光学微腔量子电动力学实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息学是近年来受到广泛关注的新兴学科,它汇集了基础物理学中量子力学的研究和信息技术的演进发展,不仅开拓了经典信息技术领域,也对量子力学的探索产生了重要的推动作用。量子计算作为量子信息中的研究方向之一,能够通过量子力学的基本原理解决经典计算机无法或难以解决的算法问题,将会产生深远的影响。为了能够在物理体系上实现有效的量子态的操控,实现量子计算,众多的结构方案被提出,其中基于腔量子电动力学的思路,由于可以提供一个近乎理想的进行量子态操控的平台,而且适合小型化和集成化,因而具有很好的发展前景。基于这个动因,本文以量子计算的物理实现为目标,围绕腔量子电动力学,展开一系列相关的工作。
     现代微细加工技术的发展,以及材料制备手段的进步,为腔量子电动力学同时提供了所需要的两方面要素。前者促生了具有微小尺度的介质微腔,而其中基于回音壁模式的光学微腔因为其极高的品质因数和很小的模式体积,最具有吸引力。后者则导致了量子点这种人造原子体系的出现,其参数的可控性及优良的物理特征使之在应用上广受关注。为了以回音壁模式光学微腔和量子点构成探索腔量子电动力学效应的平台,我们分别在以上两个分支方向开展研究,并结合两者,探索了腔量子电动力学的相关效应。本文就主要介绍了在上述方面所取得的成果。
     在回音壁模式光学微腔方面,我们通过自行发展的一套相关设备和制备方法,制作出了基于硅基芯片的微盘型光学微腔,并且能通过后续的处理手段,形成具有独特结构的微芯圆环光学微腔,达到了很高的品质因数和很小的模式体积。这两种类型的平面结构的光学微腔,可以产生很强的Purcell效应,为腔量子电动力学的进一步实验研究提供了高品质的载体。
     另一方面,我们发现回音壁模式的光学微腔自身也存在着很多新颖的物理现象,由于其特别的性能,很多原先非常微弱的现象会在这种微腔中得到显著增强,比如材料产生的Rayleigh散射。由此我们深入探索了散射导致的模式耦合现象,并且直接通过实验手段获得了腔内模式耦合强度。通过对微腔自身的研究,也加深了对微腔与量子点耦合体系的认识。
     单就量子点而言,它已经包含了丰富的内容值得加以研究,而为了实现量子点在腔量子电动力学中的应用,单个量子点的发光过程更值得关注。因此,在我们的工作中,分别对量子点的单光子发射、量子点的荧光衰减过程、量子点荧光的某些特殊效应、以及用以直接调制量子点发光过程的方法,进行了相关的实验研究。获得的结果对于进一步在我们的实验中应用量子点提供了参考。
     我们将回音壁模式光学微腔和量子点相结合,构成了研究二能级结构与光场相互耦合的体系。在实验上观察到微腔对于量子点发光可以产生直接的影响,通过Purcell效应,能够导致量子点的荧光光谱受到明显调制。同时我们借助近场耦合器件,还实现了微腔对量子点的可控耦合,相关的实验技术也为实现微腔对单个量子点的可控的Purcell效应创造了条件。
     文中所介绍的我们所开展的实验工作,已经证明回音壁模式光学微腔和量子点耦合的体系在腔量子电动力学的实验中具有发展潜力,他们独特的性质既可以单独发展,用于相关工程应用性领域和基础研究领域,更能有效的推进量子信息研究的进步,并且有望为量子计算器件的实现打下基础。
Quantum information is new branch of science, which has received widely concern in recent years. It combines the research quantum mechanics in basic physics and development from information technique, and this subject not only expands the classical information technique field, but also promotes the exploration of quantum mechanics. Quantum computation is one of the research fields in quantum information. Upon the basic theories of quantum mechanics, quantum computation has the ability to solve the problems which are not able or hard to compute by classical computer, and that could lead to profound influence. In order to realize quantum computation and achieve effective control of quantum state in a physical system, many schemes have been proposed. Among those schemes, the cavity quantum electrodynamics (QED) has promising prospect, since it can provide an almost ideal platform to control the quantum state, and is suitable for miniaturization and integration. Basing on that reason, this thesis targets on the physical realization of quantum computation, and performs a series of works centered on the cavity QED.
