用户名: 密码: 验证码:
基于布里渊激光雷达的大气温度测量系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前在大气测温技术领域,激光雷达大气测温具有实时性好、探测灵敏度高和时空分辨率好等优点,并且可连续地进行高空间分辨率大气温度垂直剖面遥感探测,因而成为一个新的研究热点。
     目前针对中高层大气温度探测的共振散射激光雷达和瑞利激光雷达已经有应用报道。由于低空大气中存在大量的气溶胶会产生很强烈的米氏散射信号干扰,严重影响了瑞利激光雷达的测量,因此低空大气温度探测存在测量精度非常不足的缺陷。通过测量大气瑞利-布里渊散射谱的半高线宽实现对低空大气测温的方法虽然可以在频域上减小米氏散射的干扰、提高测量精度,但是由于散射谱的半高线宽与温度在理论上仅为近似关系,所以其测得的精度也不太理想,大约为5K左右。与此同时,具有高精度测温能力的拉曼激光雷达可以用于探测0-11km低空大气的温度,其精度小于2K,但是拉曼散射信号的强度相对于米氏散射和瑞利散射要小3~4个数量级,因此为实现准确的测量需要较大的激光能量、接收望远镜系统和高精度高效率的分光器,导致该方法检测费用昂贵、成本较高,使用范围受到极大限制。
     针对上述方法的不足,文章提出了一种新型的、通过测量大气布里渊频移实现对低空大气温度进行实时探测的方法。由于大气中的布里渊频移与大气温度成一一对应的关系,因此只要准确的测量出大气布里渊频移量即可反映出温度大小。该方法是一种频域测量法,可以在频域上有效的滤除气溶胶产生的米氏散射干扰,同时大气布里渊频移严格正比于大气温度的平方根,因而具有更高的精度。另外,该方法只需用普通瑞利激光雷达即可实现温度的测量,亦大大降低了测量成本。
     文章首先以大气光学特性为理论背景,分析了大气的主要成分及其光学特性和大气中瑞利布里渊散射的基本理论。由于布里渊频移量的大小对激光雷达收发系统参数的确定非常重要,文章在大气光学特性理论基础上以激光信号在传输介质中布里渊散射频移量模型为基础,依据相关大气参数模型和美国标准大气(1976)建立基于布里渊散射信号检测的大气探测模型。该模型将布里渊频移量归一为只与大气高度这一单参数相关的函数,详细地描述了低空大气范围内布里渊频移量的连续分布状态。该模型对激光雷达系统参数的设计提供了理论依据,具有很好的指导意义。
     由于大气中瑞利散射谱和布里渊散射谱混叠在一起,为了能够实现对布里渊频移量的测量,需要将布里渊散射谱从大气瑞利布里渊谱中分辨出来,这也是布里渊激光雷达系统在大气测温应用中最关键性的问题。目前关于如何能够从大气瑞利布里渊谱中分辨出布里渊散射谱尚无成功报道,这严重制约了布里渊激光雷达在大气测温中的应用。文章利用谱线展宽理论对大气中瑞利布里渊散射谱的构成机理进行了研究,探索了大气瑞利布里渊散射频谱线形函数构成,并验证了理论的正确性。给出了测量大气布里渊频移的方法。通过仿真研究表明,大气中的瑞利布里渊散射谱的线形函数可以通过谱线展宽理论来描述,谱线的展宽类型就是由碰撞引起的均匀展宽和多普勒非均匀展宽。散射谱的线形函数是这两种展宽因素造成的综合展宽线形函数,为三个洛伦兹曲线和三个高斯曲线的叠加,其中瑞利散射谱和每一个布里渊散射谱分别由对应的一个洛伦兹曲线和一个高斯曲线叠加而成。文章通过对瑞利布里渊散射谱的理论分析,可以通过模型计算实现对布里渊散射谱的分辨,从而实现对布里渊频移量的准确测量,解决了布里渊激光雷达测温系统中最为关键的问题,为布里渊激光雷达测温系统的实现提供了坚实的理论基础。
     然后文章依据理论设计了布里渊散射激光雷达测温系统的整体设计方案,进行了激光雷达探测系统的光路设计,并对整个激光雷达探测系统中的几个关键器件进行了选型。其中研究了激光器的单稳频技术指标以及发射功率大小;法布里-珀罗标准具的光谱范围、反射率以及精细度等指标和ICCD的分辨率、响应时间、最小门控等参数指标,并最终给出了符合要求的各器件具体型号。该系统的设计为实际布里渊散射激光雷达测温系统的应用提供了详细的指导。
     最后通过激光雷达回波信号方程计算了布里渊激光雷达测温系统的探测能力,结果表明布里渊激光雷达测温系统能够满足30 km测量范围的需要。此外还分析了布里渊激光雷达系统测量大气温度的误差,并对各物理量具对温度测量精度的影响进行了详细分析和数值计算。结果表明,使用该方法测量大气温度的不确定度小于0.4256 K。另外,大气温度的误差受布里渊频移量测量精度的影响较大,而受大气折射率和激光入射波长的误差影响较小。
Lidar is real-time, sensitive and has high resolving power, so it becomes a new research focus to measure temperature. In present, it has been reported that resonance scattering lidar and Rayleigh lidar can be used to detect temperature in upper atmosphere. But the Mie scattering signals brought from aerosol in lower atmosphere disturb normal temperature measurement, so there is less research on lower atmosphere temperature detecting. A method to detect lower atmosphere temperature by measuring the Full Width of Half Height (FWHH) of atmospheric which is approximately proportional to the square root of the temperature. This is only approximate since the scattering will also depend on the pressure of the gas. So, the accuracy is limited and is only 5K. Although Raman lidar can be used to measure lower atmosphere temperature and has high precision, Raman scattering signals is much less than Mie scattering and Rayleigh scattering for 3-4 levels. It needs high laser power and high precision, high efficiency receiving system, which makes it expensive to use Raman lidar to measure temperature and limits its application. A new lidar for lower atmospheric temperature with high-precision and low-costis urgently needed.
