基于上转换纳米晶FRET的生物检测和PDT应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于荧光共振能量传递(FRET)的生物均相检测简单、灵敏而深受关注。它常用有机染料和量子点(QDs)作为荧光标记。这些传统下转换材料在紫外光或蓝光的激发下,不可避免激发生物样品产生背景光而降低了检测灵敏度。在光动力治疗(PDT)领域,用紫外光或蓝光激发光敏剂,穿透深度浅,PDT效果差。上转换纳米晶(UCNPs)是解决上述难题一个好的选择。它是用低能量的近红外光激发产生高能量的上转换荧光,因此有较低的背景荧光和弱的光损伤,同时生物组织穿透深度大。UCNPs在基于FRET的均相检测和光动力治疗方面有巨大潜力。本论文开展了初步地工作,结果如下:
     (1)为了解决上转换纳米晶(UCNPs)生物功能化难的问题,水热和共沉淀相结合制备了NaYF4:Yb3+, Er3+ UCNPs,并包覆二氧化硅壳层。SEM表征包覆前后分别为25 nm和250 nm的单分散粒子。在980nm激光照射下, UCNPs的PBS溶液呈明亮的绿光。荧光光谱和寿命均表明二氧化硅壳层对其发光性质影响很小。圆二色谱表征UCNPs偶联抗体后,抗体二级结构几乎不变。荧光免疫识别的结果进一步验证了UCNPs偶联抗体具有生物的特异性。
     (2)相转移得到了小粒径、表面带有氨基基团的水溶性UCNPs,其亲合素化后和生物素化的藻红蛋白构成FRET体系。以生物素检测的实验为例说明这种设计可用于生物分子的定量分析。
     (3)在UCNPs为供体的FRET均相检测体系中,弱的供体光强度使FRET信号难于检测,同时生物自发荧光也会产生干扰。为了解决这个问题, 800 nm处有强近红外光的NaYF4:Yb3+,Tm3+ UCNPs作为供体,在784 nm处有表面等离子共振吸收带的金纳米粒子(GNPs)作为受体构建了新型的FRET体系。当体系中加入单纯human IgG,竞争性地争夺与goat antihuman IgG结合位点,破坏FRET。这种荧光信号的变化可用于human IgG的检测。
     (4)在基于FRET均相检测中,如果用QDs作为受体,其较大消光系数、宽吸收光谱的特点会增大F?rster半径,提高能量传递的效率。然而宽的吸收光谱同时也引起QDs受体的直接激发。长寿命的镧系荧光标记物作供体的时间分辨的技术虽然可以解决这个问题,但实验本身过于复杂,仪器昂贵。本文用UCNPs作为供体、QDs作受体,构建了一个新型的FRET均相检测体系。由于受体QDs不吸收UCNPs供体的近红外激发光,信号的获得不再需要时间分辨技术。
     (5)尽管基于FRET的QDs标记适配子荧光探针是当前研究的热点,但光激活下QDs产生的活性氧会破坏适配子。本实验利用光稳定性更强UCNPs替代QDs设计了新型的适配子荧光探针。硝基四唑氮蓝(NBT)实验表明在光激发下,UCNPs几乎不产生活性氧。一个模式的ATP检测验证了这种设计的可行性。
     (6)由于近红外光有强的生物组织穿透性, UCNPs经过二氧化硅包覆掺杂光敏剂后,可用于深层组织的PDT。然而均一薄层二氧化硅的包覆技术难于控制。我们通过简单共价偶联的方式构建了UCNPs藻红蛋白复合体(UCNPs_RPE)作为光敏药物。在红外光的作用下,UCNPs通过FRET敏化藻红蛋白产生单态氧。UCNPs_RPE对H22肝癌细胞明显的抑制效果表明它可能为PDT提供一种新的途径。
Fluorescence resonance energy transfer (FRET)-based analytical methods have gained considerable attention as powerful tools for biological detections because of their simplicity and high sensitivity. There are a number of conventional ?uorescent biolabels used including organic dyes and quantum dots in this system. These conventional down-conversion ?uorescent materials require ultraviolet or blue excitation wavelengths. Many biological samples show auto?uorescence under such conditions, which decreases the sensitivity of detection. For photodynamic therapy (PDT),the visible light needed to activate most photosensitizers cannot pass through a thick tissue, which resulted in the PDT effect is bad. Upconversion nanoparticles (UCNPs) appear as a breakthrough to resolve the problem. It could convert lower-energy near-infrared (NIR) light to higher-energy light through excitation, which can penetrate deep tissues without causing sample damage and avoid auto?uorescence from biological samples. Thus, upconversion materials show potential to be used for FRET based immunoassay and PDT. Around this point, the main results from our experiments are outlined as followings:
     (1) In order to achieve biological functions of UCNPs, NaYF4:Yb3+, Er3+ upconversion nanoparticles (UCNPs) were synthesized via the hydrothermal assisted homogeneous precipitation method and then coated with silica. The SEM image demonstrated that the samples were uniform in size distribution with ca. 25 nm, before and ca. 250 nm after silica coating, respectively. The photoluminescence spectra and lifetime measurement showed that the silica shell had hardly effect on the properties of UCNPs fluorescence. The naked eye-visible green fluorescence pattern was acquired from the sample in the PBS buffer excited by 980 nm laser. The UCNPs were linked to the antibodies. The circular dichroism (CD) spectra of pure antibody and bioconjugates were very similar to each other. Finally, the immunofluorescence assay indicated that the UCNPs-antibody bioconjugates had excellent species-specific detection ability.
