细胞周期蛋白Cyclin D1与PACSIN2在影响细胞迁移中的作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤是一种细胞周期性疾病,肿瘤的发生与细胞增殖失控、分化障碍及凋亡受阻密切相关,因此与细胞增殖有关的周期蛋白成为研究癌症发生的热点之一细胞周期的变化是一个复杂的过程,许多蛋白参与调控该过程。其中D型周期蛋白作用于G1期,分为3个亚型:Cyclin D1、Cyclin D2、Cyclin D3。但只有Cyclin D1被检测到在肿瘤中过度表达。Cyclin D1又存在Cyclin Dla和CyclinDlb两种亚型,通常Cyclin D1即指Cyclin D1a。
     正常的细胞周期有序的循环是通过激活和失活细胞周期蛋白依赖性激酶(CDK)来实现的。CyclinD1作为细胞周期进程的启动子,可以与CDK4结合形成复合体,通过磷酸化和失活视网膜母细胞瘤蛋白pRb,促进细胞周期从G1期到S期的进展,并通过这种方式介导DNA的合成、促进细胞的生长增殖。而Cyclin D1在不依赖CDK的情况下同样可以对细胞生长、分化和新陈代谢发挥作用。
     研究表明,Cyclin D1在人类多种肿瘤如乳腺癌、结肠癌、前列腺癌以及造血系统恶性肿瘤中存在过度表达。在侵袭性乳腺肿瘤中,50%病例存在Cyclin D1蛋白的过度表达。为了探讨Cyclin D1在肿瘤中的作用,我们做了大量研究。我们发现Cyclin D1缺失的小鼠会耐受致癌基因诱导的肿瘤发生;Cyclin D1基因的缺失也可以降低细胞存活和DNA合成,增加线粒体的大小和活性,抑制血管、骨髓巨噬细胞、成纤维细胞和乳腺上皮细胞的迁移能力。临床病例也显示CyclinD1过度表达与肿瘤转移存在联系。因此,疾病的恶性进展和转移可能与CyclinD1密切相关。
     细胞的迁移在细胞形态发生、组织修复和肿瘤转移中是必不可少的。肿瘤转移是从肿瘤原发病灶的肿瘤细胞的迁移开始的,经过进入血管的内渗和穿过血管壁的溢出过程,最后到达远处器官或组织从而产生新的肿瘤。抑制肿瘤转移是我们治疗肿瘤的重要途径。因此,了解细胞迁移或侵袭机制会帮助我们更好的理解肿瘤细胞的散布机制并为肿瘤治疗带来新的契机。探讨Cyclin D1在迁移或侵袭中的作用可以给我们的研究指明新的方向。
     大量研究发现Cyclin D1在调节雌激素受体α(ERα)、雄激素受体(AR)等的转录活性时,必须要结合辅助激活因子或转录因子。因此我们推测Cyclin D1在细胞生长、迁移及肿瘤中的作用是通过结合特殊的蛋白质形成复合物而产生的。为了研究Cyclin D1结合蛋白在调节Cyclin D1功能中的作用,我们纯化Cyclin D1结合蛋白复合物并发现了神经元蛋白激酶C酪蛋白激酶底物2(Protein kinase C and casein kinase substrate in neurons protein 2, PACSIN2)。PACSIN2是来源于鸡心脏的52KDa粘合蛋白(FAP52)的同源体,它的家族成员在功能上被看作是细胞黏着斑中的胞浆辅助蛋白,参与囊泡的形成与运输。本课题就Cyclin D与(?)PACSIN2在影响细胞迁移中的作用进行研究。
     一、发现并鉴定PACSIN是一种Cyclin D1结合蛋白,并探讨其结合机制
     目的:
     发现并鉴定出PACSIN2是一种Cyclin D1结合蛋白,探讨PACSIN2是否可以特异性的结合Cyclin D1而非其他家族成员及其结合机制。
     方法:
     1.通过免疫沉淀方法纯化Cyclin D1结合蛋白,并经过银染电泳凝胶、凝胶片切除及消化过程,最后进行质谱测定分析和序列分析。
     2.将带有Flag抗原标记的不同Cyclin D1质粒DNA,包括野生型和突变型DNA,分别和带有Myc抗原标记的(?)PACSIN2质粒DNA,使用磷酸钙转染的方法共转于293T细胞。通过免疫沉淀-免疫印迹的方法分析该细胞。
     3.将带有Flag抗原标记的不同Cyclin D质粒DNA,包括Cyclin D1,D2和D3及其突变型DNA,分别和带有Myc抗原标记的PACSIN2质粒DNA,使用磷酸钙转染的方法共转于293T细胞。通过免疫沉淀-免疫印迹的方法分析该细胞。
     4.将带有Myc抗原标记的不同(?)(?)ACSIN质粒DNA,包括PACSIN1,PACSIN2和(?)(?)ACSIN3 DNA分别和带有Flag抗原标记的Cyclin D1质粒DNA,使用磷酸钙转染的方法共转于293T细胞。通过免疫沉淀-免疫印迹的方法分析该细胞。
     5.将带有Myc抗原标记的不同PACSIN2质粒DNA,包括野生型和变异型DNA,分别和带有Flag抗原标记的Cyclin D1质粒DNA,使用磷酸钙转染的方法共转于293T细胞。通过免疫沉淀-免疫印迹的方法分析该细胞。
     结果:
     1.通过纯化Cyclin D1结合蛋白,得出CDK4(细胞周期蛋白依赖性激酶),70kD热休克同源蛋白(Hsc70)和一种额外的蛋白质。经过质谱测定分析和序列分析,鉴定出这种蛋白是PACSIN2。这种蛋白被看做是来源于鸡心脏的52KDa粘合蛋白(FAP52)的同源体。
     2.敲除细胞周期蛋白的酸性氨基酸序列后,Cyclin D1无法与PACSIN2结合。只有Cyclin D1和Cyclin D2可以与(?)(?)ACSIN2结合,但Cyclin D3、yclin D1b不能与其结合。
     3.免疫沉淀-免疫印迹实验发现PACSIN家族中只有PACSIN2可以和CyclinD1特异性的结合,PACSIN1和PACSIN3不能和Cyclin D1结合。
     4.通过敲除(?)pACSIN2蛋白序列上NPF结构域可以使得PACSIN2失去与Cyclin D1结合的能力。
     结论:
     1.发现并鉴定出PACSIN2是可以与Cyclin D1特异性结合的Cyclin D1结合蛋白。
     2. Cyclin D1通过其羟基末端的E-rich基序与PACSIN2结合。
     3. PACSIN2通过其NPF结构域与Cyclin D1结合。
     二. PACSIN2抑制正常细胞和肿瘤细胞的迁移能力,是通过与Cyclin D1a结合而非Cyclin D1b实现的;
     目的:
     观察Cyclin D1和(?)(?)ACSIN2在细胞中的蛋白结合共存位置,并确定作为CyclinDl结合蛋白的PACSIN2的生物学功能,以及其功能的发挥是否依赖于Cyclin D1。
     方法:
     1.在MRC5细胞(人胚胎肺成纤维细胞)中通过免疫组织化学染色方法观察Cyclin D1和(?)(?)ACSIN2蛋白结合共存位置
     2.通过Transwell migration assay分析PACSIN2基因敲除型和野生型小鼠皮肤成纤维细胞迁移能力的区别。
     3.通过特异性siRNA降低LNCaP细胞(人前列腺癌细胞)中PACSIN2蛋白表达水平后,Transwell migration assay分析其迁移能力的变化。
     4.通过特异性siRNA降低3T3细胞(小鼠胚胎成纤维细胞)中PACSIN2蛋白表达水平后,Cell spreading assay观察细胞伸展能力的变化。
     5.分别在Cyclin D1敲除的小鼠上皮成纤维细胞Cyclin D1-/-细胞,以及该细胞经过Cyclin D1a、Cyclin D1b质粒DNA转导后的两种细胞Cyclin D1-/-+D1a细胞和Cyclin D1-/-+D1b细胞中,使用特异性siRNA降低PACSIN2蛋白表达水平后,通过Transwell migration assay观察细胞迁移能力的变化,Cell spreading assay分析其伸展能力的变化。
     结果:
     1.MRC5细胞中,Cyclin D1和(?)(?)ACSIN2结合共存于细胞膜皱褶中。
     2. PACSIN2基因敲除后,小鼠皮肤成纤维细胞的迁移能力增强;(?)PACSIN2 siRNA可以增强人前列腺癌细胞LNCaP的迁移能力,降低小鼠胚胎成纤维细胞3T3细胞的伸展能力。
     3. PACSIN2 siRNA可以增强Cyclin D1-/-+D1a细胞的迁移能力,降低细胞的伸展能力;但是在Cyclin D1-/-细胞和Cyclin D1-/-+D1b两组细胞中没有变化。
     结论:
     1.内源性PACSIN2可以抑制人前列腺癌细胞和小鼠成纤维细胞的迁移能力,增强小鼠成纤维细胞的伸展能力。
     2.在Cyclin Dla存在的前提下,PACSIN2才能发挥其抑制细胞迁移、增强细胞伸展的能力。
     总之,作为Cyclin D1的结合蛋白,(?)ACSIN2通过其结构中NPF区域与CyclinD1a的羟基末端特异性结合而发挥其抑制细胞迁移、增强细胞伸展的能力。因此,研究Cyclin D1及其结合蛋白PACSIN2对细胞迁移的影响,为进一步探讨CyclinD1在肿瘤中的作用提供了一个新的方向。
Tumor is regarded as a cellular periodic disease; Tumorigenesis is associated with deregulation of proliferation, dysdifferentiation and the inhibition of apoptosis. Cyclin D, as a member of the Cyclin family of cell cycle regulators, may play an important role in cancer. While there are three D-type Cyclins, Cyclin D1, Cyclin D2 Cyclin D3, only Cyclin Dl is observed to be overexpressed frequently in cancer. Cyclin D1 is best known as the regulatory subunit of a dimeric holoenzyme including the cell cycle-dependent kinase CDK4/6, which phosphorylates and inactivates the retinoblastoma protein Rb to promote progression through the G1-S phase of the cell cycle. And in this manner promote cellular proliferation.
     The orderly transition through the cell cycle is orchestrated by the sequential activation and inactivation of Cyclin-dependent kinases. The regulatory subunits of the CDK4/6 kinase are encoded by the D-type Cyclins. Cyclin D1 is induced early during G1 phase progression by mitogenic stimuli, which activate both the transcription of Cyclin D1, through specific DNA sequences in the Cyclin D1 promoter, and through the assembly of complexes that require sustained mitogenic stimulation. The Cyclin D1/CDK complexes phosphorylate and inactivate the retinoblastoma (pRb) protein, and the NRF-1 (Nuclear respiratory factor 1) protein to induce nuclear DNA synthesis and inhibit mitochondrial metabolism respectively.