     A new approach to detect lower atmospheric temperature by measuring the atmospheric Brillouin frequency shift is proposed in the dissertation. The atmospheric Brillouin frequency shift is in direct proportion to the square root of atmospheric temperature. So, the atmospheric temperature profile can be accurately retrieved from this. This approach is based on frequency domain and the disturbance of Mie scattering can be avoided effectively. This approach has a high accuracy because there is a one - to - one correspondence between the atmospheric temperature and Brillouin shift frequency. Furthermore, it only needs an ordinary Rayleigh lidar to detect atmospheric temperature with this method. The measurement cost is reduced greatly.
     Firstly, the main components and these optical characters of atmosphere are analyzed. And based on Brillouin frequency shift model of laser transmitting through medium and relative atmospheric data, an atmospheric detection model based on detecting Brillouin scattering signal is established. In this model, Brillouin frequency shift is normalized to a function which is only correlative to atmospheric altitude. The continuous distributing state of Brillouin frequency shift at the range of low atmosphere is described detailed.
     And then, the key is that the Brillouin spectrum is needed to distinguish for measuring the Brillouin frequency shift because the Rayleigh Brillouin spectrum is a complicated mixture. The theory of spectral line broadening is applied to analyze the composing of atmospheric Rayleigh-Brillouin spectrum, and the spectral line models of Rayleigh spectrum and Brillouin spectrum are established. The Rayleigh-Brillouin spectrum was simulated by the S7 model and the simulated data can be used to compare with the spectrum which is calculated by the spectral line models. The results show that the theoretical model is valid for atmosphere. The Rayleigh-Brillouin spectrum is composed of three Gaussian lines caused by natural line broadening and three Lorentzian lines caused by collision line broadening. Base on the theory of spectral line broadening, the Brillouin spectrum can be distinguished and the Brillouin shift can be accurate measured.
     The Brillouin lidar system is designed based on the above-mentioned theory. The optical path for the lidar system is designed and the key equipments are analyzed which include laser's monochromatic and stable frequency indexes; F-P etalon spectrum range, reflectance, fineness and ICCD resolution, minimum gate speed and so on. It is provides the guide for the Brillouin lidar practical application.
