量子点与Cu~(2+)对L02细胞与细菌的联合毒性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境中往往是多种污染物同时存在并共同进入体内,彼此之间的相互作用有时表现为协同作用,协同作用所会放大污染物的毒性从而带来更多的污染物共同暴露风险,由协同作用扩大的毒性以及其可能的机理值得研究。
     木马技术当前被广泛用于药物的体内运送,大部分药物因为其溶解性较低以及不能有效地跨过细胞膜屏障或者脑血屏障等而导致利用率较低,不能有效到达病灶部位而使得该部位蓄积的药物浓度不足从而减弱疗效。一种新型的木马技术被用来提高药物的运送效率,简单的说就是将运送的药物分子连接在能够跨过细胞膜的木马蛋白上,通过受体介导的胞吞作用等进入细胞,到达病灶部位,并成功释放携带的药物,这样即使在较低的药物浓度条件下也可以获得较高的细胞内浓度,从而提高疗效。
     量子点也被开发作为药物运送的工具。从另一个层面来说,量子点作为小尺度的纳米粒子,其表面的巯基类官能团及较大的比表面积赋予其强大的结合或吸附其他小分子物质的能力。虽然其没有在合成过程包裹Cu2+,但由于量子点可以吸附Cu2+并且两者都可能在肝脏内或者环境中蓄积,所以二者结合并由量子点执行木马功能携带Cu2+进入细胞,导致更高的细胞毒性并进而导致肝脏疾患。类似的由于纳米材料的木马功能可能带来的环境复合污染的问题值得关注,同时这也可能解释不同的环境污染物的协同作用的联合毒性效应。
     本论文着重验证MPA-CdTe量子点(以下在本论文中被简称为量子点)的木马角色,从而为纳米材料的潜在风险进行阐述。首先在量子点和Cu2+共存的溶液中对两者的结合进行确认。这种结合为MPA-CdTe量子点充当木马携带Cu2+提供了可能。MPA-CdTe量子点的木马角色是通过比较MPA-CdTe量子点加入前后细胞铜浓度的变化来确定的,细胞内增加的镉浓度也证明了量子点进入细胞,单独的Cu2+处理的细胞铜浓度显著低于加入量子点后细胞铜浓度,说明了MPA-CdTe量子点在这个过程中可能充当了木马携带铜进入细胞,使得铜在细胞膜或者细胞质释放蓄积。
     为了进一步证明这种由于木马效应带来的细胞铜蓄积的增加是否带来细胞毒性的增加,本论文进一步通过细胞存活率的测定和细胞形态变化来确定细胞毒性的变化。MPA-CdTe量子点本身只能引起细胞存活率10%的下降,而在加入Cu2+处理的细胞样品中,却造成原本Cu2+诱导的细胞存活率最高(10%-40%)下降6倍。并伴随细胞形态的明显变化。
     因为活性氧自由基(ROS)诱导的氧化损伤是量子点和Cu2+诱导的细胞毒性的共同机理,所以本论文在确定木马效应的同时,研究了是否ROS介导的氧化损伤是两种样品的共同作用的联合毒性机理,相对于单独的Cu2+处理的细胞样品来说,量子点的加入使得细胞内的ROS水平最高增加了4倍,而MPA-CdTe量子点本身只能获得相对与对照来说30%左右的ROS水平的提高。同时线粒体作为ROS的主要来源,其膜电位的下降也进行了调查,但是该膜电位的下降没有与ROS的增加呈现一致对应。
     一般环境污染物作用与细胞产生毒性,都通过一些分子路径来实现,了解这样的路径对于防护其毒性具有重要意义,可以从上游进行分子水平调控从而有效地控制毒性。对于量子点和Cu2+联合毒性确定为氧化损伤相关后,为了进一步确定其分子水平的机制,对一般环境污染物的共同的氧化损伤的路径Nrf2/ARE (Nrf2:NF-E2 Related Factor2核转移因子2;ARE:抗氧化反应元件Antioxidative Response Elements)路径进行了研究。调查了量子点加入前后的细胞内谷胱甘肽转移酶(GST)和Nrf2水平的变化,量子点的加入引起了细胞内GST水平的增加同时Nrf2的细胞核转录水平也增加。
     复合污染在环境污染中具有重要的意义,尤其是关联新型的纳米污染物的联合毒性。在确定上述MPA-CdTe量子点和Cu2+对人胚肝细胞(L02细胞)的木马效应机理和氧化损伤的毒性后,为了调查这种复合污染对于土壤生态的潜在风险,对MPA-CdTe量子点和Cu2+对土壤代表微生物的大肠杆菌和枯草芽孢杆菌的毒性进行了调查。关注其对土壤微生物的生长和正常的酶代谢等毒性。首先,调查了量子点和Cu2+对大肠杆菌的生长周期的影响。同时也验证了木马效应和氧化损伤机制。量子点的加入使得Cu2+存在下的大肠杆菌的生长停滞期增加,细胞死亡率提高四倍,同时细胞内ROS水平提高了400%,细胞积聚的铜也呈现了与存活率下降的一致趋势。
     然后调查了MPA-CdTe量子点和Cu2+枯草芽孢杆菌生长和产酶量以及相关的木马效应和氧化损伤机理。MPA-CdTe量子点的加入使得Cu2+诱导的细胞存活率显著下降,但是对产酶量没有显著影响。为了考虑木马效应在其他纳米材料上的体现,对纳米Ti02与Cu2+对枯草芽孢杆菌联合毒性进行了调查,纳米TiO2加入提高了Cu2+诱导的细胞存活率的减少,对细胞生长周期没有显著影响,同时提高了α-蛋白酶的合成。
Variou pollutants co-exist in environment and possible enter human body, some related antagonistic and additive as well as independent functions between these pollutants become possible. The current toxin evaluation normally focus on individual chemicals, which make the combined toxicity blind to people sometime, therefore the improved toxicity resulting from the synergistic function between individual toxins is worth noting.