     In addition to its CDK-binding function, a lot of evidence now show that D-type Cyclins have CDK-independent properties. As previously proposed, the role of these properties in cellular growth, metabolism, and cellular differentiation are substantial. Cyclin Dl forms physical associations with more than 30 transcription factors or transcriptional coregulators. Cyclin D1 directly interacts with and represses or induces several different nuclear receptors and transcription factors, including the estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator activated receptor gamma (PPARy), CCAAT enhance binding proteinβ(C/EBPβ), and signal transducer and activator of transcription 3 (STAT3).
     Given its role in promoting cellular proliferation and modulating transcription, it is not surprising that Cyclin D1 is deregulated in cancer. Overexpression of the Cyclin D1 gene has been reported in a variety of human cancers including breast, colon, prostate, and hematopoietic malignancies. In invasive breast cancers, Cyclin D1 is overexpressed in up to 50% of cases. And in keeping with a role for Cyclin D1 in diverse human cancers, mice deficient in Cyclin D1 are resistant to oncogene-induced tumorigenesis. Also, Gastrointestinal tumors induced by mutation of the Apc gene are reduced in number by Cyclin D1 deficiency. Consistent with findings that Cyclin D1 antisense abrogates mammary epithelial cell growth induced by ErbB2, Cyclin D1-deficient mice are resistant to mammary gland tumorigenesis induced by Ras or ErbB2.Cyclin D1-deficient cells demonstrate reduced cellular survival and DNA synthesis increased mitochondrial size and activity and reduced cellular migration of diverse cell types including blood vessels, bone marrow macrophages, fibroblasts and mammary epithelial cells.
     Cell migration is essential for developmental morphogenesis, tissue repair, and tumor metastasis. Cancer cells spread from the initial site of tumor growth by first invading the surrounding tissue (migration), then entering the blood or lymph vessels (intravasation), and finally crossing the vessel wall to exit the vasculature (extravasation) in distal organs. The cancer cells then colonize the new site and proliferate to form a second tumor mass.
     Preventing metastasis presents an important therapeutic approach to cancer treatment. So as the first step of metastasis, learning more about the cellular different migration/invasion programmes will help us to understand how cancer cells disseminate and lead to new treatment strategies. By frequent overexpression of Cyclin D1 in cancer cells, new finding suggested that Cyclin D1 may have a central role in mediating invasion and metastasis of cancer cells by controlling Rho/ROCK signaling and matrix deposition of TSP-1. But how Cyclin D1 promotes cellular migration, we still do not know.
     A common polymorphism of the human Cyclin D1 gene has been associated with increased rate of cancer development. The polymorphism (A870G) is located at the splice donor region at the exon4-intron4 boundary and modulates the efficiency of alternate splicing. Alternate splicing results in distinct carboxyl terminal amino acid sequences. Characterization of the functional properties of the canonical Cyclin D1a and the alternate Cyclin D1b isoform has revealed each encodes subunits capable of phosphorylating pRb, but distinguishable abilities to regulate cellular migration. Cyclin D1a promotes migration of fibroblasts and mammary epithelial cells; however the Cyclin D1b is defective in promoting migration.
     It has been predicted the diverse functions regulated by Cyclin D1 in cellular differentiation, proliferation and migration may be governed by subpartitioning of Cyclin D1 into distinct subcellular compartments, or through physical association with distinct binding proteins. In this regard, Cyclin D1 associates with p160 coactivator SRC-1 to regulate estrogen receptor a activity. In association with transcription factors, Cyclin D1 regulates CDK-independent transcriptional activities of the androgen receptor, CEBPβand PPARγ.
     In view of the diverse functions of Cyclin D1 in DNA synthesis, oncogenesis, and migration, we hypothesized that Cyclin D1-associated proteins may mediate these functions by forming a complex with Cyclin D1.Thus, In order to determine adapter proteins regulating Cyclin D1 function, we immunopurified Cyclin D1-associated proteins by Mass spectrometry and sequence analysis and identified PACSIN2, original named chicken FAP52, which family members have been shown to function as cytoplasmic adapter proteins in focal adhesions, as Cyclin D1-associated proteins.In our study we will conduct the physical association between Cyclin D1 and PACSIN2, and the role of Cyclin Dl and PACSIN2 in the cellular migration.
     Part I PACSIN2 is Identified as a Cyclin D1-binding Protein and PACSIN2 can specifically Bind Cyclin D1 Through its DPF Domain
     Objective:
     To identify PACSIN2 as a Cyclin D1-binding protein, and investigate whether Cyclin D1 can specifically binding PACSIN2, rather than other family members, and the mechanism for this specific binding.