     The detection capability of Brillouin lidar is analyzed based on lidar equation and it is approved that the Brillouin lidar can measure the atmospheric temperature in the range of 0-30km. And the uncertainty of measured atmospheric temperature which caused by the wavelength of incident light, reflective index, Brillouin frequency shift was analyzed in detail. The results show that, the uncertainty of measured atmospheric temperature is less than 0.4256K. The atmospheric temperature has a greater influence on the Brillouin frequency shift than the refractive index and the wavelength of incident light.
引文
[1]盛裴轩,毛节泰,李建国等.大气物理学.北京:北京大学出版社,2003.
    [2]Kouznetsov MAKaRD.Coherent Structures in the Atmosphere:Remote Diagnosis and Pattern Classification.In Daren Lu GGM,ed.Optical Technologies for Atmospheric,Ocean,and Environmental Studies,,Vol.Proceedings of SPIE Vol.5832.Moscow,Russia,2005.pp.12-24.
    [3]W.N.Chen CCT,J.B.Nee.Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere.Journal of Atmospheric and Solar-Terrestrial Physics 2004;66:39-49.
    [4]张捍卫,李彬华,杨磊等.关于大气分布模型.天文研究与技术(国家天文台台刊)Dec..2005;2(4):278-284.
    [5]戴永江.激光雷达原理.北京:国防工业出版社,2002.
    [6]Hiroshi Shimizu KN,and Chiao-Yao She.Atmospheric temperature measurement by a high spectral resolution lidar.APPLIED OPTICS 1 May 1986;25(9):1460-1466.
    [7]Zhishen Liu NZ,Ruibin Wang,Jinshan Zhu.Doppler wind lidar data acquisition system and data analysis by empirical mode decomposition method.Optical Engineering February 2007;Vol.46(2):026001-1 - 8.
    [8]Azer P.Yalin YZI,and Richard B.Miles.Gas temperature measurements in weakly ionized glow discharges with filtered Rayleigh scattering.APPLIED OPTICS 20June 2002;41(18):3753-3762.
    [9]Martin Boguszko GSE.On the use of filtered Rayleigh scattering for measurements in compressible flows and thermal fields.Experiments in Fluids 2005;38:33-49.
    [10]Ⅱ.ARJ.Measurement of tropospheric tempetature and aerosol extinction using high spectral resolution lidar.Fort Collins.Department of Physics.Thesis Colorado State University.1991.
    [11]王彦广,李健全,李勇等.近空间飞行器的特点及其应用前景.航天器工程 2007;16(1):50-57.
    [12]尹志忠,李强.近空间飞行器及其军事应用分析.装备指挥技术学院学报 2006;17(5):64-68.
    [13]Tikhomirov~* AA.Technology features of laser remote sensing from aircraft and spacecraft In G.G.Matvienko VPL,ed.Ninth Joint International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics:Part Ⅱ,,Vol.Proceedings of SPIE Vol.5027,2003.pp.160-167.
    [14]HungLung Huang WLSaHMW.Vertical Resolution and Acuuracy of Atmospheric Infrared Sounding Spectrometers.J.Appl.Metor.1992;31(pp.265-274).
    [15]李俊,曾庆存.晴空时大气红外遥感及其反演问题Ⅰ.理论研究.大气科学 1997;21(1):1-9.
    [16]李俊,曾庆存.晴空时大气红外遥感及其反演问题研究Ⅱ.反演试验研究.大气科学 1997;21(2):214-222.
    [17]AIRES F.A Regularized Neural Net Approach for Retrieval of Atmospheric and Surface Temperatures with the IASI Instrument.JOURNAL O F APPLIED METEOROLOGY 2002;41:144-159.
    [18]Chen WJBaFW.Neural Network Retrieval of Atmospheric Temperature and Moisture Profiles from AIRS/AMSU Data in the Presence of Clouds.In Sylvia S.Shen PEL,ed.Algorithms and Technologies for Multispectral,Hyperspectral,and Ultraspectral Imagery Ⅻ,Vol.Proc.of SPIE Vol.6233,2006.
    [19]黄润恒.大气微波辐射及其在气象上的应用.p:21-23.
    [20]姚志刚,林龙福.星载微波辐射计遥感大气温度廓线的数值模拟.解放军理工大学学报(自然科学版)2005;6(5):491-496.
