ELF参与肝纤维化中星状细胞活化以及再生结节形成的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化是各种原因所引起的慢性肝病向肝硬化发展的必经中间环节,是由损伤因素所引起的细胞外基质在肝脏内大量沉积为主要病理特征的疾病[1]。全世界有3.5亿乙肝患者,我国占1/3,而肝炎是导致肝纤维化,肝硬化,以及肝癌的重要原因。作为肝硬化必经的中间环节,肝纤维化的研究极为迫切。
     在慢性肝脏损伤过程中,由于ECM (extracellular matrixc,细胞外基质)分泌的增加以及降解的减少,引起ECM大量沉积,最终导致肝纤维化的发生[2],而正常肝脏中,ECM的分泌和降解是受到精密调节的动态平衡过程。HSCs (hepatic stellate cell肝星状细胞)是产生ECM最主要的细胞,其位于肝细胞与肝窦内皮细胞之间的Disse间隙,形态不规则,胞体呈卵圆形,胞质富含类维生素A脂滴。正常时呈静息状态,其功能主要是储存和代谢维生素A,合成和分泌少量的ECM,并有一定的产生胶原酶的作用[3,4]。肝脏受损时HSC被激活,表现出特征性变化:类维生素A脂滴丢失,快速发生形态学改变;表达α-SMA (α-smooth muscle actin,α-平滑肌肌动蛋白);具有收缩性;表达多种细胞因子及受体;细胞明显增殖,合成大量的ECM[5]。很多因素对HSC激活起促进作用,包括ECM成分和结构的改变,多种生长因子、细胞因子、趋化因子、氧化应激产物和其他可溶性因子等。其中,TGF-β1是目前已知的肝纤维化过程中最重要的促进因子。TGF-β1具有多重的生物学作用,包括细胞发育、生长、分化、凋亡、细胞黏附、迁移、ECM的沉着、免疫应答以及调节ECM蛋白的生成及降解。肝内多种细胞均可分泌TGF-β1,如HSCs、肝细胞、内皮细胞以及Kupffer细胞等。肝纤维化时,随着TGF-β1的激活,可以促进Ⅰ、Ⅲ型胶原基因的表达,引起胶原的沉积[6]。在TGF-β激活的过程中,TGF-β1二聚体首先与TβRⅡ细胞外段结合,TβRⅡ胞内段丝氨酸自身磷酸化并激活,进而与TβRⅠ结合形成异源四聚体,磷酸化TβRⅠ胞内近膜区的GS域的丝氨酸,使其活化。活化的TβRⅠ作用于胞浆Smads蛋白,启动信号转导。活化TβRⅠ首先磷酸化Smad2、3,使其与受体解离。Smad4与活化Smad2或Smad3结合形成复合物,共同转运到核内,直接或通过核内其他转录因子间接调节目的基因的转录.进一步研究发现,在此过程中,Smad3和Smad4的激活和结合需要某些特定的基因参与,包括ELF (embryonic liver fordin胚肝血影蛋白)、Sara、Filamin、Microtubule,其中ELF可能首先被TβR磷酸化,并与Smad3-TβR复合物相结合,通过影响Smad4核内的转运,进而影响后续基因表达的调控[7,8]。
     ELF最早由Mishra等在胚胎小鼠肝脏中发现并鉴定,其位于小鼠11号染色体D11XRF到D11BIR6区之间。ELF是p血影蛋白家族的成员之一,它对于维持细胞形态、细胞极性、以及细胞膜上不同功能区域的形成有着重要的作用。ELF通过干扰Smad3的分布和激活,进而影响Smad4的分布和核内转运,从而参与TGF-β/Smad信号传导途径。既往的研究证实,ELF参与各组织器官的生长发育以及多种肿瘤的形成,在对肝癌,肺癌以及胃癌的研究中发现,ELF的表达与肿瘤形成密切相关[9-13]。
     在本课题中,我们利用肝纤维化小鼠模型和原代分离的小鼠肝星状细胞研究ELF在肝纤维化过程中的作用机制。
Introduction
     Liver fibrosis or cirrhosis, the ultimate pathological consequence of severe chronic liver damage, represents a major medical problem with significant morbidity and mortality worldwide.Liver cirrhosis is characterized by deposition of extracellular matrix (ECM), the distortion of the liver parenchyma replaced by regenerative nodules and altered blood flow.
     In normal liver, ECM is a highly dynamic substratum with a precisely regulated balance between synthesis and degradation. During chronic liver injury, however,ECM production exceeds its degradation, and hepatic fibrosis develops as a result of the progressive thickening of fibrotic septae and chemical cross-linking of collagen. Moreover, these changes in ECM composition directly stimulate fibrogenesis Underlying this response is the activation of resident mesenchymal cells into contractile MF, primarily derived from HSCs, that generate scar, which encapsulates injury. HSCs are a resident mesenchymal cell type located in the subendothelial space of Disse, interposed between sinusoidal endothelium and hepatocytes. Following liver injury, HSCs become activated, which leads to the conversion of a resting vitamin A-rich cell [a quiescent HSC (qHSC)] to one that has lost vitamin A droplets, leading to increased proliferation and contraction and the release of proinflammatory, profibrogenic, and promitogenic cytokines. These activated cells are capable of enhanced migration and deposition of ECM components. HSC activation can be conceptually divided into two phases:initiation and erpetuation. Initiation, also known as the preinflammatory stage, refers to early changes in gene expression and phenotype. It is the result of primarily paracrine stimulation from damaged parenchymal cells. Maintenance of these stimuli leads to a perpetuation phase regulated by autocrine and paracrine stimuli. Perpetuation involves at least six distinct changes in HSC behavior, including proliferation, chemotaxis, fibrogenesis, contractility, matrix degradation, and retinoid loss (23).
     Following liver injury, several cell types can secrete inflammatory cytokines; these cell types include KCs, hepatocytes, HSCs, natural killer (NK) cells, lymphocytes, and dendritic cells. Cytokines are a family of proteins that include chemokines [monocyte chemotactic protein 1 (MCP-1), RANTES, IL-8], interferons (IFN-a, IFN-y), interleukins (IL-1, IL-6, IL-10), growth factors, adipokines, Of cytokines involved in liver fibrogenesis, TGF-_1 is the most potent profibrogenic mediator [10,12-15].