     Methods:
     1. Purification of Cyclin D1-associated proteins were analyzed by silver-stained gel, the associated proteins excised and in gel tryptic digest in analyzed by mass spectrometry
     2. Using IP-Westernblot to conduct the cell co-transfected with expression vector for Myc epitope-tagged PACSIN2 and Flag-tagged Cyclin Dl wild type or mutant expression vector.
     3. Using IP-Westernblot to conduct the cell co-transfected with PACSIN2 association with D-type Cyclin D1, including D1 Wild type or Mutant
     4. Using IP-Westernblot to conduct the cell co-transfected with Cyclin D1 association with PACSIN family, including PACSIN1,2,3
     5. Identify the domain of PACSIN2 required for physical interaction with Cyclin D1, by using IP-Westernblot to conduct the cell co-transfected with C-terminus truncated mutant constructs of PACSIN2 together with Vector encoding flag-Cyclin D1.
     Results:
     1. Co-purifing proteins, include CDK4, Hsc70 and an additional protein was identified by mass spectrometry with sequence identified to the homolog of chicken52, now identified as PACSIN2
     2. Delection of the acidic rich stretch of Cyclin D1 abrogated the binding to PACSIN2. Cyclin Dl and Cyclin D2, but not Cyclin D3 and Cyclin Dlb, co-precipitated with PACSIN2.
     3. Immmunoprecipitation of Cyclin Dl was found to co-precipitated PACS1N2, but not PACSIN1 and PACSIN3.
     4. The deletion the amino acid residues from aa363 to aa382 abrogates the association of Cyclin D1 with PACSIN2
     Conclusion:
     1. Identification and confirmation of PACSIN2 as a Cyclin D1-binding protein
     2. Cyclin D1 binds to PACSIN2 through its C-terminal E-rich motif
     3. NPF domain of PACSIN2 is required for Cyclin D1 binding
     PartⅡ.PACSIN2 Represses Cellular Migration through Direct Association Cyclin Dla, but not the Cyclin Dlb
     Objective:
     To find out the co-localization of Cyclin Dl and PACSIN2, Identify the biological function of PACSIN2 as a Cyclin D1-binding protein, and whether PACSIN2 acts it role depend on Cyclin D1 or not.
     Methods:
     1. Identify the co-localization of Cyclin D1 and PACSIN2 by Immunohistochemical straing of MRC5 cell
     2. Transwell migration assay in PACSIN2+/+ and PACSIN2-/- mouse skin fibroblast cell lines
     3. Transwell migration assay by Knocking down PACSIN2 with siRNA (h) in Prostate Cancer cell line LNCaP
     4. Cell spreading Assay by Knocking down PACSIN2 with siRNA (m) in Mouse embryonic fibroblast cell line NIH 3T3.
     5. Transwell migration assay by Knocking down PACSIN2 in Cyclin D1-/- cells, and Cyclin D1-/- cell transduced with either Cyclin D1a or Cyclin Dlb retrovirus.
     6. Cell spreading Assay by Knocking down PACSIN2 in Cyclin D1-/- cell transduced with either Cyclin Dla or Cyclin D1b retrovirus.
     Results:
     1. Cyclin D1 and PACSIN2 were co-localized in cell ruffle.
     2. PACSIN2-/- mouse skin fibroblast cell migration ability increases, PACSIN2 siRNA (h) increases cellular migration in Prostate Cancer cell line LNCaP. 3. PACSIN2 siRNA (m) reduced cell spreading in Mouse embryonic fibroblast cell line NIH3T3
     4. PACSIN2 siRNA increases cell migration in Cyclin-/-+Dla cell, but has no effection on Cyclin D1-/- and Cyclin-/-+Dlb cells
     5. PACSIN2 siRNA represses cell spreading in Cyclin-/-+Dla cell, but has no effection on Cyclin-/-+Dlb cell.
     Conclusion:
     1. PACSIN2 represses cellular migration both in normal cell and prostate cancer cell lines.
     2. Endogenous PACSIN2 enhances cell spreading via Cyclin D1a, and Cyclin Dla is required for PACSIN2 repression of cellular migration.
     So, we hypothesize Cyclin D1 protein binding partners that contribute to the diverse functions of Cyclin D1 such as governing DNA synthesis, contact-independent growth, angiogenesis, and cellular migration, are critical for understanding Cyclin D1 function. Through identifying polypeptides associated with Cyclin D1, by tandem mass spectrometry, the current studies have identified PACSIN2 as a new Cyclin D1-associated protein, which contributes to the induction of cellular migratory directionality. In the current study, Cyclin D1 colocalized with PACSIN2 at the leading edge of MRC5 cells, Endogenous PACSIN2 enhances cell spreading via Cyclin Dla, and PACSIN2 siRNA can increase cellular migration in prostate cancer cell, indicating a role for PACSIN2 in repressing cellular migration. Together with the requirement of Cyclin Dla for PACSIN2 to repress cellular migration and PACSIN2 association with cytoskeletal proteins, we conclude that PACSIN2 provides a likely candidate protein coordinating a subset of the cellular migratory functions of Cyclin D1, which leads to a better understanding of the complexes contributing to Cyclin D1-mediated cellular migration.
引文
1. Betticher DC, Thatcher N, Altermatt HJ, et al. Alternate splicing produces a novel Cyclin D1 transcript. Oncogene,1995,11:1005-1011.
    2. Karen E Knudsen.The Cyclin Dlb splice variant:an old oncogene learns new tricks. Cell Division,2006, dol:10.1186/1747-1028-1-15.
    3. Kato JY, Matsuoka M, Strom DK, et al. Regulation of CyclinDdependent kinase 4 (cdk4) by cdk4-activating kinase. Mol Cell Biol,1994,14:2713-21.
    4.Kato J, Matsushime H, Hiebert SW, et al. Direct binding of Cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the Cyclin D-dependent kinase CDK4. Genes Dev,1993,7:331-42.
    5. Baldin V, Lukas J, Marcote MJ, et al. Cyclin Dl is a nuclear protein required for cell cycle progression in Gl. Genes Dev,1993,7:812-21.
    6. Sherr CJ. The Pezcoller Lecture:cancer cell cycles revisited. Cancer Res,2000, 60:3689-95.
    7.Wang C, Li Z, Fu M, et al. Signal transduction mediated by Cyclin Dl:from mitogens to cell proliferation:a molecular target with therapeutic potential. Cancer Treat Res,2004,119:217-237.
    8. Dey A, Li W. Cell cycle-independent induction of Dl and D2 Cyclin expression, but not Cyclin-Cdk complex formation or Rb phosphorylation, by IFNγ in macrophages. Biochim Biophys Acta,2000,1497:135-47.
    9. Pestell RG, Albanese C, Reutens AT, et al. The Cyclins and Cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev,1999,20:501-34.
    10. Zhang JM, Wei Q, Zhao X, et al. Coupling of the cell cycle and myogenesis through the Cyclin Dl-dependent interaction of MyoD with cdk4. EMBO J,1999, 18:926-33.
    11. Horstmann S, Ferrari S, Klempnauer KH. Regulation of B-Myb activity by Cyclin Dl. Oncogene,2000,19:298-306.
    12. Inoue K, Sherr CJ. Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonized by D-type Cyclins through a Cyclindependent-kinase-independent mechanism. Mol Cell Biol,1998,18:1590-600.
    13. McMahon C, Suthiphongchai T, DiRenzo J, et al. P/CAF associates with Cyclin Dl and potentiates its activation of the estrogen receptor. Proc Natl Acad Sci USA, 1999,96:5382-7.
    14. Reutens AT, Fu M, Wang C, et al. Cyclin Dl binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner. Mol Endocrinol,2001,15:1558.