     Developments of modern microfabrication technology and progress in material preparation have provided both parts of what is need in cavity QED. The former brought the dielectric microcavities with small dimension, and the whispering gallery mode microcavity is of great attraction, because it keeps high quality factor and small mode volume. Meanwhile, the latter has lead to generation of quantum dots which is an artificial atom, it is controllable in fabrication and has superior character. For the purpose of constructing the system within microcavity and quantum dot to study the cavity QED effects, those two branches are investigated respectively, and by combining them, some cavity QED effects have been researched. In this article, we are going to introduce the achievements in aforementioned fields.
     Towards the whispering gallery mode microcavity, we have developed a set of related equipments and fabrication method to fabricate silicon chip based microdisk cavity. Furthermore, by using subsequent procedure the microtoroid cavity with unique structure can be formed. That cavity has reached high quality factor and small mode volume, which are related to strong Purcell effect. The planar optical microcavity is able to generate strong Purcell effect that brings the great support for cavity QED experiment.
     In another aspect, we found that many new phenomena exist in the whispering gallery mode microcavity, due to its special characters some effects which originally are very weak has been enhanced, such as Rayleigh scattering from material. As the result, we explored the scattering induced modal coupling, in microcavities and directly derived modal coupling strength by experimental way. Through the study on microcavity, the knowledge of coupling between microcavity and quantum dot has been gained.
     So far as the development of quantum dot, large quantities of content are worth studying. However, the luminescent process in single quantum dot is more attractive towards application in cavity QED. Therefore, we have studied the following aspects, which are the single photon emitting, luminescence decay process, some special character of quantum dot's fluorescence and the way for directly tuning photon emitting from quantum dot. The experiment results can be referred and applied in further application of quantum dot in our experiments.
     Within whispering gallery mode microcavity and quantum dot, we composed the coupled system which has two level energy structure and optical field. In experiment, the microcavity can directly influence quantum dots emission via Purcell effect. The modulated luminescent spectrum has been observed. In the mean time, we also realized controlled coupling between microcavity and quantum dots with the help of near field coupling device. Related experiment technology provides the conditions to achieve a controllable Purcell effect within the microcavity and single quantum dot.
     Our experiment works introduced in this thesis have already proved the potential of whispering gallery mode microcavity coupling with quantum dot to study the cavity QED. The superior characters of those elements guarantee that they can be applied in engineering and basic research field. More importantly, they can make advancement for study of quantum information, and are hopeful to construct solid foundation for quantum computation device.
引文
[1]E. M. Purcell.1946. Spontaneous emission probabilities at radio frequencies, Phys. Rev..69: 681.
    [2]E. T. Jaynes and F. W. Cummings.1963. Comparison of quantum and semiclassical radiation theory with application to the beam maser, Proceedings of the IEEE,51:89-109.
    [3]J. M Gerard, B. Sermage, B. Gayral. et al.1998. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity, Phys. Rev. Lett..81:1110-1113
    [4]H. J. Kimble,1998. Strong interaction of single atoms and photons in cavity QED, Physica Scripta,T76:127-137.
    [5]P. Goy, J. M. Raimond, M. Gross, and S. Haroche,1983. Observation of cavityenhanced single-atom spontaneous emission, Phys. Rev. Lett.,50(24):1903-1906.
    [6]R. G. Hulet, E. S. Hilfer, and D. Kleppner,1985. Inhibited spontaneous emission by a Rydberg atom, Phys. Rev. Lett.,55(20):2137-2140.
    [7]K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, et al.2005. Photon blockade in an optical cavity with one trapped atom, Nature,436:87-90.