     The Trojan horse technology has been developed recently to enhance some therapeutic drug uptake by smaller basic peptides.As we all know, many drug leads fail to make it into clinical trials due to the additional delivery obstacles arising from the less bioavailability and, the cellular membrane barrier even the blood-brain barrier (BBB). To deliver functional drug molecular into cells, normally methods of linking them to some receptor-specific Trojan-horse peptides, which, mediates the transcytosis of the "package" across the blood-brain barrier (BBB) and endocytosis across the plasma membrane. Such Trojan horse peptides can not only penetrate cells and tissues, but even release the carried drug in the cytoplasm and enhance the uptake of the cargos at nontoxic concentrations.
     Quantum dots (QDs) are luminescent nanoparticles with unique optical properties that have been exploited for molecular imaging and drug delivery. Their characteristic size-dependent variable fluorescence wavelength and surface properties are reasons for the wide applications. The surface-coating of functional groups and/or biomolecules on QDs may promote their interactions with other toxicants and present a potential risk to human body. The interaction of Cu2+with MSA-CdTe QDs has been exploited for trace Cu2+analysis. The nanoparticles might play the Trojan horse role by allowing more transition metals accumulate into living cells followed by the subsequent release of the metals leading to the higher toxicity.
     In this study, we focus on "Trojan horse" role of QDs. QDs (quantum dots) nanoparticles thus possible carry Cu2+causing much more cellular accumulation of Cu2+. the carrier role of MPA-CdTe QDs for Cu2+uptake was confirmed according to the following procedure using human hepatic L02 cells:Firstly, the 10 nm red shifts of QDs luminescence emission with addition of Cu2+implied the possible redox reaction between of QDs and Cu2+, and the emerged Cu element in the X-ray energy dispersive spectroscopy (EDS) data confirm the interaction of the two species. Then a small amount of MSA-CdTe QDs (2μg/ml) in a Cu2+ solution (2.5-20μg/ml) resulted in a higher cellular [Cu2+].
     The presence of a small amount of MPA-CdTe QDs in a Cu2+solutionresulted in a higher toxicity with up to 6-fold cell viability decrease, which was accompanied by cell morphology changes.A major mechanism of QDs enhanced toxicity of Cu2+was thus proposed as the adsorption of Cu2+ions on the negatively charged QDs surface; QDs served the role of a Trojan horse carrying Cu2+when it migrated into the cells.
     Considering Quantum dots (QDs) and Cu2+are known ROS (Reactive oxygen species) inducer, we investigated the combined oxidative stress and corresponding protective strategy using human hepatic L02 cells. The combined toxicity was then confirmed as ROS associated oxidative stress with up to 4-fold increase of the intracellular ROS level. NAC (N-acetylcysteine) also provided almost complete protection against the induced toxicity. Therefore the ROS associated oxidant injury are responsible for the QDs-Cu2+/Cu2+induced toxicity.
     The combined oxidative damage and corresponding toxicity mechanisms are keys to evaluate ecological hazards via co-exposure of QDs plus original contaminants. GST enzyme activity and Nrf2 expression in individual Cu2+ and QDs-Cu2+ treated L02 cells were investigated. Addition of QDs improved Cu2+-induced GST synthesis and Nrf2 transcription with maximum increase by 35%and 86%respectively. The increased toxicity could also be consisit with cell morphology changes, indicating QDs and/or Cu2+induced cytoprotective antioxidant enzyme GST via the Nrf2/ARE pathway.
     Quantum dots (QDs) represent a new kind of environmental pollutants. The combined toxicity of QDs with Cu2+is also concerned due to the increasing release of these two chemicals. E.coli, a common environmental model microbial, used to evaluated the possible synergistic toxicity and the regarding mechanism. It was observed that addition of MS A-CdTe QDs (5μg/mL) in a Cu2+solution (9-72μg/mL) resulted in a higher toxicity with up to 8-fold cell viability decrease and the elongated lag phase. The intracellular ROS levels were also improved by up to 400%. Meanwhile, accumulation of copper in the E.coli were correlated with the decreased cell viability, suggesting that a primary cause of QDs enhanced copper toxicity is through the production of superoxide anions and improved accumulation of copper in the cytoplasm.
     Also, the combined toxicity of QDs with Cu2+to B.subtilis, a known soil model bacterial, was investigated. It was observed that addition of MPA-CdSe QDs in a Cu2+solution resulted in a higher toxicity with up to 2-fold of cell viability decrease. The intracellular ROS levels were also improved by up to 500%compared that of Cu2+, which was consistent with induction of Antioxidant enzymes SOD and copper accumulation at higher concentrations (14 and 28μg/mL of Cu2+) in the case QDs-Cu2+. Implying the potential of QDs enhanced copper toxicity is possibly through the production of superoxide anions and improved copper cellular accumulation.