    [21]陈洪滨.利用高频微波被动遥感探测大气.遥感技术与应用 1999;14(2):49-54.
    [22]朱金山,刘智深,郭金家.高光谱分辨率激光雷达(HSRL)大气温度测量模拟.中国海洋大学学报 2005;35(5):863-867.
    [23]W SMC.Laser scatter measurements in the mesosphere and above.Atmos J Terr Phys 1976;29:1657-1662.
    [24]T.Shibata MK,M Maeda.Measurements of density and temperature profiles in the middle atmosphere with a XeF lidar.Appl.Opt.1986;25(6):685-688.
    [25]John W.Hair LMC,David A.Krueger,and Chiao-Yao She.High-spectral-resolution lidar with iodine-vapor filters:measurement of atmospheric-state and aerosol profiles.APPLIED OPTICS 2001;40(30):5280-5294.
    [26]CHANG Qihai YG,SONG Juan & GONG Shunsheng.Studying the stability of the middle atmosphere(30-60 km) over Wuhan by Rayleigh lidar.Chinese Science Bulletin 2006;Vol.51 No.21:2657-2661.
    [27]王刚,王仕墦.大气温度的激光雷达实测方法.激光杂志 2004;Vol.25.No.2:52-54.
    [28]Krekova GMKMM.Simulation of Raman lidar multiple-scattering return In Gennadii G.Matvienko VPL,ed.Eleventh International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics,,Vol.Proceedings of SPIE Vol.5743.Institute of Atmospheric Optics SB RAS,1,Academitcheski Ave.,Tomsk,634055,Russia,2004.pp.397-409,
    [29]Andreas Behrendt JR.Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator.Appl.Opt.2000;39(9):1372-1378.
    [30]Yuyi Arshinov SB,Ilya Serikov et al.Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer.Appl.Opt.2005;44(17):3593-3603.
    [31]K.D.Evens SHM,R.A.Ferrare and D.N.Whiteman.Upper tropospheric temperature measurement with the use of a Rman Lidar.Appl.Opt.1997;36(12):2594-2607.
    [32]K.Philppe MLC,A.Hauchecorne.Stratosphere temperature measurement using Raman Lidar.Appl.Opt.1990;29(34):5182-5186.
    [33]熊辉丰等.激光雷达.北京:宇航出版社,1994.
    [34]丁俊华.激光原理及应用:清华大学出版社,1987.
    [35]赵九章等.高空大气物理学,上册.北京:科学出版社,1965.
    [36]Derr VE.Remote sensing of the troposphere.1972.
    [37]Panda RGSaJ.Rayleigh Scattering Diagnostic for Dynamic Measurement of Velocity and Temperature.the 37th Aerospace Sciences Meeting and Exhibit sponsored.Nevada:National Aeronautics and Space Administration,March 2001.
    [38]Richard G.Seasholtz JPaKAE.Rayleigh Scattering Diagnostic for Measurement of Velocity and Density Fluctuation Spectra.the 40th Aerospace Sciences Meeting and Exhibit sponsored by the American Institute of Aeronautics and Astronautics Reno.Nevada:National Aeronautics and Space Administration,April 2002.
    [39]Seasholtz JPaRG.Velocity and Temperature Measurement in Supersonic Free Jets Using Spectrally Resolved Rayleigh Scattering.the 37th Aerospace Sciences Meeting and Exhibit sponsored by the American Institute of Aeronautics and Astronautics Reno.Nevada:National Aeronautics and Space Administration,May 2004.
    [40]程光煦.拉曼布里渊散射-原理及应用.北京:科学出版社,2001.
    [41]Masahiro Funada CN,Yasukuni Shibata and Makoto Abo.Atmospheric temperature measurement with the rotational Raman lidar using Na vapor filter In Upendra N.Singh TI,Nobuo Sugimoto,ed.Lidar Remote Sensing for Industry and Environment Monitoring,,Vol.Proceedings of SPIE Vol.4153.Graduate School of Electrical Engineering,Tokyo Metropolitan University,Minami-Osawa,Hachioji-shi,Tokyo 192-0397,Japan,2001.pp.183-190.
    [42]孙景群.激光大气探测.北京:科学出版社,1986.