     (2) We have developed a feasible surface ligand exchange method for getting water-soluble, small in size and amido-functionalized UCNPs. The construct based on FRET between avidin-conjugated NaYF4: Er3+, Yb3+ UCNPs as donors and biotinylated R-Phycoerythrin as acceptors were employed. A sample model of biotin detection was applied. Such approach enabled the detection and quanti?cation of the biomolecular.
     (3) Extensive efforts have been invested in FRET based homogeneous bioaffinity assays utilizing UCNPs as a donor. However, there are some fundamental problems related to fluorescence measurements. Self-fluorescence from biological matrixes and other sample materials and relative weak upconversion emission among the ultraviolet-visible wavelengths region could cause ambiguous or unmeasured emission. To address this problem, we have utilized NaYF4: Yb3+, Tm3+ UCNPs as an energy donor, which can emit intense (NIR) emission around 800 nm ranges, and gold nanoparticales (GNPs) as an energy acceptor, which has a surface plasmon absorption maximum at 784 nm. UCNPs and GNPs were conjugated with goat antihuman IgG and human IgG, respectively. When free human IgG is added, it competitively binds to UCNPs-goat antihuman IgG, and inhibits the FRET process. As a result, the fluorescence change effect was correlated with the concentration of human IgG.
     (4) Nowadays, there is a growing interest in the use of QDs in design of LRET-based aptamer luminescent reporters. However, there are concerns regarding the potential photosensitized breakage and damage of aptamer molecules due to the production of reactive oxygen intermediates (ROI) by photoactivated QDs. In this work, we have developed a novel aptamer-based alternative to QDs. Nitroblue tetrazolium (NBT) assay has ?cormned that generation of ROI by photoactivated UCNPs could be completely neglected. The feasibility of this principle in a model ATP assay has been demonstrated.
     (5) FRET immunoassays with QDs as energy acceptors are of particular interest because the extremely high-extinction coefficients of the QDs over a broad absorption spectrum enlarged the scope of the recognition events through the increase of the F?rster radius. Large absorptions of the QDs first appeared as a drawback, providing undesired direct excitation of the acceptor. The problem has been recently solved by demonstrating the feasibility of time resolved measurement of sensitized QDs emission in combination with long-lifetime fluorescent lanthanide labels as donors. However, these systems typically require complex experimental setup and expensive pulsed lasers. We have fabricated a FRET-based prototype of molecular recognition switch, utilizing UCNPs as a donor and QDs as an acceptor. As QDs have no absorbance at near-infrared wavelength, it enabled to eliminate problem associated with excitation light in measurement without need for temporal resolution.
     (6) Because NIR light can penetrate thick tissue, UCNPs which are then coated with a thin layer of silica incorporating photosensitizer were used for PDT. However, it is difficult to make uniform and thin silica coatings on UCNPs. We construct UCNPs_RPE (UCNPs_R-Phycoerythrin) bioconjugates through a simple covalent coupling. After exposed to NIR light, the UCNPs convert NIR light to visible light which activates the RPE to produce reactive singlet oxygen to kill cancer cells. The inhibition effects on the hepatocarcinoma H22 cells show that the design will provide a new way to PDT.
引文
[1]孙家跃,杜海燕.无机材料制造与应用[M].北京:化学工业出版社,2001.
    [2] Auzel F[Z],Acad Sci (Paris).1966,262:1016-1019.Auzel F,Acad Sci (Paris).1966,263:819-821.
    [3] Stouwdam J W,Frank C J M,Veggel van.Improvement in the Luminescence Properties and Processability of LaF3/Ln and LaPO4/Ln Nanoparticles by Surface Modification[J].Langmuir,2004,20 (26):11763-11771.
    [4] Stephens R R,McFarlane R A.Diode-pumped upconversion laser with 100-mW output power[J].Opt. Lett,1993,18 (1) :34-36.
    [5] Auzel F . Upconversion and Anti-Stokes Processes with f and d Ions in Solids[J].Chem Rev,2004,104 (1):139-174.
    [6] Char W C W,Nie S M.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281(5385):2016-2018.
    [7] Bruchez Jr M,Moronne M,Gin P,et al.Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281(5385):2013-2016.
    [8] Brokmann X,Hermier J P,Messin G,et al.Statistical aging and nonergodicity in the fluorescence of single nanocrystals[J].Phys. Rev Lett,2003,90 (12) :120601.
    [9] Kirchner C,Liedl T,Kudera S,et al.Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles[J].Nano Lett,2005,5(2):331-338.
    [10]Rosenthal S J,Tomlinson A,Adkins E M,et al.Targeting cell surface receptors with ligand-conjugated nanocrystals[J].J. Am. Chem. Soc,2002,24 (17) :4586-4594.
    [11]Beaurepaire E,Buissette V,Sauviat M P.et al.Functionalized fluorescent oxide nanoparticles: Artificial toxins for sodium channel targeting and Imaging at the single-molecule level[J].Nano Lett,2004,4(11):2079-2083.