    15. Wang C, Pattabiraman N, Zhou JN, et al. Cyclin Dl repression of peroxisome proliferator-activated receptory expression and transactivation. Mol Cell Biol,2003, 23:6159-73.
    16. Lamb J, Ewen ME. Cyclin Dl and molecular chaperones:implications for tumorigenesis. Cell Cycle,2003,2:525-7.
    17. Bienvenu, F., Gascan, H., Coqueret, O. Cyclin Dl Represses STAT3 Activation through a Cdk4-independent Mechanism. J Bioi Chem,2001,276:16840-16847.
    18. Mahony, D., Parry, D. A., Lees, E. Active cdk6 complexes are predominantly nuclear and represent only a minority of the cdk6 in T cells. Oncogene,1998,16: 603-611.
    19. Stepanova, L., Leng, X., Parker, S. B., et al. Genes Dev,1996,10:1491-1502.
    20. Cheng, M., Sexl, V., Sherr, C. J., et al. Assembly of Cyclin D-dependent kinase and titration of p27Kipl regulated by mitogen-activated protein kinase kinase (MEK1). Proc. Natl. Acad. Sci. USA,1998,95:1091-1096.
    21. Kato, J.-y., Matsuoka, M., Stromm, D. K., et al. Regulation of Cyclin D-dependent kinase 4 (cdk4) by cdk4-activating kinase. Mol. Cell. Biol,1994,14:2713-2721.
    22. LaBaer, J., Garrett, M. D., Stevenson, L. F., et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev,1997,11:847-862.
    23. McConnell, B. B., Gregory, F. J., Stott, F. J., et al. Induced Expression of p16INK4a Inhibits Both CDK4-and CDK2-Associated Kinase Activity by Reassortment of Cyclin-CDK-Inhibitor Complexes. Mol Cell Biol,1999, 19:1981-1989.
    24. Parry, D., Mahony, D., Wills, K., et al. Cyclin D-CDK Subunit Arrangement Is Dependent on the Availability of Competing INK4 and p21 Class Inhibitors. Mol Cell Biol,1999,19:1775-1783.
    25. Diehl, J. A., Yang, W., Rimerman, R. A., et al. Hsc70 Regulates Accumulation of Cyclin Dl and Cyclin Dl-Dependent Protein Kinase. Mol Cell Biol,2003, 23:1764-1774.
    26. Arnold A, Papanikolaou A. Cyclin dl in breast cancer pathogenesis. J Clin Oncol, 2005,23:4215-24.
    27. Fu M, Wang C, Li Z, et al. Minireview:Cyclin Dl:Normal and abnormal functions. Endocrinology,2004,145:5439-47.
    28. Van Diest PJ, Michalides RJ, Jannink L, et al. Cyclin Dl expression in invasive breast cancer. Correlations and prognostic value. Am J Pathol,1997,150:705-11.
    29. Hulit, J., Wang, C., Albanese, C., et al. Cyclin Dl Repression of Peroxisome Proliferator-Activated Receptor y Expression and Transactivation. Molecular & Cellular Biology,2004,24:7598-7611.
    30. Lee, R. J., Albanese, C., Fu, M., et al. Cyclin Dl is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol,2000,20:672-683.
    31. Yu, Q., Geng, Y., Sicinski, P. Specific protection against breast cancers by Cyclin Dl ablation. Nature,2001,411:1017-1021.
    32. Albanese, C., Wu, K., D'Amico, M., et al. IKKalpha Regulates Mitogenic Signaling through Transcriptional Induction of Cyclin Dl via Tcf. Mol. Biol. Cell, 2003,14:585-599.
    33. Wong, C. W., McNally, C., Nickbarg, E., et al. Estrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk with Src/Erk phosphorylation cascade. Proc Natl Acad Sci USA,2002,99:14783-14788.
    34. Sakamaki T, Casimiro M, Ju X, et al. Cyclin Dl determines Mitochondrial Function in Vivo. Mol Cell Biol,2006,26:5449-69.
    35. Neumeister, P., Pixley, F. J., Xiong, Y., et al. Cyclin Dl Governs Adhesion and Motility of Macrophages. Mol. Biol. Cell,2003,14:2005-2015.
    36. Fu, M., Wang, C., Li, Z., et al. Minireview:Cyclin Dl:normal and abnormal functions. Endocrinology,2004,145:5439-5447.
    37. Li Z, Jiao X, Wang C, et al. Cyclin Dl induction of cellular migration requires p27KIPI. Cancer Res,2006,66:9986-94.
    38. Jin K, Mao XO, Cottrell B, et al. Proteomic and immunochemical characterization of a role for stathmin in adult neurogenesis. Faseb J,2004,18:287-99.
    39. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell,1992, 70:389-99.
    40. Ren XD, Kiosses WB, Sieg DJ, et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J Cell Sci,2000,113:3673-8.
    41. Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol, 2003,5:711-9.
    42. Sahai E, Olson MF, Marshall CJ. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. Embo J,2001, 20:755-66.
    43. Vial E, Sahai E, Marshall CJ. ERK-MAPK signaling coordinately regulates activity of Racl and RhoA for tumor cell motility. Cancer Cell,2003,4:67-79.
    44. Li Z, Wang C, Jiao X, et al. Cyclin Dl regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signaling. Mol Cell Biol,2006, 26:4240-56.
    45. Streit M, Velasco P, Brown LF, et al. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am J Pathol,1999,155:441-52.
    46. Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA,1990,87:6624-8.
    47. Rodriguez-Manzaneque JC, Lane TF, Ortega MA, et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA,2001,98:12485-90.
    48. Betticher, D. C., Thatcher, N., Altermatt, H. J., et al. Alternative splicing produces a novel Cyclin Dl transcript. Oncogene,1995,11:1005-1011.
    49. Hosokawa, Y., Arnold, A. Mechanism of Cyclin Dl (CCND1, PRAD1) overexpression in human cancer cells:Analysis of allele-specific expression. Genes Chromosomes Cancer, 1998,22:66-71.
    50. Li, Z., Wang, C., Jiao, X., et al. Alternate Cyclin Dl mRNA Splicing Modulates P27KIP1 Binding and Cell Migration. J Biol Chem,2008,283:7007-7015.
    51. Li, Z., Jiao, X., Wang, C., et al. Cyclin Dl Induction of Cellular Migration Requires p27KIP1. Cancer Res,2006,66:9986-9994.
    52. Wang, C., Li, Z., Fu, M., et al. Signal transduction mediated by Cyclin Dl:from mitogens to cell proliferation:A molecular target with therapeutic potential. Cancer Treat Res,2004,119:217-37.
    53. Markus Plomann, Matthias Morgelin, Sylvia Schael. The PACS1N proteins and their role in membrane trafficking. Landes Bioscience,2009.
    54. Ritter B, Modregger J, Paulsson M,et al. PACSIN2, a novel member of cytoplasmic adapter proteins. FEBS Lett,1999,454:356-362.
    55. Plomann M, Lange R, Vopper G, et al. PACSIN, a brain protein that is upregulated upon differentiation into neuronal cells. Eur J Biochem,1998,256:201-211.
    56. Modregger J, Ritter B, Witter B, et al. All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci,2000,113:4511-4521.
    58. Wasiak S, Quinn CC, Ritter B, et al. The Ras/Rac guanine nucleotide exchange factor mSos interacts with PACSIN1/Syndapin I, a regulator of endocytosis and the actin cytoskeleton. J Biol Chem,2001,276:26622-26628.
    59. Roach W, Plomann M. PACSIN3 overexpression increases adipocyte glucose transport through GLUT1. Biochem Biophys Res Commun,2007,355:745-50.
    60. Perez-Otano I, Lujan R, Tavalin SJ, et al. Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapinl. Nat Neurosci,2006,9: 611-621.