    [8]J. McKeever, A. Boca, A. D. Boozer, et al.2003. Experimental realization of a one-atom laser in the regime of strong coupling, Nature,425:268-271.
    [9]M. Brune, F. Schmidt-Kaler, A. Maali, et al.,1996. Quantum Rabi oscillation:A direct test of field quantization in a cavity. Phys. Rev. Lett.,76(11):1800-1803.
    [10]T. Yoshie, A. Scherer, J. Hendrickson, et al.2003. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature,432:200-203.
    [11]E. T. Jaynes and F. W. Cummings.1963. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE,51 89-109.
    [12]R. J. Thompson, Q. A. Turchette, O. Carnal and H. J. Kimble,1998. Nonlinear spectroscopy in the strong-coupling regime of cavity QED, Phys. Rev. A,57:3084-3104.
    [13]P. R. Rice and H. J. Carmichael,1988. Single-atom cavity-enhanced absorption I:photon statistics in the bad-cavity limit, IEEE J. Quantum Electronics,24:1351-1366.
    [14]J. R. Buch and H. J. Kimble,2003. Optimal sizes of dielectric microspheres for cavity QED with strong coupling, Phys. Rev. A,67:033806.
    [15]R. B. Liu, W. Yao and L. J. Sham,2004. Nanodot-cavity electrodynamics and photon entanglement, Phys. Rev. Lett.,92:217403.
    [16]T. Aoki, B. Dayan, E. Wilcut, et al.2006. Observation of Strong Coupling between One Atom and a Monolithic Microresonator, Nature,443:671-674.
    [17]K. Srinivasan and O. Painter,2007. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system, Nature,450:862-865.
    [18]K. J. Vahala,2003. Optical Microcavities, Nature,424:839.
    [19]G. S. Solomon, M. Pelton and Y. Yamamoto,2007. Microcavity modified spontaneous emission of single quantum dots, phys. stat. sol. (b),244:2792-2802.
    [20]M. Cai, O. Painter, K. J. Vahala and P. C. Sercel,2000. Fiber-coupled microsphere laser. Opt. Lett.,25:1430-1432.
    [21]L. Mahler, A. Tredicucci, F. Beltram, et al.2008. Vertically emitting microdisk lasers, Nature Photonics,3:46-49.
    [22]Takao Someya, Ralph Werner, Alfred Forchel, et al.1999 Room temperature lasing at blue wavelengths in gallium nitride microcavities, Science,285:1905-1906.
    [23]E. Krioukov, D. J. W. Klunder, A. Driessen, et al.2002. Sensor based on an integrated optical microcavity, Opt. Lett.,27:512-514.
    [24]A. M. Armani and K. J. Vahala,2006. Heavy water detection using ultra-high-Qmicrocavities, Opt. Lett.,31:1896-1898.
    [25]A. M. Armani, R. P. Kulkarni, S. E. Fraser, et al.2008. Label-free, single-molecule detection with optical microcavities, science,317:783-787.
    [26]Y. O. Yilmaz, A. Demir, A. Kurt and A. Serpenguzel,2005. Optical channel dropping with a silicon microsphere, IEEE Photon. Technol. Lett.,17:1662-1664.
    [27]M Notomi, A Shinya, S Mitsugi,2005. Optical bistable switching action of Si high-Q photonic-crystal nanocavities, Opt. Express,13:2678-2687.
    [28]T. J. Kippenberg, S.M. Spillane, and K. J. Vahala,2004. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity, Phys. Rev. Lett.,93:083904.
    [29]Q. A. Turchette, C. J. Hood, W. Lange, et al.1995. Measurement of conditional phase shifts for quantum logic, Phys. Rev. Lett.,75:4710-4713.
    [30]M. Hennrich, A. Kuhn and G. Rempe,2005. Transition from antibunching to bunching in cavity QED, Phys. Rev. Lett.,94:053604.
    [31]A. Boca, R. Miller, K. M. Birnbaum, et al.2004. Observation of the vacuum Rabi spectrum for one trapped atom, Phys. Rev. Lett.,93:233603.