    [12]Meiser F , Cortez C , Caruso F . Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles[J].Angew Chem Int Ed,2004,43(44):5954-5957.
    [13]Zijlmans H J,Bonnet J,Burton J,et al.Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology[J].Anal. Biochem,1999,267(1):30-36.
    [14]Lim S F,Riehn R,Ryu W S.In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans[J].Nano Lett,2006,6(2):169-174.
    [15]Chatterjee D K,Rufaihah A J,Zhang Y.Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals[J].Biomater,29(7) :937-943.
    [16]Hu He,Yu M X,Li F Y,et al.Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels, Chem. Mater.,2008,20 (22) :7003-7009.
    [17]Nyk M,Kumar R,Ohulchanskyy T Y,et al.High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors[J].Nano Lett,2008,8(11) :3834-3838.
    [18]Corstjens P,Zuiderwijk M,Brink A,et al.Use of upconverting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection[J].Clinical Chem,2001,47:1885-1893.
    [19]van de Rijke F,Zijlmans H,Li S,et al.Upconverting phosphor reports for nucleic acid microarrays[J].Nature Biotech,2001,19:273-276.
    [20]Wang L Y,Li Y D.Green upconversion nanocrystals for DNA detection,”Chemical Communications,2006,24:2557–2559.
    [21]Zhang P,Rogelj S,Nguyen K,et al.Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles[J].J. Am. Chem. Soc,2006,128 (38) :12410-1241.
    [22]Chen Z,Chen, H,Hu, H,et al.Versatile Synthesis Strategy for Carboxylic Acid?f unct i onal i zed Upconver t i ng Nanophosphor s as Bi ol ogi cal Label s[J].J. Am. Chem. Soc,2008,130 (10) :3023–3029.
    [23]Kumar M,Yanyan G,Zhang P.Highly sensitive and selective oligonucleotide sensor for sickle cell disease gene using photon upconverting nanoparticles Biosensors and Bioelectronics[J].2009,24 (5):1522-1526.
    [24]Hampl J,Hall M,Mufti N A,et al.Up-converting phosphor reporters in immunochromatographic assays[J].Analytical Biochemistry, 2001,288:176-187.
    [25]Niedbala R S,Feindt H,Kardos K,et al.Detection of analytes by immunoassay using up-converting phosphor technology [J].Analytical Biochemistry,2001,293:22-30.
    [26]Wang L Y,Yan R X,Hao Z Y,et al.Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles[J].Angew Chem. Int. Ed,2005,44 (37) :6054-6057.
    [27]Wang M,Hou W,Mi C C,et al.Immunoassay of Goat Antihuman Immunoglobulin G Antibody Based on Luminescence Resonance Energy Transfer between Near-Infrared Responsive NaYF4:Yb, Er Upconversion Fluorescent Nanoparticles and Gold Nanoparticles[J].Anal. Chem,2009,81 (21) :8783–8789.
    [28]Rantanen T,P?kkil? H,J?msen L,et al.Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in homogeneous assays[J].Analytical chemistry,2007,79 (16) :6312-6318.
    [29]Zhang P,Steelant W,Kumar M,et al.Versatile Photosensitizers for hotodynamicTherapy at Infrared Excitation[J].J Am Chem Soc,2007,129:4526-4527.
    [30]Qian H S,Guo H C,Chi-Lui Ho P,et al.Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy[J] . 2009 , 5 (20) : 2285-2290.
    [31]孙学刚,张丽华,姜勇.中国病理生理杂志[J], FRET的理论基础及应用,2004,20 (9):1721-1724,1738.
    [32]Robertson D L,Joyce G E.Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA[J].Nature,1990,344 (6265) :467-468.
    [33]Ellington A D,Szostak J W.In vitro selection of RNA molecules that bind specific ligands[J].Nature,1990,346 (6287) :818-822.
    [34]Tuerk C,Gold L.Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J].Science,1990,249(4968) :505- 510.
    [35]Jenison R D,Gill S C,Pardi A,et al.High-resolution molecular discrimination by RNA[J].Science,1994,263:1425-1429.
    [36]李竣亨.光动力疗法发展近况[J].基础医学与临床,1997,17(3):168-172.
    [37]许德余.光动力治癌药物的历史,现状,进展,问题和前景[J].中国激光医学杂志, 2001,10:44-47.
    [38]Jones R C,Capen D E,Cohen K S,et al.A protocol for phenotypic detection and characterization of vascular cells of different origins in a lung neovascularization model in rodents[J].Nat. Protoc,2008,3:388–397.
    [39]Wieder M E,Hone D C,Cook M J,Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a Trojan horse[J].J. Photochem Photobiol Sci,5:727-734.
    [40]Pikulev V B,Kuznetsov S N,Saren A A.Singlet oxygen generation in porous silicon with fullerenes[J].2007,204 (5) :1266-1270.
    [41]Tsay J M,Trzoss M,Shi L,et al.Singlet Oxygen Production by Peptide-coated Quantum Dot-Photosensitizer Conjugates[J].J. Am. Chem. Soc,2007,129 (21) :6865-6871.
    [42]Jalil R A,Zhang Y.Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals[J].Biomaterials,2008,29(30) :4122-4128.