     TiO2 nanoparticles (NPs) possess the potential to co-exist with Cu2+in soil. The individual and combined toxicity of these two chemicals was evaluated here using Bacillus subtilis, a known soil model bacterial. Cu+(6.25~50μg/mL) alone exhibited toxicity to bacterial with cell viability andα-Amylase production decrease up to 51%and 85%, respectively. Addition of TiO2 (50 mg/mL) decreased Cu2+induced cell viability with up to 25%,while increased enzyme biosynthesis by 28 compared that of Cu+, and the growth rate and lag period didn't exhibit significant change. A primary cause of TiO2 increasing Cu2+ toxicity is assumed as·OH formation and the increased enzyme activity are considered arise from Cu2+ facilitating TiO2 degradation ability.
引文
[1]Lash H, Putt DA, Hueni SE, et al. Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules:Effects on apoptosis, necrosis, and glutathione status [J]. Toxicol. Appl. Pharmacol.2007,221:349-362.
    [2]Lee S, Cha M, Kang C, et al. Mutual synergistic toxicity between environmental toxicants: A study of mercury chloride and 4-nonylphenol [J]. Environ. Toxicol. Pharmacol.2009, 27:90-95.
    [3]Zbigniew T, Wojciech P. Individual and combined effect of anthracene, cadmium,and chloridazone on growth and activity of SOD izoformes in three Scenedesmus species [J]. Ecotox. Environ. Safe.2006,65:323-331.
    [4]惠秀娟.环境毒理学[B].化学工业出版社,85-86.
    [5]Rait A, Pirollo K, Will DW, et al.3V-End conjugates of minimally phosphorothioate-protected oligonucleotides with 1-O-hexadecylglycerol:synthesis and anti-ras activity in radiation-resistant cells [J]. Bioconjugate Chem.2000,11:153-160.
    [6]Terwogt JM, Nuijen B, Huinink WW, et al. Alternative formulations of paclitaxel [J]. Cancer Treat. Rev.1997,23:87-95.
    [7]Lo, E.H., Singhal, A.B., Torchilin, V.P., Abbott, N.J., Drug delivery to damaged brain. Brain Res. Brain Res. Rev.2001,38:140-148.
    [8]Pardridge WM. Blood-brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses [J]. J. Controlled Release.2007,122:345-348
    [9]Gunnar PHD, Mathias B. Delivery of bioactive molecules into the cell:the Trojan horse approach [J]. Mol. Cell. Neurosci.2004,27,85-131.
    [10]Pardridge WM. Peptide Drug Delivery to the Brain, Raven Press, New York, NY,1991.
    [11]Skarlatos S, Yoshikawa T, Pardridge WM. Transport of [1251] transferring through the rat blood-brain barrier [J]. Brain Res.1995,683:164-171.
    [12]Lee HJ, Engelhardt B, Lesley J, et al. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse [J]. J. Pharmacol. Exp. Ther. 2000,292:1048-1052.
    [13]Pardridge WM, Kang YS, Buciak JL, et al.Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate [J]. Pharm. Res.1995,12: 807-816.
    [14]Lee HJ, Pardridge WM. Pharmacokinetics and delivery of tat and tatprotein conjugates to tissues in vivo [J]. Bioconjug. Chem.2001,12:995-999.
    [15]Torchilin VP, Levchenko TS. TAT-liposomes:a novel intracellular drug carrier [J]. Curr. Protein Pept. Sci.2003,4:133-140.
    [16]Torchilin VP, Rammohan R, Weissig V, et al. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors [J]. Proc. Natl. Acad. Sci. U. S. A.2001,98:8786-8791.
    [17]Hashimoto K, Joshi SK, Koni PA. A conditional null allele of the major histocompatibility IA-beta chain gene [J]. Genesis.2002,32:152-153.
    [18]Boado RJ, Zhang Y, Pardridge WM. Genetic engineering, expression, and activity of a fusion protein of a human neurotrophin and a molecular Trojan horse for delivery across the human blood-brain barrier [J]. Biotechnol. Bioeng. (In press).
    [19]Boado RJ, Zhang Y-F, Zhang Y, et al. Fusion antibody for Alzheimer's disease with bi-directional transport across the blood-brain barrier transport and Abeta fibril disaggregation[J]. Bioconj. Chem.2007,18:447-455.
    [20]Pardridge WM. Gene targeting in vivo with pegylated immunoliposomes [J]. Methods Enzymol.2003,373:507-528.
    [21]Zhang Y, Zhang Y-F, Bryant J, et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer [J]. Clin. Cancer Res.2004,10:3667-3677.
    [22]Lubick N. Nanosilver toxicity:ions, nanoparticlessor both? [J]. Environ. Sci. Technol. 2008,9:8617
    [23]Gao JH, GU Hw, Xu B. Multifunctional Magnetic Nanoparticles:Design, Synthesis, and Biomedical Applications [J]. Ace. Chem. Res. (in press).
    [24]Balogh L, Swanson D R, Tomalia D A, et al. Dendrimer-silver complexes and nanocomposites as antimicrobialagents [J]. Nano Lett.2001,1:18-21.