    61. Cuajungco MP, Grimm C, Oshima K, et al. PACSINs bind to the TRPV4 cation channel:PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem, 2006,281:18753-18762.
    62. Markus Plomann, Matthias Morgelin, Sylvia Schael. The PACSIN proteins and their role in membrane trafficking. Landes Bioscience,2009.
    63. Reutens, A. T., Fu, M., Wang, C., et al. Cyclin Dl Binds the Androgen Receptor and Regulates Hormone-Dependent Signaling in a p300/CBP-Associated Factor (P/CAF)-Dependent Manner. Mol Endocrinol,2001,15:797-811.
    64. Sherr, C. J., and Roberts, J. M. CDK inhibitors:positive and negative regulators of Gl-phase progression. Genes and Dev,1999,13:1501-1512.
    65. Sherr, C. J. Cancer cell cycles. Science,1996,274:1672-1677.
    66. Wang, C., Li, Z., Lu, Y., et al. Cyclin Dl repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natl Acad Sci U S A,2006,103:11567-11572.
    67. Wang, C., Fan, S., Li, Z., et al. Cyclin Dl Antagonizes BRCA1 Repression of Estrogen Receptor{alpha} Activity. Cancer Res,2005,65:6557-6567.
    68. Kessels, M. M., Qualmann, B. Syndapin Oligomers Interconnect the Machineries for Endocytic Vesicle Formation and Actin Polymerization. J Biol Chem,2006,281: 13285-13299.
    69. Halbach, A., Morgelin, M., Baumgarten, M., et al. PACSIN I forms tetramers via its N-terminal F-BAR domain. FEBS J,2007,274:773-782.
    70. Wang, Q., Navarro, M. V., Peng, G., et al. Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein PACSIN/Syndapin.Proc Natl Acad Sci U S A,2009,106:12700-12705.
    71. Fankhauser, C, A. Reymond, L. Cerutti, S., et al. The S. pombe cdcl5 gene is a key element in the reorganization of F-actin at mitosis. Cell,1995,82:435-444.
    72. Hosokawa, Y., Arnold, A. Mechanism of Cyclin Dl (CCNC1, DRAD1) over-expression in Human cancer cell:Analysis of Allele-specific Expression. Genes Chromosomes Cancer,1998,22:66-71.
    73. Holley, S. L., Parkes, G., Matthias, C., et al. Cyclin Dl Polymorphism and Expression in Patients with Squamous Cell Carcinoma of the Head and Neck. Am J Pathol.2001,159:1917-1924.
    74. Millar, E. K., Dean, J. L., McNeil, C. M., et al. Cyclin Dlb protein expression in breast cancer is independent of Cyclin Dla and associated with poor disease outcome. Oncogene,2009,28:1812-1820.
    75. Li, Z., Jiang, J., Wang, Z., et al. Endogenous Interleukin-4 Promotes Tumor Development by Increasing Tumor Cell Resistance to Apoptosis.Cancer Res,2008, 68:8687-8694.
    76. Holnthoner, W., Pillinger, M., Groger, M., et al. Fibroblast Growth Factor-2 Induces Lef/Tcf-dependent Transcription in Human Endothelial Cells. J Biol Chem,2002,277, 45847-45853.
    77. Merilainen. J., Lehto, V. P., and Wasenius. V. M. FAP52, a Novel, SH3 Domain-containing Focal Adhesion Protein. J Biol Chem,1997,272,23278-23284
    78. Wasiak. S., Quinn, C. C., Ritter, B., et al. The Ras/Rac Guanine Nucleotide Exchange Factor Mammalian Son-of-sevenless Interacts with PACSIN 1/Syndapin I, a Regulator of Endocytosis and the Actin Cytoskeleton. J Biol Chem,2001.276, 26622-26628
    79. Cousin. H.. Gaultier, A., Bleux, C., et al. X-PACSIN2 is a regulator of the Metalloprotease/Disintegrin ADAM13. Dev Biol.2000,227,197-210
    80. Qualmann. B., Roos, J.. DiGregorio. P. J., et al. Syndapin I, a Synaptic Dynamin-binding Protein that Associates with the Neural Wiskott-Aldrich syndrome Protein. Mol Biol Cell,1999,10.501-513
    81. Modregger. J., Ritter. B., Witter. B., et al. All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci,2000,113 Pt 24,4511-4521
    82. Qualmann B. and Kelly R.B. Syndapin Isoforms Participate in Receptor-Mediated Endocytosis and Actin Organization. J Cell Biol.2000,148,1047-1062
    83. Simpson. F.. Hussain, N. K., Qualmann, B.. Kelly, R. B., Kay. B. K., McPherson. P. S.. and Schmid. S. L. SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat Cell Biol.1999,1,119-124.
    1. Liu MC, Marshall JL, Pestell RG. Novel strategies in cancer therapeutics:Targeting enzymes involved in cell cycle regulation and cellular proliferation. Curr Cancer Drug Targets,2004,4:403-424.
    2. Motokura T, Bloom T, Kim HG, et al. A novel Cyclin encoded by a bell-linked candidate oncogene. Nature,1991,350:512-515.
    3. Imanishi Y, Hosokawa Y, Yoshimoto K, et al. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of Cyclin Dl in transgenic mice. J Clin Invest, 2001,107:1093-1102.
    4. Sherr CJ, Rettenmier CW, Sacca R, et al. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell, 1985,41:665-676.
    5. Neumeister P, Pixley FJ, Xiong Y, et al. Cyclin Dl governs adhesion and motility of macrophages. Mol Biol Cell,2003,14:2005-2015.
    6. Betticher DC, Thatcher N, Altermatt HJ, et al. Alternate splicing produces a novel Cyclin Dl transcript. Oncogene,1995,11:1005-1011.
    7. Kato JY, Matsuoka M, Strom DK, et al. Regulation of Cyclin Ddependent kinase 4(cdk4) by cdk4-activating kinase. Mol Cell Biol,1994,14:2713-21.
    8. Kato J, Matsushime H, Hiebert SW, et al. Direct binding of CyclinD to the retinoblastoma gene product (pRb)and pRb phosphorylation by the Cyclin D-dependent kinase CDK4. Genes Dev,1993,7:331-42.
    9. Kranenburg O, van der Eb AJ, Zantema A. Cyclin Dl is an essential mediator of apoptotic neuronal cell death. EMBO J,1996,15:46-54.
    10. Sumrejkanchanakij P. Tamamori-Adachi M, Matsunaga Y, et al. Role of Cyclin Dl cytoplasmic sequestration in the survival of postmitotic neurons. Oncogene,2003, 22:8723-30.
    11. Baldin, V., Lukas, J., Marcote, M. J., et al. Cyclin Dl is a nuclear protein required for cell cycle progression in Gl. Genes Dev,1993,7:812-821.
    12. Zwijsen, R. M., Klompmaker, R., Wientjens, E. B., et al. Cyclin Dl triggers autonomous growth of breast cancer cells by governing cell cycle exit.Mol Cell Biol, 1996,16:2554-2560.
    13. Reutens, A. T., Fu, M., Wang, C., et al. Cyclin Dl Binds the Androgen Receptor and Regulates Hormone-Dependent Signaling in a p300/CBP-Associated Factor, P/CAF,-Dependent Manner. Mol Endocrinol,2001,15:797-811.
    14. Cesi, V., Tanno, B., Vitali, R., et al. Cyclin Dl-dependent regulation of B-myb activity in early stages of neuroblastoma differentiation. Cell Death Differ,2002, 9:1232-1239.
    15. Zhang, J. M., Wei, Q., Zhao, X., et al. Cdk-4 Inhibition of Myogenesis through a Direct MyoD-Cdk-4 Interaction in the Absence of Kinase Activity. Embo J,1999,18: 926-933.