    [32]J. M. Gerard, B. Sermage, B. Gayral, et al.1998. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity, Phys. Rev. Lett.,81:1110-1113.
    [33]M. Pelton, C. Santori, J. Vuckovic, et al.2002. Efficient source of single photons:A single quantum dot in a micropost microcavity, Phys. Rev. Lett.,89:233602.
    [34]O. Painter, R. K. Lee, A. Yariv, et al.1999. Two dimensional photonic band-gap defect mode laser, Science,284:1819-1824.
    [35]T. Yoshie, J. Vuckovic, A. Scherer, et al.2001. High quality two-dimensional photonic crystal slab cavities, Appl. Phys. Lett.,79:4289-4291.
    [36]Y. Akahane, T. Asano, B. S. Song and S. Noda,2003. High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature,425:944-947
    [37]K. Ishizaki and S. Noda,2009. Manipulation of photons at the surface of three-dimensional photonic crystals, nature,460:367-370.
    [38]V. B Braginsky, M. L. Gorodetsky and V. S. Ilchenko,1989. Quality factor and nonlinear properties of optical whispering gallery modes, Phys. Lett. A,137:393-397.
    [39]A. Serpenguzel, S. Arnold and G. Griffel,1995. Excitation of resonances of microspheres on an optical fiber, Opt. Lett.,20:654-656.
    [40]S. L. MCCALL, A. F. J. LEVI, R. E. SLUSHER, et al.1992. Whispering-gallery mode microdisk lasers, Appl. Phys. Lett.,60:289-291.
    [41]A. Kiraz, P. Michler, C. Becher, et al.2001. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure, Appl. Phys. Lett.78:3932-3934.
    [42]D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala,2003. Ultra-high-Q toroid microcavity on a chip, Nature,421:925-928.
    [43]Y. F. Xiao, Z. F. Han and G. C. Guo,2006. Quantum computation without strict strong coupling on a silicon chip, Phys. Rev. A 73:052324.
    [44]S. M. Spillane, T. J. Kippenberg, and K. J. Vahala,2002. Ultralow-threshold Raman laser using a spherical dielectric microcavity, Nature,415:621-623.
    [45]B. Min, T. J. Kippenberg, and K. J. Vahala,2003. Compact, fiber-compatible, cascaded Raman laser, Opt. Lett.,28:1507-1509.
    [46]M. L. Gorodetsky and V. S. Ilchenko,1994. High-Q optical whispering-gallery microresonators:percession approach for spherical mode analysis and emission patterns with prism couplers, Opt. Comm.113:133-143.
    [47]V. S. Ilchenko, X. S. Yao and L. Maleki,1999. Pigtailing the high-Q microsphere cavity:a simple fiber coupler for optical whispering-gallery modes, Opt. Lett.24:723-725.
    [48]G. Griffel, S. Arnold, D. Taskent, et al.1996. Morphology-dependent resonances of a microsphere-optical fiber system, Opt. Lett.,21:695-697.
    [49]J. P. Laine, B. E. Little, D. R. Lim, et al.2000. Planar integrated wavelength-drop device based on pedestal antiresonant reflecting waveguides and high-Q silica microspheres, Opt. Lett., 25:1636-1638.
    [50]J. C. Knight, G. Cheung, F. Jacques and T. A. Birks,1997. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper, Opt. Lett.,22:1129-1131.
    [51]Y. H. Li, G. Vienne, X. S. Jiang, et al.2006. Modeling rare-earth doped microfiber ring lasers, Opt. Express,14:7073-7086.
    [52]J. P. Reithmaier, G. Sek, A. Loffler, et al.2004. Strong coupling in a single quantum dot-semiconductor microcavity system, Nature,432:197-199.
    [53]A.J. Nozik,2002. Quantum dot solar cells, Physica E,14:115-120.
    [54]P. Michler, A. Kiraz, C. Becher, et al.2000. A Quantum Dot Single-Photon Turnstile Device, Science,290:2282-2285.