    [25]Limbach LK, Wick P, Manser P, et al. Exposure of engineered nanoparticles to human lung epithelial cells:influence of chemical composition and catalytic activity on oxidative stress [J]. Environ. Sci.Technol.2007,41:4158-4163.
    [26]Moore, M. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment [J]. Environ Int.2006,32:967-976.
    [27]Shin J-S, Abraham SN. Caveolae—not just craters in the cellular landscape [J]. Science. 2001,293:1447-8.
    [28]van der Goot FG, Gruenberg J. Oiling the wheels of the endocytic pathway [J]. Trends Cell Biol.2002:296-9.
    [29]Park E-J, Yi J, Kim Y, et al. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism [J]. Toxicol. in Vitro.2010,24:872-878.
    [30]Wadhera A, Fung M. Systemic argyria associated with ingestion of colloidal silver[J]. Dermatology Online Journal.2005,11(1):12.
    [31]Oberdorster G, Oberdorster E, Oberdorster Jan. Nanotoxicology:An Emerging Discipline Evolving from Studies of Ultrafine Particles [J]. Environ.Health Perspect.2005,113(7): 823-839.
    [32]Luoma SN. Silver nanotechnologies and the environment:old problems or new challenges? Project on Emerging Nanotechnologies is supported by the pew charitable trusts.2008.
    [33]Farre M, Gajda-Schrantz K, Kantiani L, et al. Ecotoxicity and analysis of nanomaterials in the aquatic environment [J]. Anal Bioanal Chem.2009,393:81-95.
    [34]Smith AM, Duan H, Mohs AM, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging [J]. Adv. Drug Delivery Revs.2008,60:1226-1240.
    [35]Juzenas P, Chen W, Sun YP, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer [J]. Adv. Drug Delivery Revs.2008,60:1600-1614.
    [36]Biju V, Itoh T, Anas A, et al. Seminconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications[J].Anal. Bioanal. Chem.2008, 391:2469-2495.
    [37]Hines MA, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals [J]. J. Phys. Chem.1996,100:468-471.
    [38]Hardman R. A toxicologic review of quantum dots:toxicity depends on physicochemical and environmental factors [J]. Environ.Health Perspect.2006,114:165-172.
    [39]Rzigalinski BA, Strobl J S. Cadmium-containing nanoparticles:Perspectives on pharmacology and toxicology of quantum dots [J]. Toxicol Appl Pharm.2009,238: 280-288.
    [40]Gao X, Yang L, Petros J A, et al. In vivo molecular and cellular imaging with quantum dots [J]. Curr. Opin. Chem. Biol.2005,16:63-72.
    [41]Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat. Biotechnol.2004,22:969-976.
    [42]Stern S T, McNeil S E, Nanotechnology Safety Concerns Revisited [J]. Toxicol. Sci. 2008,101(1),4-21.
    [43]Han MY, Gao X, SU JZ, et al. Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules [J]. Nat Biotechnol.2001,19:631-635.
    [44]Bruchez M J, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J].Science.1998,281:2013-2016.
    [45]Chan W C W, Nie S M. Luminescent quantum dots for multiplexed biological dectiong and imaging [J]. Curr Opin Biotech.2002,13:40-46.
    [46]Suh WH, Suslick K S, Stucky G D, et al. Nanotechnology, nanotoxicology, and neuroscience [J]. Prog. Neurobiol.2009,87,133-170.
    [47]Ballou B, Lagerholm B C, Ernst L A,et al. Noninvasive imaging of quantum dots in mice[J]. Bioconjugate Chem.2004,15(1):79-86.
    [48]Tanke H J, Dirks R W, Raap T. Fish and immunocytochemistry:Towards visualising single target molecules in living cells [J]. Curr Opin Biotech.2005,16(1):49-54.
    [49]Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cel lular targets with semiconductor quantum dots [J]. Nat Biotechnol.2003,21(1): 41-46.
    [50]Huo Q, A perspective on bioconjugated nanoparticles and quantum dots [J]. Colloids and Surfaces B:Biointerfaces.2007,59:1-10.
    [51]Jamiesona T, Bakhshia R, Petrova D, et al. Biological applications of quantum dots [J]. Biomaterials.2007,28:4717-4732.
    [52]Yezhelyev MV, Qi L, O'Regan R M, N et al. Proton-Sponge Coated Quantum Dots for siRNA Delivery and Intracellular Imaging [J]. J. Am. Chem. Soc.2008,130:9006-9012.
    [53]Marquis B J., Love S A, Braun K L, et al. Analytical methods to assess nanoparticle toxicity [J]. Analyst.2009,134:425-439.
    [54]Delehanty J B, Mattoussi H, Medintz IL. Delivering quantum dots into cells:strategies, progress and remaining issues [J].Anal Bioanal Chem.2009,393:1091-1105.
    [55]Kirchner C, Liedl T, Kudera, S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles [J].Nano Lett.2005,5:331-338.
    [56]Derfus AM, Chan WC, Bhatia S. Probing the cytotoxicity of semiconductor quantum dots [J]. Nano Lett.2004,4:11-18.
    [57]Lovric J, Cho SJ, Winnik FM, et al. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death [J].Chem. Biol.2005,12:1227-1234.
    [58]Lovric J, Bazzi HS, Cuie Y, et al. Differences in subcellular distribution and otoxicity of green and red emitting CdTe quantum dots [J]. J. Mol. Med.2005b,83:377-385.