    [43]Sivakumar S,Diamente P R,van Veggel F C J M.Silica-Coated Ln3+-Doped LaF3 Nanoparticles as Robust Down- and Upconverting Biolabels[J].Chem. Eur. J,2006,12 (22) :5878-5884.
    [44]Krasnoslobodtsev A V,Smirnov S N.Effect of water on silanization of silica by trimethoxysilanes Langmuir[J].2002,18(8) :3181-3184.
    [45]Keating C D,Kovaleski K M, Natan M J.Protein:Colloid Conjugates for Surface Enhanced Raman Scattering: Stability , and Control of Protein Orientation[J].J. Phys. Chem. B,1998,102:9404-9413.
    [46]Rolli R,Gatterer K,Wachtler M,et al.Optical spectroscopy of lanthanide ions in ZnO-TeO2 glasses[J].Spectrochimica Acta Part A,2001,57:2009-2017.
    [47]Vetrone F,Boyer J C,Capobianco J A,et al.Effect of Yb3+ codoping on the upconversion emission in nanoerystalline Y2O3:Er3+[J].Appl. Phys. Lett,2002, 80(10) :1752-1754.
    [48]王静云,刘丹,唐乾等.圆二色谱研究Asp44在稳定肌红蛋白结构中的作用[J].光谱学与光谱分析,2008, 28(2):426-429.
    [49]Wang S P,Natalia M,Nicholas A K,et al.Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates[J].2002,Nano Lett,2(8) :817-822.
    [50]Hua X F,Liu T C,Cao Y C,et al.Characterization of the coupling of quantum dots and immunoglobulin antibodies[J].Anal Bioanal Chem,2006,386(6) :1665-1671.
    [51]Zhang Y,He J,Wang P N,et al.Time-Dependent Photoluminescence Blue Shift of the Quantum Dots in Living Cells:Effect of Oxidation by Singlet Oxygen[J].J. Am. Chem. Soc,2006,128(41):13396-13401.
    [52]Korsunska N E,Dybiec M,Zhukov L,et al.Reversible and non-reversible photo-enhanced luminescence in CdSe/ZnS quantum dots[J].Semicond. Sci. Technol, 2005,20(8):876-881.
    [53]Niedbala R S,Feindt H,Kardos K,et al.Detection of analytes by immunoassay using up-converting phosphor technology[J].Anal. Biochem,2001,293 (1):22-30.
    [54]朝克夫,张友林,孔祥贵等.荧光光谱成像在生物芯片蛋白量化分析中的应用研究[J].光谱学与光谱分析,2008,28(7):1603-1607.
    [55]Zhang B B, Cheng J,Li D N,et al.Materials Science and Engineering B,A novel method to make hydrophilic quantum dots and its application on biodetection[J].2008,149 (1): 87-92.
    [56]Kamimura M , Miyamoto D , Saito Y , et al . Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling[J].Langmuir,2008,24(16):8864-8870.
    [57]Ullman E F.Homogeneous immunoassays: historical perspective and future promise[J].J. Chem. Educ,1999,76:781-788.
    [58]Kokko L,Sandberg K,L?vgren T,et al.Comparing the Spectroscopic and Electrochemical Properties of Ruthenium and Osmium Complexes of the Tridentate Polyazine Ligands 2,2',6',2''-Terpyridine and 2,3,5,6-Tetrakis(2-pyridyl)pyrazine[J].Anal. Chim. Acta,2004,503:155-162.
    [59]de Chermont Q L,Chaneac C,Seguin J,et al.Nanoprobes with near-infrared persistent luminescence for in vivo imaging[J].Proc. Natl. Acad. Sci,2007,104(22):9266-9271.
    [60]Boyer J C,Vetrone F,Cuccia L A,et al.Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors[J] . J.Am.Chem.Soc , 2006, 128(23) :7444-7445.
    [61]Wang F , Liu X G . Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chem. Soc. Rev,2009,38 (4) :976-989.
    [62]Yi G S,Chow G M.Multicolor Core/Shell-Structured Upconversion Fluorescent Nanoparticles[J]. Adv. Funct. Mater,2006,16:2324-2329.
    [63]Yi G S,Chow G M.Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,TmNanocrystals with Efficient Up-Conversion Fluorescence[J].Adv Funct Mater,2006,16(18):2324-2329.
    [64]Yang W,Zhang C G,Qu H Y,et al.Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays[J]. Anal. Chim. Acta,2004,503(2):163-169.
    [65]Selvin P R.The renaissance of fluorescence resonance energy transfer[J].Nat Struct Biol,2000, 7(9):730-734.
    [66]Bagaria H G,Ada E T,Shamsuzzoha M, et al.Understanding mercapto ligand exchange on the surface of FePt nanoparticles[J].Langmuir,2006,22(18):7732-7737.
    [67]Zeng R Q,Fu X K,Gong C B,et al.Synthesis and catalytic application of zirconium-substituted aminoethyl phosphonate [J].J Mater Sci,2006,41(15):4771-4776.
    [68]Caliceti P, Chinol M, Roldo M, et al . Poly(ethylene glycol)-avidin bioconjugates: suitable candidates for tumor pretargeting [J].2002,83(1):97-108.
    [69]Kumar M,Zhang P.Highly Sensitive and Selective Label-Free Optical Detection of DNA Hybridization Based on Photon Upconverting Nanoparticles[J].Langmuir,2009, 25(11):6024-6027.