    [55]A. Zrenner, E. Beham, S. Stufler, et al. Coherent properties of a two-level system based on a quantum-dot photodiode, Nature,418:612-614.
    [56]N. Akopian; N. H. Lindner; E. Poem, et al.2006. Entangled photon pairs from semiconductor quantum dots, Phys. Rev. Lett.,96:130501.
    [57]G. S. Solomon, M. Pelton, and Y. Yamamoto,2001. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity, Phys. Rev. Lett.,86:3903-3906.
    [58]H. Seidel, L. Csepregi, A. Heuberger and H. Baumgartel,1990. Anisotropic Etching of Crystalline Silicon in Alkaline Solutions 1:Orientation Dependance and Behavior of Passivation Layers. Journal of Electrochemical Society,137:3612-3626
    [59]I. Zubel and I. Barycka,1998.Silicon anisotropic etching in alkaline solutions Ⅰ. The geometric description of figures developed under etching Si(100) in various solutions, Sensor and Aetuator A,70:250-259.
    [60]H. F. Winters, J. W. Coburn,1979. The etching of silicon with XeF2 vapor. Appl. Phys. Lett., 34:70-73.
    [61]K. Sugano and O. Tabata,2000. Effects of etching pressure and aperturewidth on Si etching with XeF2 for MEMS, Intemational symposium on micromechatronics and human scienece:89-94.
    [62]T. Carmon and K. J. Vahala,2007. Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency, Phys. Rev. Lett.,98:123901.
    [63]M. Cai, O. Painter, and K. J. Vahala,2000. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system, Phys. Rev. Lett.,85:75-77.
    [64]S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala,2003. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics, Phys. Rev. Lett.,91:043902.
    [65]L. Tong, R. R. Gattass, J. B. Ashcom, et al.2003. Subwavelength-diameter silica wires for low-loss optical wave guiding, Nature,426:816-819.
    [66]M. L. Gorodetsky and V. S. Ilchenko,1999. Optical microsphere resonators:optimal coupling to high-Q whispering-gallery modes, J. Opt. Soc. Am. B,16:147-156.
    [67]B. E. Little, J. P. Laine, and H. A. Haus,1999. Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. Journal Of Lightwave Technology, 17:704-715.
    [68]L. Tong, J. Lou, and E. Mazur,2004. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides, Opt. Express 12:1025-1035.
    [69]J. D. Love, W. M. Henry, W. J. Stewart, et al.,1991. Tapered single-mode fibers and devices. I. Adiabaticity criteria, IEEE Proc-J,138:343-354.
    [70]M. Borselli, T J. Johnson and O. Painter,2005. Beyond the Rayleigh scattering limit in high-Q silicon microdisks:theory and experiment, Opt. Express 13:1515-1530.
    [71]A. Yariv. Optical Electronics. Saunder College Publishing, a division of Holt, Rinehart and Winston, Inc., Orlando, Florida,5th edition,1997.
    [72]D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, et al.,1998. High-Q measurements of fused-silica microspheres in the near infrared, Opt. Lett.23:247-249.
    [73]C. H. Dong, Y. F. Xiao, Z. F. Han, et al.,2008. Low-threshold microlaser in Er:Yb phosphate glass coated microsphere, IEEE Photon. Technol. Lett.,20 342-344.
    [74]T. J. Kippenberg, S. M. Spillane and K. J. Vahala,2004. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip, Appl. Phys. Lett.,85:6113-6115.
    [75]S. M. Spillane, T. J. Kippenberg and K. J. Vahala, et al.,2005. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics, Phys. Rev. A,71:013817.
    [76]M. L. Gorodetsky,A. A. Savchenkov, V. S. Ilchenko,1996. Ultimate Q of optical microsphere resonators, Opt. Lett.21:453-455.
    [77]K. Vahala,2004. Optical microcavities, World Scientific Publishing Company, Incorporated, 203-204.