     TGF-β1 transforms HSCs into myofibroblasts, which results in up-regulation of many ECM proteins and down-regulation of their degradation by matrix metalloproteinases and tissue inhibitor of metalloproteinases. Blockade of the TGF-β1 signal by dominant negative typeⅡTGF receptor suppressed the development of dimethylnitrosamine-induced hepatic fibrosis [16,17]. ELF, aβ-spectrin, has been demonstrated to play a pivotal role in TGF-βsignalling [7,8]. It is involved in TGF-β/Smad signalling pathway as an adaptor [7,8] Previous studies had demonstrated the function of ELF during development and tumorigenesis. As showed in elf-/- mice brain,expression of cdk4 was increased and cell in brain was resistant to apoptosis. Loss of ELF in the liver leads the cancer formation by deregulated hepatocyte proliferation and stimulation of angiogenesis in early cancers.Study in lung cancer revealed that disruption in TGF-βsignaling mediated by loss of ELF leads to cell-cycle deregulation by modulating CDK4 and ELF highlights a key role of TGF-βadaptor protein in suppressing early lung cancer.
     In view of the importance of TGF-βsignal in liver fibrosis, we hypothesize that ELF, an adaptor in TGF-βsignalling pathway may play a key role in liver cirrhosis. Therefore, we examined ELF expression in cirrhotic liver and evaluated the role of ELF in liver cirrhosis. In this study, we demonstrate that ELF is required for HSC activation and ECM deposition in activated HSCs cultured in vitro; in addition, interestingly, ELF down-regulation in regenerative hepatocytes is involved in the formation of regenerative nodules derived from hepatic progenitor cells (HPC). Thus, this study has identified, for the first time, a molecule participates in liver cirrhosis through the involvement of HSC activation and the formation of regenerative nodule.
引文
1. Friedman, S. L. Mechanisms of hepatic fibrosis and therapeutic implications. Nat. Clin. Pract. Gastroenterol. Hepatol.2004,1,98-105.
    2. Mitchell, A. E., Colvin, H. M.& Palmer Beasley, R. Institute of Medicine recommendations for the prevention and control of hepatitis B and C. Hepatology 2010,51,729-733.
    3. Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655-1669 Jiao, J., Friedman, S. L.& Aloman, C. Hepatic fibrosis. Curr. Opin. Gastroenterol.2009,25,223-229.
    4. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest.2005; 115:209-18.
    5. Friedman SL.2008. Hepatic stellate cells—protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev.88:125-72
    6. Derynck R, Zhang Y, Feng XH. Smads:transcriptional activators of TGF-beta responses. Cell.1998; 95:737-40.
    7. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science. 2002; 296:1646-7.
    8. Mishra L, Shetty K, Tang Y, et al. The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene.2005; 24:5775-89.
    9. Tang Y, Katuri V, Dillner A, et al. Disruption of transforming growth factor-beta signaling in ELF beta-spectrindeficient mice. Science.2003; 299:574-7.
    10. Mishra B, Tang Y, Katuri V, et al. Loss of cooperative function of transforming growth factor-beta signaling proteins, smad3 with embryonic liver fodrin, a betaspectrin, in primary biliary cirrhosis. Liver Int.2004; 24:637-45.
    11. Mishra L, Cai T, Yu P, et al. Elf3 encodes a novel 200-kD beta-spectrin:role in liver development. Oncogene.1999; 18:353-64
    12. Kitisin K, Ganesan N, Tang Y, et al. Disruption of transforming growth factor beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation. Oncogene.2007; 26:7103-10.
    13. Mishra L, Derynck R, Mishra B. Transforming growth factor-beta signaling in stem cells and cancer. Science.2005;310:68-71.
    14. Schuppan D, Ruehl M, Somasundaram R, et al.2001. Matrix as modulator of stellate cell and hepatic fibrogenesis. Semin. Liver Dis.21:351-72
    15. Geerts A.. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis.2001.21:311-35
    16. Libbrecht L, Roskams T. Hepatic progenitor cells in human liver diseases. Semin Cell Dev Biol,2002,13:389-396.
    17. Strain AJ, Crosby HA, Nijjar S, et al. Human liver-derived stem cells.Semin Liver Dis,2003,23:373-384.
    18. Roskams T, De Vos R, Van Eyken P, et al. Hepatic OV-6 expression in human liver disease and rat experiments:evidence for hepatic progenitor cells in man. J Hepatol,1998,29:455-463.
    19. Crosby HA, Hubscher SG, Joplin RE, et al. Immunolocalisation of OV-6, a putative progenitor cell marker in human fetal and diseased pediatric liver. Hepatology,1998,28: 980-985.
    20. Lowes KN, Brennan BA, Yeoh GC, et al. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol,1999,154:537-541.
    21. Seki S, Kitada T, Sakaguchi H, et al. Expression of progenitor cell markers in livers with fulminant massive necrosis. Hepatol Res,2003,25:149-157.
    22. Cantz T, Sharma AD, Jochheim-Richter A,et al.Reevaluation of bonemarrow-derived cells as a source for hepatocyte regeneration. Cell Transplant. 2004.13:659-666
    23. Kanazawa Y, Verma IM.Little evidence of bone marrowderived hepatocytes in the replacement of injured liver. Proc Natl Acad Sci USA.2003.100 (Suppl 1):11850-11853
    24. Wagers AJ, Sherwood RI, Christensen JL,et al. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science.2002.297:2256-2259.
    25. Derynck R, Zhang Y, Feng XH. Smads:transcriptional activators of TGF-beta responses. Cell.1998 Dec 11;95(6):737-40.
    26. Mishra L, Banker T, Murray J, et al. Liver stem cells and hepatocellular carcinoma. Hepatology.2009 Jan;49(1):318-29.
    27. Beck KA, Nelson WJ. The spectrin-based membrane skeleton as a membrane protein-sorting machine. Am J Physiol.1996 May;270(5 Pt 1):C1263-70
    28. Viel A. Alpha-actinin and spectrin structures:an unfolding family story. FEBS Lett. 1999 Nov 5;460(3):391-4
    29. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem.2000 Jan 28;275(4):2247-50
    30. Hellerbrand C, Stefanovic B, Giordano F, et al. The role of TGFbetal in initiating hepatic stellate cell activation in vivo. J Hepatol.1999 Jan;30(1):77-87.
    31.Kanzler S, Lohse AW, Keil A, et al. TGF-betal in liver fibrosis:an inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol.1999 Apr;276(4 Pt 1):G1059-68.
    32. Sanderson N, Factor V, Nagy P, et al. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci U S A.1995 Mar 28;92(7):2572-6.
    33. Ueberham E, Low R, Ueberham U, et al. Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology.2003 May;37(5):1067-78.
    34. Nakamura T, Sakata R, Ueno T, et al. Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology.2000 Aug;32(2):247-55.
    35. Qi Z, Atsuchi N, Ooshima A,,et al. Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2345-9.
    36. Arias M, Lahme B, Van de Leur E,,et al. Adenoviral delivery of an antisense RNA complementary to the 3'coding sequence of transforming growth factor-betal inhibits fibrogenic activities of hepatic stellate cells. Cell Growth Differ.2002 Jun;13(6):265-73.