    [43]D KJ.Stable analytical inversion solution for processing lidar returns.App Opt 1981;20(2):211-220.
    [44]王刚,孔祥保.激光雷达测量大气温度的理论模拟.半导体光电 2004;Vol.25,No.1:64-67.
    [45]Strauch R G DVE,Cupp R E.Atmospheric temperature measurement using Raman backscatter.Appl.Opt.1971;10(12):2 665 - 2 669.
    [46]S BY.New trends in remote Raman spectroecopy.Sov J Quantum Electron 1979;9(11):1351-1365.
    [47]Zhou J un YG,Jin Chuanjia et al.Two-wavelength mie lidar for monitoring of tropospheric aerosol.Acta Optica Sinica 2000;20(10):1412-1417.
    [48]杨华,孙晓泉,高勇等.大气能见度对激光警戒系统作用范围的影响.应用激光April 2001:21(2):110-113.
    [49]王治华,贺应红,李振声,左浩毅,何捷,郑玉臣,杨经国.气溶胶后向散射消光对数比对消光系数反演的影响研究.量子电子学报 May,2006;23(3):335-340.
    [50]al MRAe.Optical properties of the atmosphere.1972;AD-753075.
    [51]http://modelweb.gsfc.nasa.gov/atmos/atmos index.html.2006-05-13.
    [52]Carpenter R.OB CRM.Effects of night sky background on optical measurements.March,1959.
    [53]London J.The distribution of radiational temperature change in the northem hemisphere during March.J.Meteorol 1952,9:145-151.
    [54]杨昭,李强.大气传输特性对激光雷达探测系统的影响.淮海工学院学报Sep.2005;Vol.14.No.3:4-8.
    [55]K S.Lidar cloud research.Rev Laser Engineering 1995;23:62-67.
    [56]Mukerjee J.Remote Sensing of Ocean Waters with Raman and Brillouin Scattering.Maritime Operations Division Aeronautical and Maritime Research Laboratory.Thesis April 2001.
    [57]Panda AFMAERGSAEKAEJ.Time-average measurement of velocity,density,temperature,and turbulence velocity fluctuations using Rayleigh and Mie scattering.Experiments in Fluids 2005;39:441-454.
    [58]W.GONG,R.DAI,Z.SUN,et al.Detecting submerged objects by Brillouin scattering.Applied Physics B - Lasers and Optics 2004;79:635-639.
    [59]Joseph G.Hirschberg JDB,Alain W.Wouters,and George C.Boynton.Speed of sound and temperature in the ocean by Brillouin scattering.APPLIED OPTICS 1August 1984;Vol.23,No.15:2624-2628.
    [60]Ferrier GA.Spectral characterization of distributed Brillouin sensors in the Transient Regime.Ottawa-Carleton Institute for Physics.Thesis Ottawa,Canada.University of Ottawa.Master of Science.November 2003.
    [61]T YA.Rayleigh Scattering.Physical Today.1982;20(4):533.
    [62]Zheng Q.On the Rayleigh-Brillouin scattering in air.Physics.Thesis New Hampshire.Docter of Philosophy.December 2004.
    [63]J.N.Forkey WRL,R.B.Miles.Accuracy limits for planar measurements of flow field velocity,temperature and pressure using Filtered Rayleigh Scattering.Experiments in Fluids 1998;24:151 - 162.
    [64]A.F.Mielke KAE,C.J.Sung:.Development of a Rayleigh Scattering Diagnostic for Time-Resolved Gas Flow Velocity,Temperature,and Density Measurements in Aerodynamic Test Facilities.IEEE 2007;1-4244-1600-0.
    [65]Cashdollar K L HM.Infrared Pyrometers for Measuring Dust Explosion Temperatures.Opt Eng 1982;21(1):82-86.
    [66]C OJ.Optical Refractive Index of Air:Dependence on Pressure,Temperature and composition.Applied Optics 1967;6(1):51-59.
    [67]Peck E R RK.Dispersion of Air.JOSA 1972;62(8):958-962.
    [68]马泳,梁琨,林宏等.基于布里渊散射信号检测的大气探测模型.光学学报 J une,2007;Vol.27,No.6:962-966.