    [59]Ipe BI, Lehnig M, Niemeyer CM. On the generation of free radical species from quantum dots [J]. Small.2005,1:706-709.
    [60]Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking [J]. Chem. Commun.2005,7:121-123.
    [61]Cho SJ, Maysinger D, Jain M, et al. Long-term exposure to CdTe quantum dots causes functional impairments in live cells [J]. Langmuir.2007,23:1974-1980.
    [62]Chang E, Thekkek N, Yu WW, et al. Evaluation of quantum dot cytotoxicity based on intracellular uptake [J]. Small.2006,53:1412-1417.
    [63]Choi AO, Cho SJ, Desbarats J, et al. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells [J]. J. Nanobiotech. 2007,5, doi:10.1186/1477-3155-5-1.
    [64]Choi AO, Brown SE, Sysf M, et al. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells [J]. J. Mol. Med.2008,86:291-302.
    [65]Bakalova R, Ohba H, Zhelev Z, et al. Role of free cadmium and selenium ions in the potential mechanism for the enhancement of photoluminescence of CdSe quantum dots under ultraviolet irradiation [J]. J. Nanosci. Nanotechnol.2004,58:887-894.
    [66]Chan WH, Shiao NH, Lu PZ. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals [J]. Tox. Lett.2006,167:191-200.
    [67]Zhang T, Stilwell J, Gerion D, et al. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements [J]. Nano Lett.2006a,6:800-808.
    [68]Zhang Y, He J,Wang P-N, et al. Time-dependent photoluminescence blue shift of the quantum dots in living cells:effect of oxidation by singlet oxygen [J]. J. Am. Chem. Soc. 2006b,128:13396-13401.
    [69]Voura EB, Jaiswal JK, Mattioussi H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy [J]. Nat. Med.2004,10:993-998.
    [70]Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy:biological and chemical perspectives [J]. Nanomed.2008a,3:83-91.
    [71]Larson DR, Zipfel WR, Wiliams RM, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in Vivo [J]. Science.2003,300:1434-1436.
    [72]Fischer H, Liu L, Pang KS, et al. Pharmacokinetics of nanoscale quantum dots:in vivo distribution, sequestration, and clearance in the rat [J]. Adv. Funct. Mater.2006, 16:1299-1305.
    [73]Rzigalinski BA, Meehan C, Davis RM, et al. Radical Nanomedicine [J]. Nanomed.2006, 1:339-412.
    [74]Zhang LW, Yu WW, Colvin VL, et al. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes [J]. Toxicol. Appl. Pharm. 2008b,228:200-211.
    [75]Ryman-Rasmussen J, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanopariticles in epidermal keratinocytes [J]. J. Invest. Dermatol.2007,127:143-153.
    [76]Tonks NK. Redox redux:revisiting PTP's and the control of cell signaling [J]. Cell.2005, 121:667-670.
    [77]Mahendra S, Zhu H, Colvin VL, et al. Quantum Dot Weathering Results in Microbial Toxicity [J]. Environ. Sci. Technol.2008,42 (24):9424-9430.
    [78]Lu ZS, Li CM, Bao HF, et al. Mechanism of Antimicrobial Activity of CdTe Quantum Dots [J]. Langmuir.2008,24:5445-5452.
    [79]Dahan M, Levi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J]. Science.2004,302:442-445.
    [80]Hoshino A, Fujioka K, Oku T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modifications [J]. Nano Lett.2004,4: 2163-2188.
    [81]Hagens W I, Oomen AG, de Jong W H, et al. What do we (need to) know about the kinetic properties of nanoparticles in the body? [J]. Regul Toxicol Pharm.2007,49: 217-229.
    [82]Chen FQ, Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells [J]. Nano Lett.2004,4: 1827-1832.
    [83]Huff J, Lunn RM, Waalkes MP, et al. Cadmium-induced cancers in animals and humans [J]. Int. J. Occup. Envirn. Health.2007,13:202-212.
    [84]Doerr-Mac Ewen NA, Haight ME. Expert stakeholders'view on the management of human pharmaceuticals in the environment [J]. Environm. Manage.2006,38:853-866.
    [85]Nikolaou A, Meric S, Fatta D. Occurrence patterns of pharmaceuticals in water and wastewater environments [J]. Anal. Bioanal. Chem.2007,387:1225-1234.
    [86]Bhattacharya K, Cramer H, Albrecht C, et al. Vanadium pentoxide-coated ultrafine titanium-dioxide particles induce cellular damage and micronucleus formation in V79 cells [J]. J. Toxicol. Environ. Health. A.2008,71:976-980.
    [87]Kang SJ, Kim BM, Lee YJ, et al. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes [J]. Environ. Mol. Mutagen.2008, 49:399-405.
    [88]Maenosono S, Suzuki T, Saita S. Mutagenicity of water-soluble FePt nanoparticles in Ames test [J]. J. Toxicol. Sci.2007,32:575-579.
    [89]Mroz RM, Schins RP, Li H, et al. Nanoparticle-driven DNA damage mimics irradiation-related carcinogenesis pathways [J]. Eur. Respir. J.2008,31:241-251.
    [90]Vevers WF, Jha AN. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro [J]. Ecotoxicology.2008,17:410-420.
    [91]Waalkes MP. Cadmium carcinogenesis [J]. Mutat. Res.2003,533:107-120.