    37. Song YH, Chen XL, Kong XJ, et al. Ribozymes against TGFbetal reverse character of activated hepatic stellate cells in vitro and inhibit liver fibrosis in rats. J Gene Med. 2005 Jul;7(7):965-76.
    38. Radaeva S, Wang L, Radaev S,,et al. Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am J Physiol Gastrointest Liver Physiol.2007 Oct;293(4):G809-16.
    39. Nguyen LN, Furuya MH, Wolfraim LA, et al. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation. Hepatology.2007 Jan;45(1):31-41.
    40. Wu JC, Merlino G, Fausto N. Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. Proc Natl Acad Sci U S A.1994 Jan 18;91(2):674-8.
    41. Romero-Gallo J, Sozmen EG, Chytil A, et al. Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene.2005 Apr 21;24(18):3028-41.
    42. Sanchez A, Alvarez AM, Benito M,et al. Apoptosis induced by transforming growth factor-beta in fetal hepatocyte primary cultures:involvement of reactive oxygen intermediates. J Biol Chem.1996 Mar 29;271(13):7416-22.
    43. Moreno M, Gonzalo T, Kok RJ, et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology. Mar;51 (3):942-52.
    44. Beljaars L, Molema G, Weert B, et al. Albumin modified with mannose 6-phosphate: A potential carrier for selective delivery of antifibrotic drugs to rat and human hepatic stellate cells. Hepatology.1999 May;29(5):1486-93.
    45. Beljaars L, Molema G, Schuppan D, et al. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor. J Biol Chem.2000 Apr 28;275(17):12743-51.
    46. Pinzani M, Milani S, Herbst H, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol. 1996 Mar;148(3):785-800.
    47. Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008 Apr;26(4):431-42.
    48. Son G, Hines IN, Lindquist J,et al. Inhibition of phosphatidylinositol 3-kinase signaling in hepatic stellate cells blocks the progression of hepatic fibrosis. Hepatology. 2009 Nov;50(5):1512-23.
    49. Falkowski O, An HJ, Ianus IA, et al. Regeneration of hepatocyte 'buds' in cirrhosis from intrabiliary stem cells. J Hepatol.2003 Sep;39(3):357-64.
    50. Notas G, Kisseleva T, Brenner D.2009. NK and NKT cells in liver injury and fibrosis. Clin. Immunol.2009.130:16-26
    51. Sun YL, Yin SY, Xie HY, et al. Stem-like cells in hepatitis B virus-associated cirrhotic livers and adjacent tissue to hepatocellular carcinomas possess the capacity of tumorigenicity. J Gastroenterol Hepatol.2008 Aug;23(8 Pt 1):1280-6.
    52. Van Hul NK, Abarca-Quinones J, Sempoux C, et al. Relation between liver progenitor cell expansion and extracellular matrix deposition in a CDE-induced murine model of chronic liver injury. Hepatology.2009 May;49(5):1625-35.
    53. Xiao JC, Jin XL, Ruck P, et al. Hepatic progenitor cells in human liver cirrhosis: immunohistochemical, electron microscopic and immunofluorencence confocal microscopic findings. World J Gastroenterol.2004 Apr 15; 10(8):1208-11.
    54. Greenbaum LE, Wells RG. The role of stem cells in liver repair and fibrosis. Int J Biochem Cell Biol.2009 Nov 13.
    55. He XC, Zhang J, Tong WG, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet.2004 Oct;36(10):1117-21.
    56. Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res.2009 Jan;19(1):103-15.
    57. Zaret KS. Genetic programming of liver and pancreas progenitors:lessons for stem-cell differentiation. Nat Rev Genet.2008 May;9(5):329-40.
    58. Golestaneh N, Tang Y, Katuri V, et al. Cell cycle deregulation and loss of stem cell phenotype in the subventricular zone of TGF-beta adaptor elf-/- mouse brain. Brain Res. 2006 Sep 7;1108(1):45-53.
    59. Kim SS, Shetty K, Katuri V, et al. TGF-beta signaling pathway inactivation and cell cycle deregulation in the development of gastric cancer:role of the beta-spectrin, ELF. Biochem Biophys Res Commun.2006 Jun 16;344(4):1216-23.
    60. Tang Y, Kitisin K, Jogunoori W, et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A.2008 Feb 19;105(7):2445-50.
    1. Friedman, S. L. Mechanisms of hepatic fibrosis and therapeutic implications. Nat. Clin.Pract. Gastroenterol. Hepatol.2004.1,98-105.
    2. Mitchell, A. E., Colvin, et al. Institute of Medicine recommendations for the prevention and control of hepatitis B and C.Hepatology 2010.51,729-733.
    3. Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655-1669 Jiao, J., Friedman, S. L.& Aloman, C. Hepatic fibrosis. Curr. Opin. Gastroenterol.2009.25,223-229.
    4. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest.2005; 115:209-18.
    5.'Friedman SL.. Hepatic stellate cells—protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev.2008,88:125-72
    6. Schaffner F, Popper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963.44:239-42,
    7. Cassiman D, Libbrecht L, Desmet V, et al. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J. Hepatol.2002.36:200-9
    8. Fernandez M, Semela D, Bruix J, et al. Angiogenesis in liver disease.J. Hepatol. 2009.50:604-20
    9. El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis.Gastroenterology 2007.132:2557-76
    10. Eng F, Friedman SL. Fibrogenesis I. New insights into hepatic stellate cell activation: t he simple becomes complex[J]. Am J Physiol Gastrointest Liver Physiol,2000,279: G7-G11.