    [78]T. Carmon, L. Yang, and K. J. Vahala,2004. Dynamical thermal behavior and thermal selfstability of microcavities, Opt. Express 12:4742-4750.
    [79]V. S. Ilchenko, and M. L. Gorodetskii,1992. Thermal nonlinear effects in optical whispering gallery microresonators, Laser Phys.,2:1004-1009.
    [80]V. Zamora, A. Diez, M. V. Andres and B. Gimeno,2007. Refractometric sensor based on whisperinggallery modes of thin capillaries, Opt. Express,15:12011.
    [81]C. H Dong, L. He, Y. F. Xiao, et al.,2009. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing, Appl. Phys. Lett.,94:231119.
    [82]T. J. Kippenberg, H. Rokhsari, T. Carmon, et al.,2005. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett.,95:033901.
    [83]T. J. Kippenberg and K. J. Vahala,2007. Cavity opto-mechanics, Opt. Express, 15:17172-17205.
    [84]P. Del'Hayel, A. Schliesser, O. Arcizet, et al.,2007. Optical frequency comb generation from a monolithic microresonator, Nature,450:1214-1217.
    [85]J. Rosenberg, Q. Lin and O. Painter,2009. Static and dynamic wavelength routing via the gradient optical force, Nature Photonics,3:478-483.
    [86]D. S. Weiss, V. Sandoghdar, J. Hare, et al.,1995. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres, Opt. Lett.,20:1835-1837.
    [87]M. L. Gorodetsky, A. D. Pryamikov and V. S. Ilchenko,2000. Rayleigh scattering in high-Q microspheres, J. Opt. Soc. Am. B,17:1051-1057.
    [88]T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, et al.,2009. Purcell-factor-enhanced scattering from Si nanocrystals in an optical microcavity, Phys. Rev. Lett.,103:027406.
    [89]T. J. Kippenberg, S. M. Spillane and K. J. Vahala,2002. Modal coupling in traveling-wave resonators, Opt. Lett.,27:1669-1671.
    [90]J. Zhu, S. K. Ozdemir, Y. F. Xiao, et al.,2010 On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator, Nature Photonics,4:46-49.
    [91]K. Kieu and M. Mansuripur,2007. Fiber laser using a microsphere resonator as a feedback element, Opt. Lett.32:244-246.
    [92]M. L. Gorodetsky and V. S. Ilchenko,1999. Optical microsphere resonators:optimal coupling to high-Q whispering-gallery modes, J. Opt. Soc. Am. B,16:147-154.
    [93]K. Srinivasan and O. Painter,2006. Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity, Phys. Rev. A,75:023814.
    [94]C. H. Dong, F. W. Sun, C. L. Zou,2010. High-Q silica microsphere by poly (methyl methacrylate) coating and modifying, Appl. Phys. Lett.,96,061106.
    [95]P. Palinginis, H. Wang, S. V. Goupalov, et al.,2004. Exciton dephasing in self-assembled CdSe quantum dots, Phys. Rev. B 70:073302.
    [96]L. C. Andreani, G. Panzarini, and J.-M. Gerard,1999. Strong-coupling regime for quantum boxes in pillar microcavities:Theory, Phys. Rev. B 60:13276.
    [97]E. Peter, P. Senellart, D. Martrou, et al.,2005. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity, Phys. Rev. lett.,95:067401.
    [98]J. Hu, L. Li, W. Yang, et al.,2001. Linearly polarized emission from colloidal semiconductor quantum rods, Science,292:2060-2063.
    [99]L. Li, J. Hu, W. Yang, and A. P. Alivisatos,2001. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods, Nano Lett.,1:349-351.
    [100]B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, et al.,1997. (CdSe)ZnS core-shell quantum dots:synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B,101:9463-9475.
    [101]H. Mattoussi, J. M. Mauro, E. R. Goldman, et al.,2000. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc, 122:12142-12150.
    [102]R. C. Somers, M. G. Bawendi and D. G. Nocera,2007. CdSe nanocrystal based chem-/bio-sensors, Chem. Soc. Rev.,36:579-591.