    [92]王松华,杨志敏,徐朗莱.植物铜素毒害及其抗性机制研究进展[J].生态环境2003,12(3):336-341.
    [93]刘军,谢吉民,初亚飞等.土壤中铜污染研究进展安徽农业科学[J].2008,36(17):7423-7424,7470.
    [94]Briat LR, Lebrun M. Plant responses to metal toxicity [J]. Plant Bio. Pathol.1999,322: 43-54.
    [95]Devosh R,Schat H, Dewaalm A M, el al. Increased resistance to copper—induced damage of the root cell plasmolemma in copper tolerant Silene cucubalus [J]. Physiol Plant,1991,82:523.
    [96]Martha I, Ramlrez-Dlaz, Cesar Dlaz-Perez, et al. Mechanisms of bacterial resistance to chromium compounds [J]. Biometals:DOI 10.1007/s10534-007-9121-8.
    [97]Azarmi S, Roa WH, Lobenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases [J]. Adv. Drug Deliv. Rev.2008,60:863-875.
    [98]Wilson MR, Foucaud L, Barlow PG, et al. Nanoparticle interactions with zinc and iron: Implications for toxicology and inflammation [J]. Toxicol. Appl. Pharmacol.2007,225: 80-89.
    [99]Beck-Speier I, Dayal N, Karg E, et al. Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles [J]. Free Radic. Biol. Med.2005,38: 1080-1092.
    [100]Wilson MR, Lightbody JH, Donaldson K, et al. Interactions between ultrafine particles and transition metals in vivo and in vitro [J]. Toxicol. Appl. Pharmacol.2002,184: 172-179.
    [101]Duffin R, Tran CL, Clouter A, et al.The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles [J]. Ann.Occup. Hyg.2002,46 (Suppl 1):242-245.
    [102]Fern'andez-Arg'uelles MT, Jin WJ, Costa-Fern'andez JM, et al. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements [J].Anal. Chim. Acta.2005,549:20-25.
    [103]Yuan W, Jiang G, Che J, et al. Deposition of Silver Nanoparticles on Multiwalled Carbon Nanotubes Grafted with Hyperbranched Poly (amidoamine) and Their Antimicrobial Effects [J]. J. Phys. Chem. C.2008,112:18754-18759.
    [104]Luza SC, Speisky HC. Liver copper storage and transport during development: implicateo-ns for cytotoxicity [J]. Am. J. Clin. Nutr.1996,63:812-820.
    [105]Yang RSH, Chang LW, Wu JP, et al. Persistent Tissue Kinetics and Redistribution of Nanoparticles, Quantum Dot 705, in Mice:ICP-MS Quantitative Assessment [J]. Environ. Health Perspect.2007,115:1339-1343.
    [106]Rosner U. Effects of historical mining activities on surface water and groundwater—an example from northwest Arizona [J]. Environ. Geol.1998,33:224-230.
    [107]Agency for Toxic Substances and Disease Registry, In Toxicological Profile for Copper (US Public Health Service, ed.), TP-90-08 edit, US Public Health Service, Atlanta.1990.
    [108]Jaiswal JK, Mattoussi H, Mauro JM, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates [J]. Nat. Biotechnol.2003,21:47-51.
    [109]Liang JG, Huang S, Zeng DY, et al. CdSe quantum dots as luminescent probes for spironolactone determination [J]. Talanta.2006,69:126-130.
    [110]Zhang LH, Shang L, Dong S. Sensitive and selective determination of Cu2+by electrochem-iluminescence of CdTe quantum dots [J].Electrochem Commun.2008,10: 1452-1454.
    [111]Gerion D, Pinaud F, Williams SC, et al. Synthesis and properties of biocompatible water-soluble silicacoated CdSe/ZnS semiconductor quantum dots [J]. J. Phys.Chem. B. 2001,105:8861-8871.
    [112]Gerion D, Pinaud F, Williams SC, et al. Synthesis and properties of biocompatible water-soluble silicacoated CdSe/ZnS semiconductor quantum dots [J]. J. Phys.Chem. B. 2001,105:8861-8871.
    [113]Jin WJ, Fernandez-Arguelles MT, Costa-Fernandez JM, et al.Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions [J]. Chem. Commun.2005,883-885.
    [114]Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel [J]. Science. 2006,311(5761):622-627.
    [115]Santra A, Das S, Maity A, et al. Prevention of carbon tetrachloride-induced hepatic injury in mice by picrorhiz kurrooa [J]. Indian J Gastroenterol.1998,17(1):6-9.
    [116]Feig DI, Reid TM, Loeb LA.Reactive oxygen species in tunmorigenesis [J]. Cancer Res. 1994,54(1):1890-894.
    [117]Rana SVS. Metals andapoptosis:Recent developments [J]. J J. Trace Elem. Med Biol. 2008,22:262-284.
    [118]Jamieson T, Bakhshi R, Petrova D, et al. Biological applications of quantum dots [J]. Biomaterials.2007,28:4717-4732.
    [119]Lewinski N, Colvin V, Drezek R. Cytotoxicity of Nanoparticles [J]. Small.2008,4:26-49.
    [120]Clapp AR, Medintz IL, Mauro JM, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J]. J. Am. Chem. Soc. 2004,126:301-310.
    [121]Jorge LP, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress [J]. Mutat Res-Rev Mutat.2009,674:137-147.