    11. Elvira Olaso, Friedman SL. Molecular regulation of hepatic fibrosis[J]. J Hepatol, 1998,29:836-847.
    12. W ynn TA. Cellular and molecular mechanism of fibrosis. Pathol214:2008; 199-210
    13. Tanikawa K. Serum marker for hepatic fibrosis and related liver pathology[J]. Pathol Res Pract,1994,190:960-980.
    14. Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis.2001.21:311-35
    15. Olaso E, Ikeda K, Eng FJ, et al. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J. Clin. Investig.2001.108:1369-78
    16. Gressner AM. Cytokines and cellular crosstalk involved in the activation of at-storing cells. J. Hepatol.1995.22:28-36
    17. Schuppan D, Ruehl M, Somasundaram R, et al. Matrix as a modulator of hepatic fibrogenesis. Semin. Liver Dis.2001.21:351-72
    18. Niiya M, Uemura M, Zheng XW, et al. Increased ADAMTS-13 proteolytic activity in rat hepatic stellate cells upon activation in vitro and in vivo. J. Thromb. Haemost.2006. 4:1063-70
    19. Olaso E, Labrador JP, Wang L, et al. Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase 2. J. Biol. Chem. 2002.277:3606-13
    20. Ikeda K, Wang LH, Torres R, et al. Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. J. Biol. Chem.2002.277:19206-12
    21. Labrador JP, Azcoitia V, Tuckermann J, et al. The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep. 2001.2:446-52
    22. Mao TK, Kimura Y, Kenny TP, et al. Elevated expression of tyrosine kinase DDR2 in primary biliary cirrhosis. Autoimmunity 2002.35:521-29
    23. Friedman SL. Evolving challenges in hepatic fibrosis. Nat. Rev. Gastroenterol. Hepatol 2010.7:425-36
    24. Reynaert H, Thompson MG, Thomas T, et al. Hepatic stellate cells:role in microcirculation and pathophysiology of portal hypertension. Gut.2002.50:571-81
    25. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008.134:1655-69
    26. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat. Rev. Cancer,2006.6:392-401
    27. Novo E, di Bonzo LV, Cannito S, et al. Hepatic myofibroblasts:a heterogeneous population of multifunctional cells in liver fibrogenesis. Int. J. Biochem. Cell Biol. 2009.41:2089-93
    28. Parola M, Marra F, Pinzani M. Myofibroblast-like cells and liver fibrogenesis: emerging concepts in a rapidly moving scenario. Mol. Aspects Med.2008.29:58-66
    29. Soliman EM, Rodrigues MA, Gomes DA, et al. Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression. Cell Calcium,2009.45:284-92
    30. Baertschiger RM, Serre-Beinier V, Morel P, et al. Fibrogenic potential of human multipotent mesenchymal stromal cells in injured liver. PLoS One,2009.4:e6657
    31. Russo FP, Alison MR, Bigger BW, et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology,2006.130:1807-21
    32. Forbes SJ, Russo FP, Rey V, et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology,2004.126:955-63
    33. Fujimiya T, Liu J, Kojima H, et al. Pathological r oles of bonemarrow-derived stellate cells in a mouse model of alcohol-induced fatty liver. Am. J. Physiol. Gastrointest.Liver Physiol.2009.297:G451-60
    34. Higashiyama R, Moro T, Nakao S, et al. Negligible contribution ofbone marrow-derived cells to collagen production during hepatic fibrogenesis in mice. Gastroenterology.2009.137:1459-66 el
    35. Choi SS, Diehl AM. Epithelial-to-mesenchymal transitions in the liver. Hepatology 2009.50:2007-13
    36. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin.Investig.2003.112:1776-84
    37. Okada H, Strutz F, Danoff TM, et al. Possible mechanisms of renal fibrosis.Contrib. Nephrol.1996.118:147-54
    38. Lee JM, Dedhar S, Kalluri R, et al. The epithelial-mesenchymal transition:new insights in signaling, development, and disease. J. Cell Biol.2006.172:973-81
    39. Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 2003.9:964-68
    40. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J. Clin. Investig.2009.119:1420-28
    41. Zavadil J, Bottinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005.24:5764-74
    42. Choi SS, Omenetti A, Witek RP, et al. Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2009.297:G1093-106
    43. Xia JL, Dai C, Michalopoulos GK, et al. Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation. Am. J. Pathol.2006.168:1500-12
    44. Diaz R, Kim JW, Hui JJ, et al. Evidence for the epithelial to mesenchymal transition in biliary atresia. Hum. Pathol.2008.39:102-15
    45. Rygiel KA, RobertsonH, Marshall HL, et al. Epithelial-mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab. Investig. 2008.88:112-23
    46. Kaimori A, Potter J, Kaimori JY, et al. Transforming growth factor (31 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J. Biol. Chem. 2007.282:22089-101
    47. Zeisberg M, Yang C, Martino M, et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J. Biol. Chem.2007.282:23337-47
    48. Taura K, Miura K, Iwaisako K, et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology.2009. 51:1027-36
    49. Wells RG. The epithelial-to-mesenchymal transition in liver fibrosis:here today, gone tomorrow?Hepatology.2010.51:737-40
    50. Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br. J. Cancer.2008.99:1375-79
    51. Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-tomesenchymal transition contributes to cardiac fibrosis. Nat. Med.2007.13:952-61
    52. Marra F, Bertolani C. Adipokines in liver diseases. Hepatology.2009.50:957-69
    53. Marra F. Leptin and liver tissue repair:Do rodent models provide the answers? J. Hepatol.2007.46:12-18
    54. Ikejima K, Takei Y, Honda H, et al. Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology. 2002.122:1399-410
    55. Saxena NK, Sharma D, Ding X, et al. Concomitant activation of he JAK/STAT,PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 2007.67:2497-507
    56. Fava G, Alpini G, Rychlicki C, et al. Leptin enhances cholangiocarcinoma cell growth. Cancer Res.2008.68:6752-61
    57. Marra F. Leptin and liver fibrosis:a matter of fat. Gastroenterology.2002. 122:1529-32
    58. Ding X, Saxena NK, Lin S, et al. The roles of leptin and adiponectin:a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am. J. Pathol. 2005.166:1655-69
    59. Moreno M, Bataller R. Cytokines and renin-angiotensin system signaling in hepatic fibrosis. Clin.Liver Dis.2008.12:825-52
    60. Pinzani M, Gesualdo L, Sabbah GM, et al. Effects of platelet-derived growth factor andother polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J. Clin.Investig.1989.84:1786-93
    61. Nils Kinnman, Rolf Hultcrantz, VeA ronique Barbu, et al. PDGF-Mediated Chemoattraction of Hepatic Stellate Cells by Bile Duct Segments in Cholestatic Liver Injury.Lab Investgation.2000.80:697-707.
    62. Pinzani M, Milani S, Herbst H, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am. J. Pathol.1996.148:785-800
    63. Wong L, Yamasaki G, Johnson RJ, et al. Induction of P-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J. Clin. Investig.1994.94:1563-69
    64. Inagaki Y, Okazaki I. Emerging insights into TGFPand Smad signaling in hepatic fibrogenesis. Gut.2007.56:284-92
    65. Novo E, Cannito S, Zamara E, et al. oangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells.Am. J. Pathol. 2007.170:1942-53
    66. Yoshiji H, Kuriyama S, Yoshii J, et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut.2003. 52:1347-54
    67. Ariane Mallat, Cyrille Gallois, Jiangchuan Tao, et al. Platelet-derived Growth Factor-BB and Thrombin Generate Positive and Negative Signals for Human Hepatic Stellate Cell Proliferation. J. Biol. Chem.1998.273:27300-305.
