-controlled gold particles with narrow size distribution. Inorg. Chem.,2007,46:6740-6743.
    [15]Seo D, Yoo CI, Chung IS, et al. Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals:decahedra, icosahedra and truncated
    tetrahedra. J. Phys. Chem. C,2008,112:2469-2475.
    [16]Zhang Q, Xie J, Yang J, et al. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: Size control strategy and superlattice formation. ACS nano,2009,3:139-148.
    [17]Kottmann JP, Martin OJF, Smith DR, et al. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B,2001,64:235402.
    [18]Wiley BJ, Im SH, Li ZY, et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B,2006,110: 15666-15675.
    [19]El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Ace. Chem. Res.,2001,34:257-264.
    [20]Sosa IO, Noguez C, Barrera RG. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B,2003,107:6269-6275.
    [21]Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science,2000,289:1757-1760.
    [22]Zhang X, Young MA, Lyandres O, et al. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc.,2005,127:4484-4489.
    [23]Chen J, Saeki F, Wiley BJ, et al. Gold nanocages:Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett.,2005,5:473-477.
    [24]Hashmi ASK. Gold-catalyzed organic reactions. Chem. Rev.,2007,107:3180-3211.
    [25]Hvolbek B, Janssens TVW, Clausen BS, et al. Catalytic activity of Au nanoparticles. Nano Today,2007,2:14-18.
    [26]Georgakilas V, Gournis D, Tzitzios V, et al. Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem.,2007,17:2679-2694.
    [27]Seddon KR. Ionic liquid for clean technology. J. Chem. Technol. Biotech.,1997,68: 351-356.
    [28]Wasserscheid P, Keim W. Ionic liquid-new "solutions" for transition metal catalysis. Angew. Chem., Int. Ed.,2000,39:3772-3789.
    [29]Zhou Y, Schattka JH, Antonietti M. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel Nanocasting Technique. Nano Lett.,2004,4:477-481.
    [30]Li Z, Liu Z, Zhang J, et al. Synthesis of Single-Crystal Gold Nanosheets of Large Size in Ionic Liquids. J. Phys. Chem. B,2005,109:14445-14448.
    [31]Zhu J, Shen Y, Xie A, et al. Photoinduced Synthesis of Anisotropic Gold Nanoparticles in Room-Temperature Ionic Liquid. J. Phys. Chem. C,2007,111:7629-7633.
    [32]Itoh H, Naka K. Chujo Y. Synthesis of Gold Nanoparticles Modified with Ionic Liquid Based on the Imidazolium Cation. J. Am. Chem. Soc.,2004,126:3026-3027.
    [33]Zhang ZF, Cui H, Lai CZ, et al. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Analytical Chemistry,2005,77:3324-3329.
    [34]Wang W, Cui H. Chitosan-luminol reduced gold nanoflowers:From one-pot synthesis to morphology-dependent SPR and chemiluminescence sensing. J. Phys. Chem. C,2008, 112:10759-10766.
    [35]Sajanlal PR, Sreeprasad TS, Nair AS, et al. Wires, Plates, Flowers, Needles, and Core-Shells:Diverse Nanostructures of Gold Using Polyaniline Templates. Langmuir, 2008,24:4607-4614.
    [36]Daniel MC, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.,2004,104:293-346.
    [37]Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev.,2006,35: 209-217.
    [38]Xia Y, Xiong Y, Lim B, et al. Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed.,2009,48:60-103.
    [39]Schrekker HS, Gelesky MA, Stracke MP, et al. Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold(O) nanoparticles. J. Colloid Interf. Sci.,2007,316:189-195.
    [40]Carter DA, Pemberton JE, Woelfel KJ. Orientation of 1-and 2-methylimidazole on silver electrodes determined with surface-enhanced raman scattering. J. Phys. Chem. B,1998, 102:9870-9880.
    [41]Baldelli S. Surface structure at the ionic liquid-electrified metal interface. Accounts Chem. Res.,2008,41:421-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700