    [122]Bhave SA, Pandit AN, Pradhan AM, et al. Liver disease in India [J]. Arch dis child.1982, 57:922-928.
    [123]Shidoji Y, Hayashi K, Komura S, et al. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation [J]. Biochem Bioph Res Co. 1999,264:343-347.
    [124]Foster KA, Galeffi F, Gerich FJ, et al. Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration [J]. Prog Neurobiol.2006,79:136-171.
    [125]Turrens F. Superoxide production by the mitochondrial respiratory chain [J]. Bioscience Reports.1997,17:3-8.
    [126]Liu L, Bridges RJ, Eyer CL. Effect of cytochrome P4501A induction on oxidative damage in rat brain [J]. Mol. Cell. Biol.2001,223:89-94.
    [127]Forman HJ, Torres M. Redox signaling in macrophages [J]. Mol Aspects Med.2001,22: 189-216.
    [128]Droge W. Free radicals in the physiological control of cell function [J]. Physiol Rev. 2002,82:47-95.
    [129]Pourahmad J, O'Brien PJ. A Comparision of Hepatocyte Cytotoxic Mechanisms for Cu2+ and Cd2+[J]. Toxicology.2000,143:263-273.
    [130]Ratan RR, Murphy TH, Baraban JM. Oxidative stress induces apoptosis in embryonic cortical-neurons [J]. J. Neurochem.1994,62:376-379.
    [131]Cotgreave IA. N-acetylcysteine:pharmacological considerations and experimental and clinical applications [J]. Adv Pharmacol.1997,38:205-227.
    [132]Oh SH, Lee BH, Lim SC. Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway [J]. Biochem. Pharmacol.2004,68:1845-1855.
    [133]Prince M, Li Y, Childers A, et al. Comparison of citrus coumarins on carcinogen-detoxifying enzymes in Nrf2 knockout mice [J].Toxicol.Lett.2009,185:180-186.
    [134]Pi JB, Diwan BA, Sun Y, et al. Arsenic-inducedmalignant transformation of human keratinocytes:Involvement of Nrf2 [J]. Free Radical Biol. Med.2008,45:651-658.
    [135]Chan K, Han XD, Kan YW. An important function of Nrf2 in combating oxidative stress:detoxification of acetaminophen [J]. Proc Natl Acad Sci USA.2001,98(8):4611-4616.
    [136]Motohashi H, Yamamoto M. Nrf2-Keapl defines a physiologically important stress response mechanism [J].Trends Mol Med 2004,10(11):549-557.
    [137]Hwang YP, Yun HJ, Chun HK, et al. Protective mechanisms of 3-caffeoyl,4-dihydroca-ffeoyl quinic acid from Salicornia herbacea against tert-butyl hydroperoxide-induced oxidative damage [J]. Chem Biol Interact.2009,181(3):366-376.
    [138]Okawa H, Motohashi H, Kobayashi A, et al. Hepatocyte-specific deletion of the keapl gene activates Nrf2 and confers potent resistance against acute drug toxicity [J]. Biochem Biophys Res Commun.2006,339(1):79-88.
    [139]Balogun E, Hoque M, Gong P, et al. Curcumin activates the heme oxygenase-1 gene via regulation of Nrf2 and the antioxidant responsive element [J]. Biochem J.2003,371(3): 887-895.
    [140]Morimitsu Y, Nakagawa Y, Hayashi K, et al. A sulforaphane analogue that potently activates the Nrf2-dependent detoxification pathway [J]. J Biol Chem.2002,277(5): 3456-3463.
    [141]Chen C, Kong AN. Dietary chemopreventive compounds and ARE/EpRE signaling [J]. Free Radic Biol Med.2004,36 (12):1505-1516.
    [142]Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism [J].Trends Mol Med.2004,10(11):549-556.
    [143]He XQ, Chen MG, Ma Q. Activation of Nrf2 in Defense against Cadmium-Induced Oxidative Stress [J].Chem Res Toxicol.2008,21:1375-1383.
    [144]Casalino E, Calzaretti G, Landriscina M, et al. The Nrf2 transcription factor contributes to the induction of alpha-class GST isoenzymes in liver of acute cadmium or manganese intoxicated rats:Comparison with the toxic effect on NAD(P)H:quinone reductase [J]. Toxicology.2007,237:24-34.
    [145]ShinkaiaY, Sumia D, Fukamib I, et al. Sulforaphane, an activator of Nrf2, suppresses cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes [J]. FEBS Letters.2006,580:1771-1774.
    [146]Ray PC, Yu H, Fu PP. Toxicity and Environmental Risks of Nanomaterials:Challenges and Future Needs [J]. J. Environ. Sci. Health., Part C.2009,27:1-35.
    [147]Vega-Villa KR, Takemoto JK, Yanez JA, et al. Clinical toxicities of nanocarrier systems [J]. Advanced Drug Delivery Reviews.2008,60:929-938.
    [148]Chalmers NI, Palmer RJ,Du-Thumm L, et al.Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms [J] Appl. EnViron. Microbiol.2007,73:630-636.
    [149]Hirschey MD, Han YJ, Stucky GD, et al. Imaging Escherichia coli Using Functionaliz-ed Core/Shell CdSe/CdS Quantum Dots." [J]. J. Biol. Inorg. Chem.2006,11:663-669.