    68. CanturkNZ, Canturk Z, Ozden M, et al. Protective effect of IGF-1 on experimental liver cirrhosis-induced common bile duct ligation. Hepatogastroenterology.2003. 50:2061-66
    69.Sanz S, Pucilowska JB, Liu S, et al. Expression of insulin-like growth factor I by activated hepatic stellate cells reduces fibrogenesis and enhances regeneration after liver injury. Gut.2005.54:134-41
    70. Reichenbach V, Ros J, Jimenez W. Endogenous cannabinoids in liver disease:many darts for a single target. Gastroenterol. Hepatol.2009.33:323-29
    71. Siegmund SV, Schwabe RF. Endocannabinoids and liver disease. II. Endocannabinoids in the pathogenesis and treatment of liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol.2008.294:G357-62
    72. Teixeira-Clerc F, Julien B, et al. CB1 cannabinoid receptor antagonism:a new strategy for the treatment of liver fibrosis. Nat. Med.2006.12:671-76
    73. Julien B, Grenard P, Teixeira-Clerc F, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology.2005.128:742-55
    74. Sims DE. Recent advances in pericyte biology-implications for health and disease. Can. J. Cardiol.1991.7:431-43
    75. Feng HQ, Weymouth ND, Rockey DC. Endothelin antagonism in portal hypertensive mice:implications for endothelin receptor-specific signaling in liver disease. Am. J. Physiol. Gastrointest. Liver Physiol.2009.297:G27-33
    76. Thimgan MS, Yee HF Jr. Quantitation of rat hepatic stellate cell contraction:stellate cells' contribution to sinusoidal resistance. Am. J. Physiol.1999.277:G137-43
    77. Shao R, Rockey DC. Effects of endothelins on hepatic stellate cell synthesis of endothelin-1 during hepatic wound healing. J. Cell Physiol.2002.191:342-50
    78. Rockey DC. Cellular pathophysiology of portal hypertension and prospects for management with gene therapy. Clin. Liver Dis.2001.5:851-65
    79. Shao R, Yan W, Rockey DC. Regulation of endothelin-1 synthesis by endothelin-converting enzyme-1 during wound healing. J. Biol. Chem.1999. 274:3228-34
    80. Housset C, Rockey DC, Bissell DM. Endothelin receptors in rat liver:lipocytes as a contractile target for endothelin 1. Proc. Natl. Acad. Sci USA,1993.90:9266-70
    81. Rockey DC. Vascular mediators in the injured liver. Hepatology,2003.37:4-12
    82. Loureiro-Silva MR, Cadelina GW, Groszmann RJ. Deficit in nitric oxide roduction in cirrhotic rat livers is located in the sinusoidal and postsinusoidal areas. Am. J. Physiol. Gastrointest. Liver Physiol.2003.284:G567-74
    83. Bataller R, Sancho-Bru P, Gines P, et al. Liver fibrogenesis:a new role for the reninangiotensin system. Antioxid. Redox Signal.2005.7:1346-55
    84. Bataller R, Sancho-Bru P, Gines P, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin Ⅱ. Gastroenterology. 2003.125:117-25
    85. Bosch J, Arroyo V, Betriu A, et al. Hepatic hemodynamics and the reninangiotensin-aldosterone system in cirrhosis. Gastroenterology,1980.78:92-99
    86. Oakley F, Teoh V, Ching ASG, et al. Angiotensin Ⅱ activates I kappaB kinase phosphorylation of RelA at Ser 536 to promote myofibroblast survival and liver fibrosis.Gastroenterology.2009.136:2334-44
    87. Lubel JS, Herath CB, Tchongue J, et al. Angiotensin-(1-7), an alternative metabolite of the renin-angiotensin system, is up-regulated in human liver disease and has antifibrotic activity in the bile-duct-ligated rat. Clin. Sci.2009.117:375-86
    88. Osterreicher CH, Taura K, De Minicis S, et al. Angiotensinconverting enzyme 2 inhibits liver fibrosis in mice. Hepatology,2009.50:929-38
    89. Suematsu M, Goda N, Sano T, et al. Carbon monoxide:an endogenous modulator of sinusoidal tone in the perfused rat liver. J. Clin. Investig.1995.96:2431-37
    90. Gorbig MN, Gines P, Bataller R, et al. Atrial natriuretic peptide antagonizes endothelin-induced calcium increase and cell contraction in cultured human hepatic stellate cells. Hepatology.1999.30:501-9
    91. Kawada N, KleinH, Decker K. Eicosanoid-mediated contractility of hepatic stellate cells. Biochem.J.1992.285:367-71
    92. Tao J, Mallat A, Gallois C, et al. Biological effects of C-type natriuretic peptide in human myofibroblastic hepatic stellate cells. J. Biol. Chem.1999.274:23761-69
    93. Yanase M, IkedaH, Matsui A, et al. Lysophosphatidic acid enhances collagen gel contraction by hepatic stellate cells:association with rho-kinase. Biochem. Biophys. Res. Commun.2000.277:72-78
    94. Ueno T, Tanikawa K. Intralobular innervation and lipocyte contractility in the liver. Nutrition.1997.13:141-48
    95. Hashmi AZ, Hakim W, Kruglov EA, et al. Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol.2007.292:G395-401
    96. Lechuga CG, Hernandez-Nazara ZH, Hernandez E, et al. PI3K is involved in PDGF-β receptor upregulation post-PDGF-BB treatment in mouse HSC. Am. J. Physiol.Gastrointest. Liver Physiol.2006.291:G1051-61
    97. Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 2005.42:1339-48
    98. Bataller R, Schwabe RF, Choi YH, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J. Clin. Investig. 2003.112:1383-94
    99. Paez J, Sellers WR. PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat. Res.2003.115:145-67
    100. Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front. Biosci.2002. 7:1720-26
    101.Bonacchi A, Romagnani P, Romanelli RG, et al. Signal transduction by the chemokine receptor CXCR3:activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J. Biol. Chem.2001.276:9945-54
    102. Inagaki Y, Okazaki I. Emerging insights into Transforming growth factorβSmad signal in hepatic fibrogenesis. Gut,2007.56:284-92
    103. Breitkopf K, Godoy P, Ciuclan L, et al. TGF-p/Smad signaling in the injured liver. Z. Gastroenterol.2006.44:57-66
    104. Chakraborty BC, Mann D. NF-κB signaling:embracing complexity to achieve translation. J. Hepatology.2010.52:285-91
    105. Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells. Adv. Drug. Deliv. Rev.2009.61:497-512
    106. Tergaonkar V. NFκB pathway:a good signaling paradigm and therapeutic target. Int. J. Biochem. Cell Biol.2006.38:1647-53
    107. Oakley F, Mann J, Ruddell RG, et al. Basal expression of IκBais controlled by the mammalian transcriptional repressor RBP-J (CBF1) and its activator Notchl. J. Biol. Chem.2003.278:24359-70
    108. Mann J, Oakley F, Akiboye F, et al. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2:implications for wound healing and fibrogenesis. Cell Death Differ.2007.14:275-85
    109. Elsharkawy AM, Mann DA. Nuclear factor-KB and the hepatic inflammation-fibrosis-cancer axis. Hepatology.2007.46:590-97
    110. Shi Z, Wakil AE, Rockey DC. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc. Natl. Acad. Sci. USA.1997.94:10663-68