    [70]Boyer J C,Cuccia L A,Capobianco J A.Synthesis of colloidal upconverting NaYF4 : Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals[J].Nano Lett.,2007,7(3):847-852.
    [71]Pollnau M,Gamelin D R,Luthi S R,et al.Power dependence of upconversion luminescence in lanthanide and transition-metal-ionsystems[J].Phys Rev B,2001,61 (5):3337-3346.
    [72]王猛,密丛丛,王单等.NaYF4∶Yb, Er上转换荧光纳米颗粒的共沉淀法合成及表征[J].光谱学与光谱分析,2009, 29 (12):3327-3331.
    [73]Kuningas K,Ukonaho T,P?kkil? H,et al.Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol[J].Anal Chem, 2006,78(13):4690-4696.
    [74]Yang W,Lu F,Zhang X R,et al.Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors Alloys Compounds,2008,455(1-2):376-384.
    [75]Greer L F,Szalay A A.Imaging of light emission from the expression of luciferases in living cells and organisms: a review[J].Luminescence,2002,17(1):43-74.
    [76]Zhang Q B , Song K , Zhao J W , et al . Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4:Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic[J].Colloid. Interface. Sci,2009,336(1):171-175.
    [77]Nikoobakht B,El-Sayed M A.Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method[J].Chem. Mater,2003,15 (10) :1957-1962.
    [78]Algar W R,Krull U J.Quantum dots as donors in fluorescence resonance energytransfer for the bioanalysis of nucleic acids, proteins, and other biological molecules[J].Anal. Bioanal. Chem,2008,391(5):1609-1618.
    [79]Nikoobakht B,El-Sayed M. A.Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods[J].Langmuir,2001,17(20):6368-6374.
    [80]Mirska D,Schirmer K,Funari S S.Biophysical and biochemical properties of a binary lipid mixture for DNA transfection[J].Colloids Surf. B,2005,40(1):51-59.
    [81]Sokolov K,Follen M,Aaron J.Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles[J].Cancer Res,2003,639(9):1999-2004.
    [82]Huang X,El-Sayed I H,Qian W,et al.Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J].J Am Chem Soc,2006,128(6) :2115- 2120.
    [83]Ellington A D,Szostak J W. Selection in vitro of single-stranded DNA molecules that fold into speci ?c l i gan-dbinding structures[J].Nature,1992,355(6363):850–852.
    [84]Schurer H,Stembera K,Knoll D,et al.Aptamers that bind to the antibiotic moenomycin A[J].Bioorg. Med. Chem,2001,9(10):2557–2563.
    [85]Tereshko V,Skripkin E, Patel D J.Encapsulating streptomycin within a small 40-mer RNA[J].Chem. Biol,2003,10(2):175–187.
    [86]Zimmerman J M, Maher L J. In vivo selection of spectinomycin-binding. RNAs[J].Nucl. Acids Res,2002,30(9):5425–5435.
    [87]Wen J D , Gray C W , Gray D M . SELEX selection of high-af?ni t y oligonucleotides for bacteriophage Ff gene 5 protein[J].Biochemistry,2001,40(31):9300–9310.
    [88]Wilson C,Nix J, Szostak J W. Functional requirements for speci?c l i gand recognition by a biotin-binding RNA pseudoknot[J]. Biochemistry,1998,37(41):14410–14419.
    [89]Navani N K,Li Y F.Nucleic acid aptamers and enzymes as sensors[J].Curr. Opin. Chem. Biol,2006,10(3):272–281.
    [90]Yang C J,Jockusch S,Vicens M,et al.Light-switching Excimer Probes for Rapid Protein Monitoring in Complex Biological Fluids[J].Proc. Natl. Acad. Sci. U.S.A,2005,102(48):17278–17283.
    [91]Tombelli S , Minunni , M , Mascini , M . Analytical applications of aptamers[J].Biosens. Bioelectron.2005,20(12):2424–2434.
    [92]Song S,Wang L,Li J,et al.Aptamer-based biosensors[J].Trends Anal. Chem,2008, 27(2):108–117.
    [93]Lee M,Walt D R. A fiber-optic microarray biosensor using aptamers as receptors[J].Anal. Biochem,2000,282(1):142–146.
    [94]Yamamoto R,Baba T,Kumar P K.Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1[J].Genes Cells,2000,5(5):389–396.
    [95]Nutiu R,Li Y.Structure-Switching Signaling Aptamers[J].J. Am. Chem. Soc,2003,125(16):4771– 4778.
    [96]Ho H A,Leclerc M.Optical sensors based on hybrid aptamer/conjugated polymer complexes[J]. J. Am. Chem. Soc,2004,126(5):1384–1387.
    [97]Jiang Y X,Fang X H,Bai C L.Signaling Aptamer/Protein Binding by a Molecular Light Switch Complex[J]. Anal. Chem, 2004,76(17):5230–5235.
    [98]Levy M,Cater S F,Ellington A D.Quantum-dot aptamer beacons for the detection of proteins[J].Chembiochem,2005,6(12):2163–2166.
    [99]Choi J H,Chen K H,Strano M S.Aptamer-Capped Nanocrystal Quantum Dots: A New Method for Label-Free Protein Detection[J].J. Am. Chem. Soc,2006, 128(49):15584–15585.