    16. Bernards, R. CDK-independent activities of D type Cyclins. Biochim Biophys Acta,1999,1424:M17-22.
    17. Inoue, K., Sherr, C. J. Gene Expression and Cell Cycle Arrest Mediated by Transc-ription Factor DMP1 Is Antagonized by D-Type Cyclins through a Cyclin-Dependent-Kinase-Independent Mechanism. Mol Cell Biol,1998,18:1590-1600.
    18. Pestell RG, Albanese C, Reutens AT, et al. The Cyclins and Cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev,1999,20:501-534.
    19. Zwijsen, R. M., Wientjens, E., Klompmaker, R., et al. CDK-independent activation of estrogen receptor by Cyclin Dl. Cell,1997,88:405-415.
    20. Zwijsen, R. M., Buckle, R. S., Hijmans, E. M., et al. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by Cyclin Dl. Genes Dev,1998,12:3488-3498.
    21. Neuman, E., Ladha, M. H., Lin, N., et al. Cyclin Dl stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol,1997, 17:5338-5347.
    22. Wang, C., Pattabiraman, N., Zhou, J. N., et al. Cyclin Dl Repression of Peroxisome Proliferator-Activated Receptor{gamma} Expression and Transactivation. Mol Cell Biol,2003,23:6159-6173.
    23. Matsushime, H., Ewen, M. E., Strom, D. K., et al. Identification and properties of an atypical catalytic subunit(p34PSK-J3/Cdk4)for mammalian D-type Gl Cyclins. Cell,1992,71:323-334.
    24. Xiong, Y., Zhang, H., Beach, D. D type Cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA.1992, Cell,71:505-514.
    25. Diehl, J. A., Sherr, C. J. A dominant-negative Cyclin Dl mutant prevents nuclear import of Cyclin-dependent kinase 4 (CDK4) and its phosphorylation by CDK-activating kinase. Mol Cell Biol,1997,17:7362-7374.
    26. Zhang, H., Xiong, Y., Beach, D. Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Mol Biol Cell,1993,4:897-906.
    27. LaBaer, J., Garrett, M. D., Stevenson, L. F., et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev,1997,11:847-862.
    28. Gladden, A. B., Diehl, J. A. The Cyclin Dl-dependent Kinase Associates with the Pre-replication Complex and Modulates RB{middle dot} MCM7 Binding J Biol Chem,2003,278:9754-9760.
    29. Cheng, M., Sexl, V., Sherr, C. J., et al. Assembly of Cyclin D-dependent kinase and titration of p27Kipl regulated by mitogen-activated protein kinase kinase (MEK1).Proc Natl Acad Sci U S A,1998,95:1091-1096.
    30. Gomez Lahoz, E., Liegeois, N. J., Zhang, P., et al. Cyclin D-and E-Dependent Kinases and the p57KIP2 Inhibitor:Cooperative Interactions In Vivo. Mol Cell Biol, 1999,19:353-363.
    31. Reynaud, E. G., Guillier, M., Leibovitch, M. P., et al.. Dimerization of the amino terminal domain of p57Kip2 inhibits Cyclin Dl-cdk4 kinase activity. Oncogene, 2000,19:1147-1152.
    32. Diehl, J. A., Yang, W., Rimerman, R. A., et al. Hsc70 Regulates Accumulation of Cyclin Dl and Cyclin Dl-Dependent Protein Kinase. Mol Cell Biol,2003, 23:1764-1774.
    33. Taules, M., Rius, E., Talaya, D., et al. Calmodulin Is Essential for Cyclin-dependent Kinase 4 (Cdk4) Activity and Nuclear Accumulation of Cyclin Dl-Cdk4 during Gl. J Biol Chem,1998,273:33279-33286.
    34. Diehl, J. A., Cheng, M., Roussel, M. F., et al. Glycogen synthase kinase-3beta regulates Cyclin Dl proteolysis and subcellular localization. Genes Dev,1998,12: 3499-3511.
    35. Alt, J. R., Cleveland, J. L., Hannink, M., et al. Phosphorylation-dependent regulation of Cyclin Dl nuclear export and Cyclin Dl-dependent cellular transformation. Genes Dev,2000,14:3102-3114.
    36. Lin, H. M., Zhao, L., Cheng, S. Y. Cyclin Dl is a ligand-independent co-repressor for thyroid hormone receptors. J Biol Chem,2002,277:28733-28741.
    37. Knudsen, K. E., Cavenee, W. K., Arden, K. C. D-type Cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res, 1999,59:2297-2301.
    38. Ganter, B., Fu, S., Lipsick, J. S. D-type Cyclins repress transcriptional activation by the v-Myb but not the c-Myb DNA-binding domain. Embo J,1998,17:255-268.
    39. Horstmann, S., Ferrari, S., Klempnauer, K. H. An alternatively spliced isoform of B-Myb is a transcriptional inhibitor. Oncogene,2000,19:298-306.
    40. Skapek, S., Rhee, J., Kim, P., et al. Cyclin-mediated inhibition of muscle gene expression via a mechanism that is independent of pRB hyperphosphorylation. Mol. Cell. Biol.1996,16:7043-7053.
    41. Skapek, S. X., Rhee, J., Spicer, D. B., et al. Inhibition of myogenic differentiation in proliferating myoblasts by Cyclin Dl-dependent kinase. Science,1995, 267:1022-1024.
    42. Bienvenu, F., Gascan, H., Coqueret, O. Cyclin Dl represses STAT3 activation through a CDK4-independent mechanism. J Biol Chem,2001,276:16840-16847.
    43. Opitz, O. G., Rustgi, A. K. Interaction between Spl and Cell Cycle Regulatory Proteins Is Important in Transactivation of a Differentiation-related Gene. Cancer Res, 2000,60:2825-2830.
    44. Ratineau, C., Petry, M. W., Mutoh, H., et al. Cyclin Dl represses the basic helix-loop-helix transcription factor, BETA2/NeuroD. J Biol Chem,2002,277: 8847-8853.
    45. Rao, S. S., Chu, C., Kohtz, D. S. Ectopic expression of Cyclin Dl prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol Cell Biol,1994,14:5259-5267.
    46. Adnane, J., Shao, Z., and Robbins, P. D. Cyclin Dl associates with the TBP-associated factor TAF (Ⅱ) 250 to regulate Sp1-mediated transcription. Oncogene, 1999,18:239-247.
    47. Yao, Y., Doki, Y., Jiang, W., et al. Cloning and Characterization of DIP1, a Novel Proterin That Is Related to the Id Family of Proteins. Exp Cell Res,2000,257:22-32.
    48. Wang, H., Shao, N., Ding, Q. M., et al. BRCA1 proteins are transported to the nucleus in the absence of serum and splice variants BRCA1a, BRCA1b are tyrosine phosphoproteins that associate with E2F, Cyclins and Cyclin dependent kinases. Oncogene,1997,15:143-157.
    49. Xia, C., Bao, Z., Tabassam, F., et al. GCIP, a Novel Human Grap2 and Cyclin D Interacting Protein, Regulates E2F-mediated Transcriptional Activity. J Biol Chem, 2000,275:20942-20948.
    50. Kato, J., Matsushime, H., Hiebert, S. W., et al. Direct binding of Cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the Cyclin D-dependent kinase CDK4. Genes Dev,1993,7:331-342.
    51. Ewen, M. E., Sluss, H. K., Sherr, C. J., et al. Functional interactions of the retinoblastoma protein with mammalian D-type Cyclins. Cell,1993,73:487-497.