    111. Jiang F, Parsons CJ, Stefanovic B. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J. Hepatol.2006.45:401-9
    112. Cao Q, Mak KM, Ren C, et al. Leptin stimulates tissue inhibitor of metalloproteinase-1 in human hepatic stellate cells:respective roles of the JAK/STAT and JAK-mediated H2O2-dependent MAPK pathways. J. Biol. Chem.2004. 279:4292-304
    113. Gao B. Cytokines, STATs and liver disease. Cell Mol. Immunol.2005.2:92-100
    114. Jeong WI, Park O, et al. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology.2006.44:1441-51
    115. Adachi M, Brenner DA. High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology.2008.47:677-85
    116. Teng Y, Zeisberg M, Kalluri R. Transcriptional regulation of epithelial-mesenchymal transition. J. Clin. Investig.2007.117:304-6
    117.Eng FJ, Friedman SL. Transcriptional regulation in hepatic stellate cells. Semin. Liver Dis.2001.21:385-95
    118. Vincent KJ, Jones E, Arthur MJ, et al. Regulation of E-box DNA binding during in vivo and in vitro activation of rat and human hepatic stellate cells. Gut, 2001.49:713-19
    119. Wiercinska E, Wickert L, Denecke B, et al. Id1 is a critical mediator in TGF-p-induced transdifferentiation of rat hepatic stellate cells. Hepatology. 2006.43:1032-41
    120. Tajima K, Terai S, Takami T, et al. Importance of inhibitor of DNA binding/differentiation 2 in hepatic stellate cell differentiation and proliferation. Hepatol. Res.2007.37:647-55
    121. Mann DA, Smart DE. Transcriptional regulation of hepatic stellate cell activation. Gut.2002.50:891-96
    122. Huang GC, Zhang JS, Tang QQ. Involvement of C/EBPa gene in in vitro activation of rat hepatic stellate cells. Biochem. Biophys. Res. Commun.2004.324:1309-18
    123. Zhang JW, Tang QQ, Vinson C, et al. Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. USA.2004.101:43-47
    124. Geier A, Kim SK, Gerloff T, et al. Hepatobiliary organic anion transporters are differentially regulated in acute toxic liver injury induced by carbon tetrachloride. J. Hepatol.2002.37:198-205
    125. Greenwel P, Dominguez-Rosales JA, Mavi G, et al. Hydrogen peroxide:a link between acetaldehyde-elicited α1(Ⅰ) collagen gene up-regulation and oxidative stress in mouse hepatic stellate cells. Hepatology.2000.31:109-16
    126. Iraburu MJ, Dominguez-Rosales JA, Fontana L, et al. Tumor necrosis factoradown-regulates expression of theα1(Ⅰ) collagen gene in rat hepatic stellate cells through a p20C/EBPβ- and C/EBPδ-dependent mechanism. Hepatology.2000. 31:1086-93
    127. Buck M, Chojkier M. A ribosomal S-6 kinase-mediated signal to C/EBP-β is critical for the development of liver fibrosis. PLoS ONE.2007.2:e1372
    128. Potthoff MJ, Olson EN. MEF2:a central regulator of diverse developmental programs. Development.2007.134:4131-40
    129. Wang X, Tang X, Gong X, et al. Regulation of hepatic stellate cell activation and growth by transcription factor myocyte enhancer factor 2. Gastroenterology, 2004.127:1174-88
    130. Herrmann J, Borkham-Kamphorst E, Haas U, et al. The expression of CSRP2 encoding the LIM domain protein CRP2 is mediated by TGF-Pin smooth muscle and hepatic stellate cells. Biochem. Biophys. Res. Commun.2006.345:1526-35
    131. Wandzioch E, Kolterud A, Jacobsson M, et al. Lhx2-/- mice develop liver fibrosis. Proc. Natl. Acad. Sci. USA.2004.101:16549-54
    132. Park EY, Shin SM,MaCJ, et al. Meso-dihydroguaiaretic acid from Machilus thunbergii down-regulates TGF-β1 gene expression in activated hepatic stellate cells via inhibition of AP-1 activity.Planta. Med.2005.71:393-38
    133. Chen A, BenoDWA,Davis BH. Suppression of stellate cell type Ⅰ collagen gene expression involves AP-2 transmodulation of nuclear factor 1-dependent gene transcription. J. Biol. Chem.1996.271:25994-98
    134. Anania FA, Potter JJ, Rennie-Tankersley L, et al. Effects of acetaldehyde on nuclear protein binding to the nuclear factor Ⅰ consensus sequence in theα2(Ⅰ) collagen promoter. Hepatology.1995.21:1640-48
    135. Bell DM, Leung KK, Wheatley SC, et al. SOX9 directly regulates the type-Ⅱ collagen gene. Nat. Genet.1997.16:174-78
    136. Milliano MT, Luxon BA. Rat hepatic stellate cells become retinoid unresponsive during activation. Hepatol. Res.2005.33:225-33
    137. Kuipers F, Claudel T, Sturm E, et al. The farnesoid X receptor (FXR) as modulator of bile acid metabolism. Rev. Endocr. Metab. Disord.2004.5:319-26
    138. Fiorucci S, Antonelli E, Rizzo G, et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 2004.127:1497-512
    139. Haughton EL, Tucker SJ, Marek CJ, et al. Pregnane X receptor activators inhibit human hepatic stellate cell transdifferentiation in vitro. Gastroenterology.2006. 131:194-209
    140. Hazra S, Xiong S, Wang J, et al. Peroxisome proliferator-activated receptor yinduces a phenotypic switch from activated to quiescent hepatic stellate cells. J. Biol. Chem.2004.279:11392-401
    141. Tsukamoto H. Adipogenic phenotype of hepatic stellate cells. Alcohol. Clin. Exp. Res.2005.29:132-33S
    142. Lin J, Chen A. Activation of peroxisome proliferator-activated receptor yby curcumin blocks the signaling pathways for PDGF and EGF in hepatic stellate cells. Lab Investig.2008.88:529-40
    143. Xu J, Fu Y, Chen A. Activation of peroxisome proliferator-activated receptor ycontributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am. J. Physiol. Gastrointest. Liver Physiol.2003.285:G20-30
    144. Ohata M, Lin M, Satre M, et al. Diminished retinoic acid signaling in hepatic stellate cells in cholestatic liver fibrosis. Am. J. Physiol.1997.272:G589-96
    145. Zvibel I, Bar-Zohar D, Kloog Y, et al. The effect of Ras inhibition on the proliferation,apoptosis and matrix metalloproteases activity in rat hepatic stellate cells. Dig. Dis. Sci.2008.53:1048-53
    146. Mann DA, Mann J. Epigenetic regulation of hepatic stellate cell activation. J. Gastroenterol. Hepatol.2008.23(Suppl. 1):S108-11
    147. Niki T, Rombouts K, De Bleser P, et al. A histone deacetylase inhibitor,trichostatin A, suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture..1999.29:858-67
    148. Rombouts K, Knittel T, Machesky L, et al. Actin filament formation, reorganization and migration are impaired in hepatic stellate cells under influence of trichostatin A, a histone.deacetylase inhibitor. J. Hepatol.2002.37:788-96
    149. Kim JS, Shukla SD. HistoneH3 modifications in rat hepatic stellate cells by ethanol. Alcohol Alcohol.2005.40:367-72
    150. Bala S, Marcos M, Szabo G. Emerging role of microRNAs in liver diseases. World J. Gastroenterol.2009.15:5633-40
    151. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell,2009.136:642-55.