    [103]D. Gerion, F. Pinaud, S. C. Williams, et al.,2001. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. B, 105:8861-8871.
    [104]Y. Yang and M. Gao,2005. Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method, Adv. Mater.,17:2354-2357.
    [105]W. G. J. H. M. van Sark, P. L. T. M. Frederix, A. A. Bol, et al.,2002. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots, ChemPhysChem,3:871-879.
    [106]R. H. Brown and R. Q. Twiss,1956. Correlation between Photons in two Coherent Beams of Light, Nature,177:27-29.
    [107]J. F. Clauser,1974. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect, Phys. Rev. D,9:853-860.
    [108]H. J. Kimble, M. Dagenais and L. Mandel,1977. Photon Antibunching in Resonance Fluorescence, Phys. Rev. Lett.,39:691-695.
    [109]B. Lounis and M. Orrit,2005. Single-photon sources, Rep. Prog. Phys.68:129-1179.
    [110]M. Keller, B. Lange, K. Hayasaka, et al.,2004. Continuous generation of single photons with controlled waveform in an ion-trap cavity system, Nature,431:1075-1078.
    [111]B. Darquie, M. P. A. Jones, J. Dingjan, et al.,2005. Controlled Single-Photon Emission from a Single Trapped Two-Level Atom, Science,309:454-456.
    [112]R. Alleaumel, F. Treussart, J-M. Courty and J-F. Roch,2004. Photon statistics characterization of a single-photon source, New J. Phys.,6:85.
    [113]W E Moerner,2004. Single-photon sources based on single molecules in solids, New J. Phys.,6:88.
    [114]S. G. Lukishova, A. W. Schmid, A. J. McNamara, et al.,2003. Room temperature single-photon source:single-dye molecule fluorescence in liquid Crystal host, IEEE Journal of selected topics in quantum electronics,9:1512-1518.
    [115]C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter,2000. Stable solid-state source of single photons, Phys. Rev. Lett.,85:290-293.
    [116]R. Brouri, A. Beveratos, J-P. Poizat, and P. Grangier,2000. Photon antibunching in the fluorescence of individual color centers in diamond, Opt. Lett.,25:1294-1296.
    [117]T. Gaebel, I. Popa, A. Gruber, et al.,2004. Stable single-photon source in the near infrared, New J. Phys.,6:98.
    [118]C. Becher, A. Kiraz, P. Michler, et al.,2001. Nonclassical radiation from a single self-assembled InAs quantum dot, Phys. Rev. B,63:121312.
    [119]V. Zwiller, H. Blom, P. Jonsson, et al.,2001. Single quantum dots emit single photons at a time:Antibunching experiments, Appl. Phys. Lett.,78:2476-2478.
    [120]B. Lounis, H.A. Bechtel, D. Gerion, et al.,2000. Photon antibunching in single CdSe/ZnS quantum dot fluorescence, Chem. Phys. Lett.,329:399-404.
    [121]P. Michler, A. Imamoglu, M. D. Mason, et al.,2000. Quantum correlation among photons from a single quantum dot at room temperature, Nature,406:968-970.
    [122]M. Minsky,1988. Memoir on inventing the confocal scanning microscope, Scanning, 10:128.
    [123]C. Becker, A. Kiraz, P. Michler, et al.,2001. Nonclassical radiation from a single self-assembled InAs quantum dot, Phys. Rev. B,63:121312.
    [124]M. Califano, A. Franceschetti and A. Zunger,2007 Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots, Phys. Rev. B, 75:115401.
    [125]K. Sebald, P. Michler, T. Passow, et al.,2002. Single-photon emission of CdSequantum dots at temperatures up to 200 K, Appl. Phys. Lett.,81:2920-2922.
    [126]W Nagourney, J Sandberg, and H Dehmelt,1986. Shelved optical electron amplifier: Observation of quantum jumps, Phys. Rev. Lett.,56:2797-2799.