    [100]Bagalkot V,Zhang L,Levy-Nissenbaum, E,et al.Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer[J].Nano Lett,2007,7(10):3065–3070.
    [101]Li N , Ho C M . Aptamer-Based Optical Probes with Separated Molecular Recognition and Signal Transduction Modules[J]. J. Am. Chem. Soc,2008,130(8):2380– 2381.
    [102]Tang Z W,Mallikaratchy P,Yang Ronghua,et al.Aptamer Switch Probe Based on Intramolecular Displacement[J]. J. Am. Chem. Soc,2008,130(34):11268–11269.
    [103]Zhang C,Li G,Zhang L,et al.A new method for the detection of ATP using a quantum-dot-tagged aptamer[J] . Anal. Bioanal. Chem , 2008 , 392(6) :1185–1188.
    [104]Chen X,Deng Y,Lin Y,et al.Quantum dot-labeled aptamer nanoprobes speci ?cal l y targeting glioma cells[J].Nanotechnology,2008,19(23):235105-235200.
    [105]Dwarakanath S,Bruno J G,Shastry A,et al.Quantum dot-antibody and aptamer conjugates ?usohriefstce nce upon bi ndi ng bacteria[J].Biochem.Biophys.Res.Comm,2004,325(5):739–743.
    [106]Levy M,Cater S F,Ellington A D.Quantum-Dot Aptamer Beacons for the Detection of Proteins[J].ChemBioChem,2005,6(12):1–4.
    [107]Zhang C Y,Johnson L W.Single Quantum-Dot-Based Aptameric Nanosensor for Cocaine[J].Anal. Chem,2009,81(8):3051–3055.
    [108]Lim Y T,Kim S,Nakayama A,et al.Selection of quantum dot wavelengths for biomedical assays and imaging[J].Mol. Imaging,2003,2(1):50–64.
    [109]Michalet X,Pinaud F F,Bentolila L A,et al.Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics[J].Science,2005,307(5709):538–544.
    [110]Byrne S J,Williams Y,Davies A,et al.“Jelly Dots”: Synthesis and Cytotoxicity Studies of CdTe Quantum Dot-Gelatin Nanocomposites[J].Small,2007,3(7):1152–1156.
    [111]Chang E,Thekkek N,Yu W W,et al.Evaluation of Quantum Dot Cytotoxicity Based on Intracellular Uptake[J].Small,2006,2(12):1412–1417.
    [112]Tsay J M,Michalet,X.New Light on Quantum Dot Cytotoxicity[J].Chem. Biol,2005, 12(11):1159–1161.
    [113]Nirmal M, Dabbousi B O,Bawendi M G,et al.Fluorescence intermittency in single cadmium selenide nanocrystals[J].Nature,1996,383(6603):802–804.
    [114]Biju V,Makita Y, Nagase T,et al.Subsecond Luminescence Intensity Fluctuations of Single CdSe Quantum Dots[J]. J. Phys. Chem. B,2005,109(30):14350–14355.
    [115]Matsumoto Y, Kanemoto R, Itoh T,et al. Photoluminescence Quenching and Intensity Fluctuations of CdS?eZnS Quant um Dot s on an Ag Nanoparticle Film[J]. J. Phys. Chem. C,2008,112(5): 1345–1350.
    [116]Kuno M,Fromm D P,Hamann H F,et al."On"/"off" fluorescence intermittency of single semiconductor quantum dots[J]. J. Chem. Phy, 2001,115(2):1028–1040.
    [117]Kielbassa C,Roza,L,Epe B.Wavelength dependence of oxidative DNA damage induced by UV and visible light[J].Carcinogenesis,1997,18(4):811–816.
    [118]Sinha R P,H?der D.UV-induced DNA damage and repair: a review[J]. Photochem. Photobiol. Sci,2002,1(4):225–236.
    [119]Ravanat J L,Douki T,Cadet J.Direct and indirect effects of UV radiation on DNA and its components[J].J. Photochem. Photobiol. B: Bio,2001,63(1-3):88–102.
    [120]Anas A,Akita,H,Harashima,H,et al.Photosensitized Breakage and Damage of DNA by CdSe ?ZnS Quant um Dot[ sJ].J. Phys. Chem. B,2008,112(32):10005– 10011.
    [121]GuoY,Kumar Manoj,Zhang P.Nanoparticle-Based Photosensitizers under CW Infrared Excitation[J].Chem. Mater,2007,19(25):6071–6072.
    [122]Kiselev,M V,Gladilin A K,Melik-Nubarov N S,et al.Determination of cyclosporin A in 20% ethanol by a magnetic beads-based immunofluorescence assay[J].Anal. Biochem, 1999,269(2):393–398.
    [123]Pellegrino T,Manna L,Kudera S,et al.Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals[J].Nano Lett,2004,4(4):703–707.
    [124]Yu W W,Chang E,Falkner J C,et al. Forming Biocompatible and Nonaggregated Nanocrystals in Water Using Amphiphilic Polymers[J].J. Am. Chem. Soc,2007,129(10): 2871–2879.
    [125]Wang L,Li Y.Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals[J].Chem. Mater,2007,19(4):727–734.