    152. Winter J, Jung S, Keller S, et al. Many roads to maturity:microRNA biogenesis pathways and their regulation. Nat. Cell Biol.2009.11:228-34
    153. Guo CJ, Pan Q, Cheng T, et al. Changes in microRNAs associated with hepatic stellate cell activation status identify signaling pathways. FEBS J.2009.276:5163-76
    154. Venugopal SK, Jiang J, Kim TH, et al. Liver fibrosis causes down-regulation of miRNA-150 and miRNA-194 in hepatic stellate cells and their overexpression causes decreased stellate cell activation. Am. J. Physiol. Gastrointest. Liver Physiol.2009.
    155. Ji J, Zhang J,Huang G, et al. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett.2009.583:759-66
    156. Regev, A. et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCv infection. Am. J. Gastroenterol.2002,97,2614-2618.
    157. Ratziu, v. et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease.Gastroenterology,2005.128,1898-1906.
    158. Bedossa, P., Dargere, D.& Paradis, v. Sampling variability of liver fibrosis in chronic hepatitis C.Hepatology,2003,38,1449-1457.
    159. Goodman, Z. D. et al. Fibrosis progression in chronic hepatitis C:morphometric image analysis in the HALT-C trial. Hepatology 50,1738-1749.
    160. Calvaruso, v. et al. Computer-assisted image analysis of liver collagen:relationship to Ishak scoring and hepatic venous pressure gradient. Hepatology,2009,49, 1236-1244.
    161. Everhart, J. E. et al. Prognostic value of Ishak fibrosis stage:findings from the hepatitis C antiviral long-term treatment against cirrhosis trial. Hepatology,2010,51, 585-594.
    162. Castera, L. Transient elastography and other noninvasive tests to assess hepatic fibrosis in patients with viral hepatitis. J. Viral Hepat.2009,16,300-314.
    163. vizzutti, F., Arena, U., Marra, et al. Elastography for the non-invasive assessment of liver disease:limitations and future developments. Gut,2009,58,157-160.
    164. Pinzani, M., vizzutti, F., Arena, et al. Technology Insight:noninvasive assessment of liver fibrosis by biochemical scores and elastography. Nat. Clin. Pract. Gastroenterol. Hepatol.2008,5,95-106.
    165. Arena, U. et al. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology,2008,47,380-384.
    166. vigano, M. et al. Transient elastography assessment of the liver stiffness dynamics during acute hepatitis B. Eur. J. Gastroenterol. Hepatol.2009,22,180-184.
    167. Carrion, J. A. et al. Liver stiffness identifies two different patterns of fibrosis progression in patients with hepatitis C virus recurrence after liver transplantation. Hepatology.2010,51,23-34.
    168. Talwalkar, J. A. et al. Magnetic resonance imaging of hepatic fibrosis:emerging clinical applications. Hepatology 47,2008,332-342.
    169. Bonekamp, S., Kamel, I., Solga, et al. Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately? J. Hepatol.2009,50,17-35.
    170. Taouli, B. et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. AJR Am. J. Roentgenol.2007,189,799-806.
    171. Hagiwara, M. et al. Advanced liver fibrosis:diagnosis with 3D whole-liver perfusion MR imaging-initial experience. Radiology,2008,246,926-934.
    172. Barash, H. et al. Functional magnetic resonance imaging monitoring of pathological changes in rodent livers during hyperoxia and hypercapnia. Hepatology 2008,48, 1232-1241.
    172. Fahey, B. J., Nightingale, et al. Acoustic radiation force impulse imaging of the abdomen:demonstration of feasibility and utility. Ultrasound Med.2005,Biol.31, 1185-1198.
    174. Friedrich-Rust, M. et al. Liver fibrosis in viral hepatitis:noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 2009,252,595-604.
    173. Smith, J. O.& Sterling, R. K. Systematic review:Non-invasive methods of fibrosis analysis in chronic hepatitis C. Aliment. Pharmacol. Ther.2009,30,557-576.
    175. Smith, M. w. et al. Gene expression patterns that correlate with hepatitis C and early progression to fibrosis in liver transplant recipients. Gastroenterology,2006,130, 179-187
    176. Leroy, v. et al. Prospective comparison of six non-invasive scores for the diagnosis of liver fibrosis in chronic hepatitis C. J. Hepatol.2007,46,775-782.
    177. Gressner, O. A., weiskirchen, R.& Gressner, et al. Biomarkers of hepatic fibrosis, fibrogenesis and genetic pre-disposition pending between fiction and reality. J. Cell. Mol.Med.2006,11,1031-1051.
    178. Nunes, D. et al. Noninvasive markers of liver fibrosis are highly predictive of liver-related death in a cohort of HCv-infected individuals with and without HIv infection. Am. J. Gastroenterol.2009. doi:10.1038/ajg.746.
    179. Ngo, Y. et al. A prospective analysis of the prognostic value of biomarkers (FibroTest) in patients with chronic hepatitis C. Clin. Chem.2006,52,1887-1896.
    181. Mayo, M. J. et al. Prediction of clinical outcomes in primary biliary cirrhosis by serum enhanced liver fibrosis assay. Hepatology2009,48,1549-1557.
    182. Sebastiani, G. et al. SAFE biopsy:a validated method for large-scale staging of liver fibrosis in chronic hepatitis C. Hepatology 2009,49,1821-1827.