    52. McKenna, N. J., Lanz, R. B., O'Malley, B. W. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev,1999,20:321-344.
    53. Shang, Y., Hu, X., DiRenzo, J., et al. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell,2000,103:843-852.
    54. Chen, H., Lin, R. J., Xie, W., et al. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell,1999,98: 675-686.
    55. Heinlein, C. A., Chang, C. Androgen receptor (AR) coregulators:an overview. Endocr Rev,2002,23:175-200.
    56. Pestell, R. G., Albanese, C., Reutens, A. T., et al. The Cyclins and Cyclin-Dependent Kinase Inhibitors in Hormonal Regulation of Proliferation and Differentiation. Endocr Rev,1999,20:501-534.
    57. Petre, C. E., Wetherill, Y. B., Danielsen, M., et al. Cyclin Dl:Mechanism and Consequence of Androgen Receptor Co-repressor Activity. J Biol Chem,2002,277: 2207-2215.
    58. Kenny, F. S., Hui, R., Musgrove, E. A., et al. Overexpression of Cyclin Dl messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res,1999,5:2069-2076.
    59. Rosen, E. D., Sarraf, P., Troy, A. E., et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell,1999,4:611-617.
    60. Tontonoz, P., Hu, E., Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARg2, a lipid-activated transcription factor. Cell,1994,79:1147-1156.
    61. Koeffler, H. P. Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res,2003,9:1-9.
    62. Sasaki, H., Tanahashi, M., Yukiue, H., et al. Decreased perioxisome proliferator-activated receptor gamma gene expression was correlated with poor prognosis in patients with lung cancer. Lung Cancer,2002,36:71-76.
    63. Terashita, Y., Sasaki, H., Haruki, N., et al. Decreased peroxisome proliferators-activated receptor gamma gene expression is correlated with poor prognosis in patients with esophageal cancer. Jpn J Clin Oncol,2002,32:238-243.
    64. Shtutman, M., Zhurinsky, J., Simcha, I., et al. The Cyclin Dl gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A,1999,96:5522-5527.
    65. Albanese, C., Johnson, J., Watanabe, G., et al. Transforming p21 [IMAGE] Mutants and c-Ets-2 Activate the Cyclin Dl Promoter through Distinguishable Regions. J Biol Chem,1995,270:23589-23597.
    66. Watanabe, G., Howe, A., Lee, R. J., et al. Induction of Cyclin Dl by simian virus 40 small tumor antigen. Proc Natl Acad Sci U S A,1996,93:12861-12866.
    67. Westwick, J. K., Lee, R. J., Lambert, Q. T., et al. Transforming Potential of Dbl Family Proteins Correlates with Transcription from the Cyclin Dl Promoter but Not with Activation of Jun NH2-terminal Kinase(p38/Mpk2)Serum Response Factor, or c-Jun. J Biol Chem,1998,273:16739-16747.
    68. Brown, J. R., Nigh, E., Lee, R. J., et al. Fos Family Members Induce Cell Cycle Entry by Activating Cyclin Dl. Mol Cell Biol,1998,18:5609-5619.
    69. Beier, F., Lee, R. J., Taylor, A. C., et al. Identification of the Cyclin Dl gene as a target of activating transcription factor 2 in chondrocytes. Proc Natl Acad Sci U S A, 1999,96:1433-1438.
    70. Matsumura, I., Kitamura, T., Wakao, H., et al. Involvement of Cyclin Dl in STAT5-mediated cell growth. Embo J,1999,18:1367-1377.
    71. Lee, R. J., Albanese, C., Stenger, R. J., et al. pp60v-src Induction of Cyclin Dl Requires Collaborative Interactions between the Extracellular Signal-regulated Kinase (p38) and Jun Kinase Pathways. J Biol Chem,1999,274:7341-7350.
    72. Guttridge, D. C., Albanese, C., Reuther, J. Y., et al. NF-kappa B Controls Cell Growth and Differentiation through Transcriptional Regulation of Cyclin Dl. Mol Cell Biol,1999,19:5785-5799.
    73. Joyce, D., Bouzahzah, B., Fu, M., et al. Integration of Rac-dependent Regulation of Cyclin Dl Transcription through a Nuclear Factor-kappa B-dependent Pathway. J Biol Chem,1999,274:25245-25249.
    74. Planas-Silva, M. D., Shang, Y., Donaher, J. L., et al. AIB1 Enhances Estrogen-dependent Induction of Cyclin Dl Expression. Cancer Res,2001,61: 3858-3862.
    75. Watanabe, G., Lee, R. J., Albanese, C., et al. Angiotensin Ⅱ activation of Cyclin Dl-dependent kinase activity. J Biol Chem,1996,271:22570-22577.
    76. D'Amico, M., Hulit, J., Amanatullah, D. F., et al. The integrin-linked kinase regulates the Cyclin Dl gene through glycogen synthase kinase 3beta and cAMP-responsive element-binding protein-dependent pathways. J Biol Chem,2000, 275:32649-32657.
    77. Westwick, J. K., Lambert, Q. T., Clark, G. J., et al. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol Cell Biol,1997,17:1324-1335.
    78. Bakiri, L., Lallemand, D., Bossy-Wetzel, E., et al. Cell cycle-dependent variations in c-Jun and JunB phosphorylation:a role in the control of CyclinDl expression. EmboJ,2000,19:2056-2068.
    79. Weitzman, J. B., Fiette, L., Matsuo, K., et al. JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell,2000,6:1109-1119.
    80. Lin, H. M., Lee, Y. J., Li, G., et al. Bcl-2 induces Cyclin Dl promoter activity in human breast epithelial cells independent of cell anchorage. Cell Death Differ,2001, 8:44-50.
    81. Welcsh, P. L., Lee, M. K., Gonzalez-Hernandez, R. M., et al. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci US A,2002,99:7560-7565.
    82. Albanese, C., Wu, K., D'Amico, M., et al. IKKalpha Regulates Mitogenic Signaling through Transcriptional Induction of Cyclin Dl via Tcf. Mol Biol Cell, 2003,14:585-599.
    83. Hulit, J., Bash, T., Fu, M., et al. The Cyclin Dl Gene Is Transcriptionally Repressed by Caveolin-1. J Biol Chem,2000,275:21203-21209.
    84. Ronchini, C., Capobianco, A. J. Induction of Cyclin Dl Transcription and CDK2 Activity by Notchic:Implication for Cell Cycle Disruption in Transformation by Notchic. Mol Cell Biol,2001,21:5925-5934.
    85. Whitehead, I. P., Lambert, Q. T., Glaven, J. A., et al. Dependence of Dbl and Dbs Transformation on MEK and NF-kappa B Activation. Mol Cell Biol,1999,19: 7759-7770.
    86. Watanabe, G., Albanese, C., Lee, R. J., et al. Inhibition of Cyclin Dl Kinase Activity Is Associated with E2F-Mediated Inhibition of Cyclin Dl Promoter Activity through E2F and Spl. Mol Cell Biol,1998,18:3212-3222.
    87. Lin, S. Y., Makino, K., Xia, W., et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol,2001,3:802-808.
    88. Castro-Rivera, E., Samudio, I., Safe, S. Estrogen Regulation of Cyclin Dl Gene Expression in ZR-75 Breast Cancer Cells Involves Multiple Enhancer Elements. J Biol Chem,2001,276:30853-30861.
    89. Sabbah, M., Courilleau, D., Mester, J., et al. Estrogen induction of the Cyclin Dl promoter:Involvement of a cAMP response-like element. Proc Natl Acad Sci U S A, 1999,96:11217-11222.
    90. Liu, M. M., Albanese, C., Anderson, C.M., et al. Opposing Action of Estrogen Receptors alpha and beta on Cyclin Dl Gene Expression. J Biol Chem,2002,277: 24353-24360.