    [126]Zhelev Z,Ohba H,Bakalova R.Single Quantum Dot-Micelles Coated with Silica Shell as Potentially Non-Cytotoxic Fluorescent Cell Tracers[J].J. Am. Chem. Soc,2006,128(19): 6324– 6325.
    [127]Selvan S T.Tan T T,Ying J Y.Robust, Non-Cytotoxic, Silica-Coated CdSe Quantum Dots with Efficient Photoluminescence[J].Adv. Mater,2005,17(13):1620–1625.
    [128]Liu W,Choi H S,Zimmer J P,et al.Compact Cysteine-Coated CdSe(ZnCdS) Quantum Dots for In Vivo Applications[J].J. Am. Chem. Soc,2007,129 (47) :14530– 14531.
    [129]Chan W C W,Nie S M.Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J].Science,1998,281(5385):2016–2018.
    [130]Mattoussi H,Mauro J M,Goldman E R,et al.Self-Assembly of CdSe ?ZnSQ uantum Dot Bioconjugates Using an Engineered Recombinant Protein[J].J. Am. Chem. Soc,2000, 122(449):12142–12150.
    [131]Kramer K W,Biner D,Frei G,et al.Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors[J].Chem. Mater,2004,16(7):1244–1251.
    [132]Sun Y J,Chen Y,Tian L J,et al.Controlled synthesis and morphology dependent upconversion luminescence of NaYF4: Yb, Er nanocrystals[J].Nanotechnology,2007,18(27):275609.
    [133]Zhao J W,Sun Y J,Kong X G,et al.Controlled Synthesis, Formation Mechanism, and Great Enhancement of Red Upconversion Luminescence of NaYF4:Yb3+, Er3+ Nanocrystals/Submicroplates at Low Doping Level[J].J. Phys. Chem. B,2008,112.15666–15672.
    [134]Zhang F,Wan Y,Shi Y,et al.Ordered Mesostructured Rare-Earth Fluoride Nanowire Arrays with Upconversion Fluorescence[J].Chem. Mater, 2008,20(49):3778–3784
    [135]Bai X,Song H W,Pan G,et al.Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects[J].J. Phys. Chem. C,2007,111(37):13611–13617.
    [136]Goodwin D C,Aust S D,Grover T A.Free radicals produced during oxidation of hydrazines by hypochlorous acid[J].Chem. Res. Toxicol,1996,42(9),1333-1339.
    [137]Chen X Y,Ma E,Liu G K.Energy Levels and Optical Spectroscopy of Er3+ in Gd2O3 Nanocrystals[J].J. Phy. Chem. C,2007,111(28):10404–10411.
    [138]Casanova D, Giaume D, Gacoin T, et al. Single Lanthanide-doped Oxide Nanoparticles as Donors in Fluorescence Resonance Energy Transfer Experiments[J]. J. Phys. Chem. B, 2006,110(39):19264-19270.
    [139]Selvin P R.Principles and biophysical applications of lanthanide-based probes[J].Annu. Rev. Biophys. Biomol. Struct,2002,31:275–302.
    [140]Gruenhagen J A,Lovell P,Moroz L L,et al.Monitoring real-time release of ATP from the molluscan central nervous system[J].J. Neurosci. Method,2004,139(2):145–152.
    [141]Shtykov S N , Smirnova T D , Bylinkin YG . Determination of adenosine triphosphoric acid by its effect on the quenching of the ?uor escence of europium diketonate in micelles of brij-35[J]. J. Anal. Chem, 2004,59(5):438–441.
    [142]Perez-Ruiz T,Martinez-Lozano C, Tomas V,et al.Determination of ATP via the photochemical generation of hydrogen peroxide using ?ow i nj ect i on l umi nol chemiluminescence detection[J].Anal. Bioanal. Chem,2003,377(1):189–194.
    [143]Kueng A,Kranz C,Mizaikof B.Amperometric ATP biosensor based on polymer entrapped enzymes[J].Biosens. Bioelectron,2004,19(10):1301–1307.
    [144]Jhavert S D,Kirby R,Conrad R,et al.Designed Signaling Aptamers that Transduce Molecular Recognition to Changes in Fluorescence Intensity[J].J. Am. Chem. Soc,2000, 122(11),2469–2473.
    [145]Liu J W,Lu Y.Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles[J].Angew. Chem. Int. Ed, 2006,45(1):90–94.
    [146]Elwell C A,Dreyfus L A.DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest Molecular Microbiology[J].2000,37(4):952–963.
    [147]Choi J H,Chen K H,Strano M S.Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection[J].J. Am. Chem. Soc,2006,128 (49):15584–15585.
    [148]Eugenii K,Itamar W,Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications[J].Angew. Chem. Int. Ed,2004,43(45):6042– 6108.
    [149]Clapp R,Medintz I L,Mauro J M,et al.Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors[J].J. Am. Chem. Soc,2004,126 (1) : 301– 310.
    [150]Geissbuehler R,Hovius K L,Adrian M M,et al.Lipid-coated nanocrystals as multifunctionalized luminescent scaffolds for supramolecular biological assemblies[J].Angew. Chem. Int. Ed,2005,44 (9) :1388– 1392.
    [151]So M K,Xu C J,Loening A M,et al.Self-illuminating quantum dot conjugates for in vivo imaging[J].Nature Biotechnology,2006,24(3):339–343.