    183. Castera, L. et al. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 2005,128,343-350.
    184. Fontana, R. J. et al. Serum fibrosis marker levels decrease after successful antiviral treatment in chronic hepatitis C patients with advanced fibrosis. Clin. Gastroenterol. Hepatol.2009.7,219-226.
    185. Nobili, v. et al. Performance of ELF serum markers in predicting fibrosis stage in pediatric non-alcoholic fatty liver disease. Gastroenterology,2009,136,160-167.
    186. de Ledinghen, v. et al. Diagnosis of hepatic fibrosis and cirrhosis by transient elastography in HIv/hepatitis C virus-coinfected patients. J. Acquir. Immune Defic. Syndr.2006,41,175-179.
    187. Sanchez-Conde, M. et al. Comparison of transient elastography and liver biopsy for the assessment of liver fibrosis in HIv/hepatitis C virus-coinfected patients and correlation with noninvasive serum markers. J. Viral Hepat.2009,17,280-286.
    188. Berenguer, J. et al. Sustained virological response to interferon plus ribavirin reduces liver-related complications and mortality in patients coinfected with human unodeficiency virus and hepatitis C virus. Hepatology 2009,50,407-413.
    189. Russo, M. w. et al. Early hepatic stellate cell activation is associated with advanced fibrosis after liver transplantation in recipients with hepatitis C. Liver Transpl.2005,11, 1235-1241.
    190. Armuzzi, A. et al. Review article:breath testing for human liver function assessment. Aliment. Pharmacol. Ther.2002,16,1977-1996.
    191. Petrolati, A. et al.13C-methacetin breath test for monitoring hepatic function in cirrhotic patients before and after liver transplantation. Aliment. Pharmacol.2003, Ther. 18,785-790.
    192. Ripoll, C. et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology.2007,133,481-488.
    193. Talwalkar, J. A. Antifibrotic therapies—emerging biomarkers as treatment end points. Nat. Rev. Gastroenterol. Hepatol.2010,7,59-61.
    194. Friedman SL, Bansal MB. Reversal of hepatic fibrosis—fact or fantasy? Hepatology 2006.43:S82-88
    195. Ramachandran P, Iredale JP. Reversibility of liver fibrosis. Ann. Hepatol.2009. 8:283-91
    196. HendersonNC, Iredale JP. Liver fibrosis:cellular mechanisms of progression and resolution. Clin.Sci.2007.112:265-80
    197. Issa R, Zhou X, Constandinou CM, et al. Spontaneous recovery from micronodular cirrhosis:evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology,2004.126:1795-808.
    198. Schrader J, Fallowfield J, Iredale JP. Senescence of activated stellate cells:not just early retirement.Hepatology.2009.49:1045-47
    199. De Minicis S, Seki E, Uchinami H, et al.Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology 2007; 132:1937-1946.
    200. Greenwel P, Schwartz M, Rosas M, et al.Characterization of fat-storing cell lines derived from normal and CC14-cirrhotic livers. Differences in the production of interleukin-6. Lab Invest 1991;65:644-653.
    201. Xu L, Hui AY, Albanis E, et al.Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 2005;54:142-151.
    202. Shibata N, Watanabe T, Okitsu T, et al. Establishment of an immortalized human hepatic stellate cell line to develop antifibrotic therapies. Cell Transplant 2003;12:499-507.
    203. Strazzabosco M, Spirli C, Okolicsanyi L. Pathophysiology of the intrahepatic biliary epithelium. J Gastroenterol Hepatol 2000;15:244-253.
    204. Patsenker E, Popov Y, Stickel F, et al.Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-beta activation and retards biliary fibrosis progression. Gastroenterology.2008;135:660-670.
    205. Popov Y, Patsenker E, Stickel F, et al.Integrin alphavbeta6 is a marker of the progression of biliary and portal liver fibrosis and a novel target for antifibrotic therapies. J Hepatol 2008;48.453-464.
    206. Patsenker E, Popov Y, Stickel F, et al.Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-beta activation and retards biliary fibrosis progression. Gastroenterology 2008;135:660-670.
    207. Omenetti A, Yang L, Li YX, et al. Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation. Lab Invest 2007;87:499-514.
    208. Ishimura N, Bronk SF, Gores GJ. Inducible nitric oxide synthase upregulates cyclooxygenase-2 in mouse cholangiocytes promoting cell growth. Am J Physiol Gastrointest Liver Physiol 2004;287:G88-G95.
    209. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007; 117:524-529.
    210. Guyot C, Combe C, Balabaud C, et al. Fibrogenic cell fate during fibrotic tissue remodeling observed in rat and human cultured liver slices. J Hepatol 2007;46:142-150.
    211. van de Bovenkamp M, Groothuis GM, et al. Precision-cut liver slices as a new model to study toxicity-induced hepatic stellate cell activation in a physiologic milieu. Toxicol Sci 2005;85:632-638.
    212. Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol 2008;26:120-126.
    213. Hui EE, Bhatia SN. Microscale control of cell contact and spacing via three-component surface patterning. Langmuir 2007;23:4103-4107.
    214. Popov Y, Patsenker E, Fickert P, et al. Mdr2 (Abcb4)-/- mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol 2005;43:1045-1054.
    215. Fickert P, Stoger U, Fuchsbichler A, et al. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 2007; 171:525-536.
    216. Hillebrandt S, Goos C, Matern S, et al. Genome-wide analysis of hepatic fibrosis in inbred mice identifies the susceptibility locus Hfibl on chromosome 15. Gastroenterology 2002; 123:2041-2051.
    217. Marra F, Gastaldelli A, Svegliati Baroni G, et al. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis.Trends Mol Med 2008; 14:72-81.
    218. Lee SJ, Heinrich G, Fedorova L, et al. Development of nonalcoholic steatohepatitis in insulin-resistant liver-specific S503A carcinoembryonic antigen-related cell adhesion molecule 1 mutant mice. Gastroenterology 2008; 135:2084-2095.
    219. Nakayama H, Otabe S, Ueno T, et al.Transgenic mice expressing nuclear sterol regulatory element-binding protein 1c in adipose tissue exhibit liver histology similar to nonalcoholic steatohepatitis. Metabolism 2007;56:470-475.
    220. Ota T, Takamura T, Kurita S, et al.Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis.Gastroenterology 2007;132:282-293.
    221. Campbell JS, Hughes SD, Gilbertson DG, et al. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A 2005;102:3389-3394.
    222. Ueberham E, Low R, Ueberham U, et al.Conditional tetracycline-regulated expression of TGF-betal in liver of trans genic mice leads to reversible intermediary fibrosis. HEPATOLOGY 2003;37:1067-1078.
    223. Czochra P, Klopcic B, Meyer E, et al. Liver fibrosis induced by hepatic verexpression of PDGF-B in transgenic mice. J Hepatol 2006;45:419-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700