    [150]Edgar R, McKinstry M, Hwang J, et al. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes [J]. Proc. Natl. Acad. Sci. U.S.A. 2006,103:4841-4845.
    [151]Kloepfer J A, Mielke RE, Nadeau JL. Uptake of CdSe and CdSe/ZnS Quantum Dots into Bacteria via Purine-Dependent Mechanisms [J]. Appl. EnViron. Microbiol.2005,71: 2548-2557.
    [152]Dwarakanatha S, Bruno J G, Athmaram TN, et al.Antibody-quantum dot conjugates exhibit enhanced antibacterial effect vs. unconjugated quantum dots [J]. Folia Microbiol. (Prague) 2007,52:31-34.
    [153]Selvaraj S, Saha KC, Chakraborty A, et al. Toxicity of free and various aminocarboxylic ligands sequestered copper(II) ions to Escherichia coli [J]. J. Hazard. Mater.2009,166, 1403-1409.
    [154]Ferreira M, Caetano M, Costa J, et al. Metal accumulation and oxidative stress responses in, cultured and wild, white seabream from Northwest Atlantic [J]. Sci Total Environ. 2008,407:638-646.
    [155]Tang Y J, Ashcroft J M, Chen D,et al. Charge-Associated Effects of Fullerene Derivatives on Microbial Structural Integrity and Central Metabolism [J]. Nano Lett. 2007,7 (3):754-760 DOI:10.1021/n1063020t.
    [156]Fischer H C, Chan WCW. Nanotoxicity:the growing need for in vivo study [J]. Current Opinion in Biotechnology.2007,18:565-571
    [157]Kloepfer JA, Mielke RE, Wong MS, et al. Quantum dots as strain-and metabolismspecific microbiological labels [J]. Appl. Environ. Microbiol.2003,69 (7): 4205-4213.
    [158]Kloepfer JA, Bradforth SE, Nadeau JL. Photophysical properties of biologically compatible CdSe quantum dot structures [J]. J. Phys. Chem. B 2005,109 (20):9996-10003.
    [159]Kimura T, Nishioka H. Intracellular generation of superoxide by copper sulphate in Escherichia coli [J]. Mutation Research.1997,389:237-242.
    [160]Rajagopalan G, Krishnan C. a-Amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate [J]. Bioresource Technology. 2008,99:3044-3050.
    [161]Gupta R, Gigras P, Mohapatra H, et al. Microbial a-amylases:a biotechnological perspective [J]. Process Biochemistry.2003,38:1599-1616.
    [162]Kundu AK, Das S, Gupta TK. Influence of culture and nutritional conditions on the production of amylase by the submerged culture of Aspergillus oryzae [J]. J Ferment Technol.1973,51:142-150.
    [163]Wu WX, Mabinadji J, Betrand TF, et al. Effect of culture conditions on the production of an extracellular thermostable alpha-amylase from an isolate of Bacillus sp. [J]. J Zhejiang Univ Agric Life Sci.1999,25:404-408.
    [164]Pazlarova J, Votruba J. Use of zeolite to control ammonium in Bacillus amyloliquifac- iens a-amylase fermentations [J]. Appl Microbiol Biotechnol.1996,45:314-318.
    [165]McMahon HEM, Kelly CT, Fogarty WM. Effect of growth rate on a-amylase production by Streptomyces sp. IMD 2679 [J]. Appl Microbiol Biotechnol 1997,48: 504-509.
    [166]Colvin VL. The potential environmental impact of engineered nanomaterials [J]. Nat. Biotechnol.2003,21:1166-1170.
    [167]Wiesner M R, Lowry GV, Alvarez P, et al. Assessing the risks of manufactured nanomaterials [J]. Environ.Sci. Technol.2006,40:4336-4345.
    [168]Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment [J]. Environmen Pollut.2007,150:5-22.
    [169]Giammar DE, Maus CJ, Xie LY. Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles [J]. Environ. Eng. Sci.2007,24:85-95.
    [170]Zhang HZ, Penn RL, Hamers RJ, et al. Enhanced adsorption of molecules on surfaces of nanocrystalline particles [J]. J. Phys. Chem. B.1999,103:4656-4662.
    [171]Xia MS, Hu CH, Xu ZR. Effects of copper bearing montmorillonite on the growth performance, intestinal microflora and morphology of weanling pigs [J]. Anim Feed Sci Tech.2005,118:307-317.
    [172]Jiang W, Mashayekhi H, Xing BS. Bacterial toxicity comparison between nano-and micro-scaled oxide particles [J]. Environ Pollut.2009,157:1619-1625.
    [173]Fu G, Vary PS, Lin CT. Anatase TiO2 nanocomposites for antimicrobial coatings [J]. J Phys Chem B.2005,109:8889-8898.
    [174]Adams LK, Lyon DY, Alvarez PJJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions [J]. Water Res.2006,40:3527-3532.
    [175]Sato T, Taya M. Copper-aided photosterilization of microbial cells on TiO2 film under irradiation from a white light fluorescent lamp [J]. Biochem Eng J.2006,30:199-204.
    [176]Tayade RJ, Kulkarni RG, Jasra RV. Transition Metal Ion Impregnated Mesoporous TiO2 for Photocatalytic Degradation of Organic Contaminants in Water [J]. Ind. Eng. Chem. Res.2006,45 (15):5231-5238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700