    [152]Zhang Y,So M K,Loening A M,et al.HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to QDs[J].Angew. Chem. Int. Ed,2006,45 (30):4936– 4940.
    [153]Hildebrandt N,Charbonnière LJ,Beck M,et al.QDs as efficient energy acceptors in a time-resolved fluoroimmunoassay[J].Angew. Chem. Int. Ed,2005,44(46):7612–7615.
    [154]Charbonniere L J,Hildebrandt N,Ziessel R F,et al.Lanthanides to QDs resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy[J].2006,128(39) :12800–12809.
    [155]Beck Michael, Hildebrandt N, L?hmannsr?ben H G. QDs as Acceptors in FRET-Assays Containing Serum[J].Proceedings of SPIE,2006,6191:234-241.
    [156]Hildebrandt N,Charbonnière L J,L?hmannsr?ben H G.Time-Resolved Analysis of a Highly Sensitive F?rster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors[J].J Biomed Biotechnol,2007,2007:79169.
    [157]H?rm? H,Soukka T,Shavel A,et al.Luminescent energy transfer between cadmium telluride nanoparticle and lanthanide(III) chelate in competitive bioaffinity assays of biotin and estradiol[J].Analytica Chimica Acta,2007,604(2):177.
    [158]Soini E,Hemmil? I,Fluoroimmunoassay-Present Status And Key Problems[J].Clin.Chem, 1979,25(3):353-361.
    [159]Hemmil? I,Webb S.Time-resolved fluorometry: an overview of the labels and core technologies for drug screening applications[J].Drug Discovery Today,1997,2(9):373-381.
    [160]Wang L Y,Yan R X,Hao Z Y,et al.Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles[J].Angew Chem. Int. Ed,2005,44 (37) :6054-6057.
    [161]Kobayashi S,Hiroishi K,Tokunoh M et al.Chelating properties of linear and branched poly(ethylenimines) [J].Macromolecules,1987,20(7):1496-1500.
    [162]Kelly S M,Jess T J,Price N C.How to study proteins by circular dichroism[J].Biochimica et Biophysica Acta - Proteins and Proteomics,2005,1751(2):119– 139.
    [163]Li T,Park H G,Lee H S,et al. Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles[J].Nanotechnology,2004,15(10):660-663.
    [164]Adamczyk M,Gebler J C,Wu J.Papain digestion of different mouse IgG subclasses as studied by electrospray mass spectrometry[J] . J Immunol Methods,2000,237(1-2):95-104.
    [165]Dev K C , Zhang Y . Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells[J].Nanomedicine,2008, 3(1):73–82.
    [166]Lin Z,Su X,Wan Y.Labeled avidin bound to water-soluble nanocrystals by electrostatic interactions[J].Russian Chemical Bulletin,2004,53(12):2690–2694.
    [167]王盛,钟伏弟,吴祖建等.R-藻红蛋白免疫荧光探针标记方法的探索[J].福建农林大学学报(自然科学版), 2004,32(2):206-209.
    [168]Zhang S P,Zhao J Q,Jiang L J.Photosensitized formation of singlet oxygen by phycobiliproteins in neutral aqueous solutions[J]. Free Radical Research,2000,33(5):489-496.
    [169]Huang B , Wang G C , Zeng C K , et al . The experimental research of R-phycoerythrin subunits on cancer treatment: a new photosensitizer in PDT[J].Cancer Biother Radiopharm,2002 , 17(1):35-42.
    [170]李冠武王广策李振刚等.藻红蛋白介导光动力治疗的光化学机制研究[J].激光生物学报,2001,10(2) :116-119.
    [171]吴萍,顾铭,戚艺华.藻胆蛋白荧光探针及其标记生命科学研究[J].生命科学研究,2005,5(2) :109-113.
    [172]Zhang S P,Zhao J Q,Jiang L J.Photosensitized formation of singlet oxygen by phycobiliproteins in neutral aqueous solutions[J].Free Radical Research,2000,33 (5) :489– 496.
    [173]He J A,Hu Y Z,Jiang L J.Photodynamic action of phycobiliproteins: in situ generation of reactive oxygen species[J].Biochim. Biophys. Acta,1997,1320(2):165–174.
    [174]Fujii M,Minobe S,Usui M.Generation of singlet oxygen at room temperature mediated by energy transfer from photoexcited porous Si[J].Phys. Rev. B,2004,70(8) :085311.
    [175]Mitzel F,Gerald S F,Beeby A,et al. The Synthesis of Arylalkyne-Substituted Tetrapyrazinoporphyrazines and an Evaluation of Their Potential as Photosensitisers for Photodynamic Therapy[J].Eur. J. Org. Chem,2004,229(11):1136-1142.
    [176]Liu W,Choi H S,Zimmer J P,et al.Compact Cysteine-Coated CdSe(ZnCdS) Quantum Dots for in Vivo Applications[J].J Am Chem Soc,2007,129(47):14530-14531.
    [177]Kamimura M,Miyamoto D,Saito Y.Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling[J].2008,24(16): 8864-8870.
    [178]Boyer J C,Manseau M P,Murray J I,et al.Surface Modification of Upconverting NaYF4 Nanoparticles with PEG-Phosphate Ligands for NIR (800 nm) Biolabeling within the Biological Window[J].2010,26(2):1157-1164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700