    [69]Jianfeng Xu XR,Wenping Gong et al.Measurement of the bulk viscosity of liquid by Brillouin scattering.APPLIED OPTICS 20 November 2003;42(33):6704-6709.
    [70]Liu Zhishen WD,Zhang Kailin et al.A mobile incoherent Mie-Rayleigh Doppler wind lidar wit h a single frequency and tunable operation of an injection Nd:YAG laser.Science in China 2003;46(3):309-317.
    [71] Zeng X.Characterization and application of Brillouin scattering-based distributed fiber optic sensor.Ottawa-Carleton Institute for physics.Thesis Ottawa,Canada.University of Ottawa.Master of Science.February 2003.
    
    [72] Leonid N. Sinitsa, Semen N. Mikhailenko Semiempiric approach for line broadening and shifting calculation. 14th Symposium on High-Resolution Molecular Spectroscopy. Proc. SPIE, Vol. 5311, 208-218 .
    
    [73] Camelia TALIANU* DN, Mircea CIOBANU*, Vasile BABIN*, Jeni Georgeta CIUCIU*, Cristian RADU*. Estimation of urban pollution level on the Magurele platform using lidar technology In Upendra N. Singh, ed. Lidar Remote Sensing for Environmental Monitoring VI,, Vol. Proc. of SPIE Vol. 5887, 2005.
    
    [74] Michael Sicarda* FR, Adolfo Comeron, Miguel Angel Lopez. Iterative method for the retrieval of the aerosol backscatter coefficient and the _ngstrom exponent from bi-wavelength lidar data in low-transmittance atmospheres In Klaus P. Schafer AC,Michel R. Carleer, Richard H. Picard, Nicolaos I. Sifakis, ed. Remote Sensing of Clouds and the Atmosphere IX,, Vol. Proceedings of SPIE Vol. 5571. Barcelona,Spain, 2004. pp. 375-382.
    
    [75] Oppel UG. Simulations of multiply scattered polarized returns of a spaceborne lidar from a model atmosphere consisting of a mixture of molecules, aerosols, and water clouds In Peter A. Atanasov SC, ed. 11th International School on Quantum Electronics: Laser Physics and Applications, Vol. Proceedings of SPIE Vol. 4397.Munchen, Germany, 2001. pp. 440-452.
    
    [76] Richard B Miles WRLaJNF. Laser Rayleigh scattering. MEASUREMENT SCIENCE AND TECHNOLOGY 2001; 12:R33-R51.
    
    [77] Amy F. Mielke KAE. Molecular Rayleigh scattering diagnostic for measurement of high frequency temperature fluctuations. In Leonard M. Hanssen PVF, ed. Optical Diagnostics, Vol. Proceedings of SPIE Vol. 5880, 2005.
    
    [78] C. D. Boley RCD, and G. Tenti. Kinetic Models and Brillouin Scattering in a Molecular Gas. Can. J. Phys. 1972; 50:2158.
    [79] Nelkin YSaM. Application of a Kinetic Model to Time-Dependent Density Correlations in Fluids. Phys. Rev. 1964; 35(1):A 1241-A124.
    [80] S Y. Rayleigh Scattering in Dilute Gases. The Journal of the Acoustical Society of America 1971; 49(3 (Part 3)):941-949.
    [81] Sugawara A. YS. Kinetic Model Analysis of Light Scattering by Molecular gases.Physics of Fluids 1967; 10(9):1911-1921.
    [82] Van L, J. M. J., Yip, S. Derivation of Kinetic Equations for Slow-Neutron Scattering. Physical Review 1965; 139(4A):A 1138-A1151.
    [83] Tenti G. CDB, and Rashmi C. Desai. On the Kinetic Model Description of Rayleigh-Brillouin Scattering from Molecular Gases. Canadian Journal of Physics 1974; 52(4):285-290.
    [84] May VG-MaAD. Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I.Scaling. Physical Review A 1980; 22(2):692-697.
    [85] Sandoval RPa, Armstrong. R. L. Rayleigh Brillouin spectra in molecular nitrogen.Physical Review A 1976; 13(2):752-757.
    [86] Lao Q. H. PES, and B. Chu. Rayleigh-Brillouin scattering of gases with internal relaxation. J. Chem. Phys 1976; 64(9):3547-3555.