    [127]Th. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek,1986. Observation of Quantum Jumps, Phys. Rev. Lett.,57:1696-1698.
    [128]Th. Basche, S. Kummer, and C. Brauchle,1995. Direct spectroscopic observation of quantum jumps of a single molecule, Nature,373:132-134.
    [129]F. Kulzer, F. Koberling, T. Christ, et al.,1999. Terrylene in p-terphenyl:single-molecule experiments at room temperature, Chem. Phys.,247:23-24.
    [130]M. Kuno, D. P. Fromm, H. F. Hamann, et al.,2001. "On"/"off" fluorescence intermittency of single semiconductor quantum dots, J. Chem. Phys.,115:1028-1040.
    [131]M. Kuno, D. P. Fromm, H. F. Hamann, et al.,2000 Nonexponential "blinking" kinetics of single CdSe quantum dots:A universal power law behavior, J. Chem. Phys.,112:3117-3120.
    [132]K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, et al.,2001. Blinking statistics in single semiconductor nanocrystal quantum dots, Phys. Rev. B,63:205316.
    [133]F. Koberling, A.Mews and T. Basche,2000. Oxygen-induced blinking of single CdSe nanocrystals, Adv. Mater.,13:672-676.
    [134]X. Wang, X. Ren, K. Kahen, et al.,2009. Non-blinking semiconductor nanocrystals, Nature 459:686-689.
    [135]W. L. Barnes, A. Dereux and T. W. Ebbesen,2003. Surface plasmon subwavelength optics, Nature,424:824-830.
    [136]H. F. Ghaemi, Tineke Thio, D. E. Grupp, et al.,1998. Surface plasmons enhance optical transmission through subwavelength holes, Phys. Rev. B,58:6779-6782.
    [137]Y. Ito, K. Matsuda and Y. Kanemitsu,2007. Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces, Phys. Rev. B,75:033309.
    [138]C. T. Yuan, P. Yu and J. Tang,2009. Blinking suppression of colloidal CdSe/ZnS quantum dots by coupling to silver nanoprisms, Appl. Phys. Lett.,94:243108.
    [139]K. T. Shimizu, W. K. Woo, B. R. Fisher, et al.,2002. Surface-enhanced Eemission from single semiconductor nanocrystals, Phys. Rev. Lett.,89:117404.
    [140]M. T. Cheng, S. D. Liu and Q. Q. Wang,2008. Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod, Appl. Phys. Lett., 92:162107.
    [141]E. Waks, C. Santori, and Y. Yamamoto,2002. Security aspects of quantum key distribution with sub-Poisson light, Phys. Rev. A,66:042315.
    [142]C. L. Zou, Y. Yang, C. H. Dong, et al.,2008. Taper-microsphere coupling with numerical calculation of coupled-mode theory, J. Opt. Soc. Am. B,25:1895-1898.
    [143]Lakowicz J. R. Principles of Fluorenscene Spectroscopy. New York:Plenum Press,1983。
    [144]P. E. Barclay, C. Santori, K. M. Fu, et al.,2009. Coherent interference effects in a nano-assembled diamond NV center cavity-QED system, Opt. Express,17:8081.
    [145]A. M. Armani, A. Srinivasan, and Kerry J. Vahala,2007. Soft lithographic fabrication of
    high Q polymer microcavity arrays, Nano Lett.,7:1823-1826.
    [146]J. Gao, P. Heider, C. J. Chen, et al.,2007. Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics, Appl. Phys. Lett.,91:181101.
    [147]D. D. Smith, H. Chang, K. A. Fuller, et al.,2004. Coupled-resonator-induced transparency, Phys. Rev. A,69:063804.
    [148]S. M. Spillane, T. J. Kippenberg and K. J. Vahala,2002. Ultralow-threshold Raman laser using a spherical dielectric microcavity, Nature,415:621-623.
    [149]T Gaebel, I Popa, A Gruber, et al.,2004. Stable single-photon source in the near infrared, New J Phys.,6:98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700