    [87] C.S. Wang-Chang GEU, and J.de Boer. The heat conductivity and viscosity of polyatomic gases. In Uhlenbeck JdBaGE, ed. Studies in Statistical Mechaincs, Vol.2, 1964. pp. 241—268.
    [88] Corkum CEaPB. Disentangling molecular alignment and enhanced ionization in intence laser fields. Phys. Rev. 1999; A 59:R3170.
    [89] Seideman T. New means of spatially manipulating molecules with light. J. Chem.Phys 1999; 111:4397.
    [90] Pan X.Coherent Rayleigh-Brillouin Scattering.mechanical and aerospace engineering.Thesis Princeton.Doctor of Philosophy.Nov.2003.
    [91] G.Arfken. Mathematical Methods for Physicists. New York, 1985.
    [92]徐启阳,杨坤涛,王新兵等.蓝绿激光雷达海洋探测.北京:国防工业出版社,2002.
    [93]Richard G.Seasholtz and Lawrence C.Greer Ⅲ LRC,Cleveland,Ohio.Rayleigh Scattering Diagnostic for Measurement of Temperature and Velocity in Harsh Environments.the 36th Aerospace Sciences Meeting and Exhibit sponsored by the American Institute of Aeronautics and Astronautics Reno.Nevada:National Aeronautics and Space Administration,April 1998.
    [94]James A.Lock RGS,and W.Trevor John.Rayleigh-Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field.APPLIED OPTICS 20 May 1992;31(15):2839-2848.
    [95]毛钧杰,何建国.实用光学设计方法与现代光学系统.北京:国防科技大学出版社,1998.
    [96]翁开华,刘金清.激光准直系统的设计.福建师范大学学报(自然科学版) 2001;17(2):35-39.
    [97]张以谟.应用光学.天津:天津大学出版社.
    [98]Wang Junmin ZT,Xie Changde et.al.Frequency-offset locking of LD to hyperfine transition of Cesium atoms.J.Chinese.J.Lasers 1999;26(3):248 - 252.
    [99]Qian Wu~* RDG,S.C.Solomon,T.L.Killeen,and Chiao-Yao She.A new Fabry-Perot interferometer for upper atmosphere research In Carl A.Nardell PGL,Jeng-Hwa Yee,James B.Garvin,,ed.Instruments,Science,and Methods for Geospace and Planetary Remote Sensing,,Vol.Proc.of SPIE Vol.5660 2004.pp.218-227.
    [100]廖延彪.物理光学 电子工业出版社,1986.
    [101]Yuji Ike SK.Brillouin scattering study ofpolymerdynamics.Materials Science and Engineering 2006;A 442:383-386.
    [102]S.Tsukada YI,J.Kano,S.Kojima.Brillouin scattering study of glass-forming propylene glycol.Materials Science and Engineering 2006;A 442:379-382.
    [103]Li Shujing Sj,Gong Wenping et al.Real-time detecting of Brillouin scattering in water with ICCD.ICO20:Lasers and Laser Technologies,Vol.Proc.of SPIE Vol.6028,60281J,,2005.
    [104]王庆有.CCD应用技术.天津:天津大学出版社,2000.
    [105]克伦.电荷耦合器件CCD固体摄像机的基本工作原理.内蒙古科技与经济Aug.2007;15(145):110-112.
    [106]刘崧,戚小平,钟双英.CCD摄像机原理及应用.中国有线电视 2005;14:1417-1419.
    [107]张展霞,刘洪涛,何家耀.电荷耦合器件及其应用进展.光谱学与光谱分析April,2000;20(2):160-166.
    [108]宋述燕,陈波.新型图像传感器ICCD的原理及应用.机械与电子 2007;29:436-437
    [109]J.shi G1,W.gong et al.A lidar system based on stimulated Brillouin scattering.Applied Physics B 2007;86:177-179.
    [110]LI Sheng-cai JW-q,WANG Xia et al.A New Method of ICCD Imaging System MRC Measurement.In Chung-Sheng Li MMY,ed.Electronic Imaging and Multimedia Technology Ⅳ,Vol.Proc.of SPIE Vol.5637.Bellingham,WA,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700