    91. Wen, X., Lin, H. H., Shih, H. M., et al. Kinase activation of the non-receptor tyrosine kinase Etk/BMX alone is sufficient to transactivate STAT-mediated gene expression in salivary and lung epithelial cells. J Biol Chem,1999,274:38204-38210.
    92. Zhao, J., Pestell, R., Guan, J. L. Transcriptional Activation of Cyclin Dl Promoter by FAK Contributes to Cell Cycle Progression. Mol Biol Cell,2001,12:4066-4077.
    93. Schmidt, M., Fernandez de Mattos, S., van der Horst, A., et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of Cyclin D. Mol Cell Biol,2002,22:7842-7852.
    94. Lin, H. M., Pestell, R. G., Raz, A., et al. Galectin-3 enhances Cyclin Dl promoter activity through SPI and a cAMP-responsive element in human breast epithelial cells. Oncogene,2002,21:8001-8010.
    95. Shie, J. L., Chen, Z. Y., Fu, M., et al. Gut-enriched Kruppel-like factor represses Cyclin Dl promoter activity through Spl motif. Nucleic Acids Res,2000,28: 2969-2976.
    96. Sampson, E. M., Haque, Z. K., Ku, M. C., et al. Negative regulation of the Wnt-β-catenin pathway by the ptranscriptional repressor HBP1. Embo J,2001,20: 4500-4511.
    97. Recio, J. A., Merlino, G. Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and Cyclin Dl. Oncogene, 2002,21:1000-1008.
    98. Lasorella, A., Iavarone, A., Israel, M. A. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol Cell Biol,1996,16:2570-2578.
    99. Zhang, Z. K., Davies, K. P., Allen, J., et al. Cell Cycle Arrest and Repression of Cyclin Dl Transcription by IN11/hSNF5. Mol Cell Biol,2002,22:5975-5988.
    100. Boulon, S., Dantonel, J. C., Binet, V., et al. Oct-1 Potentiates CREB-Driven Cyclin Dl Promoter Activation via a Phospho-CREB- and CREB Binding Protein-Independent Mechanism. Mol Cell Biol,2002,22:7769-7779.
    101. Rocha, S., Martin, A. M., Meek, D. W., et al. p53 Represses Cyclin Dl Transcription through Down Regulation of Bcl-3 and Inducing Increased Association of the p52 NF-{kappa}B Subunit with Histone Deacetylase 1. Mol Cell Biol,2003,23: 4713-4727.
    102. Westerheide, S. D., Mayo, M. W., Anest, V., et al. The Putative Oncoprotein Bcl-3 Induces Cyclin Dl To Stimulate Gl Transition. Mol Cell Biol,2001,21: 8428-8436.
    103. Albanese, C., D'Amico, M., Reutens, A. T., et al. Activation of the Cyclin Dl gene by the El A-associated protein p300 through AP-1 inhibits cellular apoptosis. J Biol Chem,1999,274:34186-34195.
    104. Soh, J. W., Weinstein, I. B. Roles of specific isoforms of protein kinase C in the transcriptional control of Cyclin Dl and related genes. J Biol Chem,2003,278: 34709-34716.
    105. Page, K., Li, J., Hodge, J. A., et al. Characterization of a Racl Signaling Pathway to Cyclin Dl Expression in Airway Smooth Muscle Cells. J Biol Chem,1999,274: 22065-22071.
    106. Wulf, G. M., Ryo, A., Wulf, G. G., et al. Pinl is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards Cyclin Dl. Embo J,2001,20:3459-3472.
    107. Wang, C., Fu, M., D'Amico, M., et al. Inhibition of cellular proliferation through IkappaB kinase-independent and peroxisome proliferator-activated receptor gamma-dependent repression of Cyclin Dl. Mol Cell Biol,2001,21:3057-3070.
    108. Soriano, S., Kang, D. E., Fu, M., et al. Presenilin 1 negatively regulates beta-catenin/T cell Factor/Lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and Notch processing. J. J Cell Biol,2001,152: 785-794.
    109. Persad, S., Troussard, A. A., McPhee, T. R., et al. Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J Cell Biol,2001,153:1161-1174.
    110. Henry, D. O., Moskalenko, S. A., Kaur, K. J., et al. Ral GTPases Contribute to Regulation of Cyclin Dl through Activation of NF-kappa B. Mol Cell Biol,2000, 20:8084-8092.
    111. Romieu-Mourez, R., Kim, D. W., Shin, S. M., et al. Mouse Mammary Tumor Virus c-rel Transgenic Mice Develop Mammary Tumors. Mol Cell Biol,2003,23: 5738-5754.
    112. Denis, G. V., Vaziri, C., Guo, N., et al. RING3 Kinase Transactivates Promoters of Cell Cycle Regulatory Genes through E2F. Cell Growth Differ,2000,11:417-424.
    113. Sinibaldi, D., Wharton, W., Turkson, J., et al. Induction of p21 WAF1/CIP1 and Cyclin Dl expression by the Src oncoprotein inmouse fibroblasts:role of activated STAT3 signaling. Oncogene,2000,19:5419-5427.
    114. Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., et al. Stat3 as an oncogene. Cell,1999,98:295-303.
    115. Beier, F., Ali, Z., Mok, D., et al. TGFβ and PTHrP Control Chondrocyte Proliferation by Activating Cyclin Dl Expression. Mol Biol Cell,2001,12: 3852-3863.
    116. Hilton, T. L., Wang, E. H. Transcription Factor IID Recruitment and Sp1 Activation. dual function of Tafl in Cyclin Dl transcription. J Biol Chem,2003,278: 12992-13002.
    117. Yoshida, Y., Nakamura, T., Komoda, M., et al. Mice lacking a transcriptional corepressor Tob are predisposed to cancer. Genes Dev,2003,17:1201-1206.
    118. Grueneberg, D. A., Pablo, L., Hu, K. Q.,et al. Functional Screen in Human Cells Identifies UBF2 as an RNA Polymerase ⅡTranscription Factor That Enhances the {beta}-Catenin Signaling Pathway. Mol Cell Biol,2003,23:3936-3950.
    119. Serrano, M., Hannon, G. J., Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of Cyclin D/CDK4. Nature,1993,366:704-707.
    120. Diehl JA. Cycling to cancer with Cyclin Dl. Cancer Biol Ther,2002,1:226-231.
    121. Weinstein IB. Relevance of Cyclin Dl and other molecular markers to cancer chemoprevention. J Cell Biochem Suppl,1996,25:23-28.
    122. Mallya SM, Arnold A. Cyclin Dl in parathyroid disease. Front Biosci,2000, 5:D367-D371.
    123. Arnold A, Motokura T, Bloom T, et al. The putative oncogene PRAD1 encodes a novel Cyclin. Cold Spring Harb Symp Quant Biol,1991,56:93-97.
    124. Hemmer S, Wasenius VM, Haglund C, et al. Deletion of 11q23 and Cyclin Dl overexpression are frequent aberrations in parathyroid adenomas. Am J Pathol,2001, 158:1355-1362.
    125. Vasef MA, Brynes RK, Sturm M, et al. Expression of Cyclin Dl in parathyroid carcinomas, adenomas, and hyperplasias:a paraffin immunohistochemical study. Mod Pathol,1999,12:412-416.
    126. Imanishi Y, Hosokawa Y, Yoshimoto K, et al. Primary hyperparathyroidism caused by parathyroid-targeted overexpression of CyclinDl in transgenic mice. J Clin Invest,2001,107:1093-1102.
    127. Donnellan R, Chetty R. Cyclin Dl and human neoplasia. J Clin Pathol:Mol Part,1998,51:1-7.
    128. Betticher, D. C., Thatcher, N., Altermatt, H. J., et al. Alternate splicing produces a novel Cyclin Dl transcript. Oncogene,1995,11:1005-1011.
    129. Matthias, C., Branigan, K., Jahnke, V., et al. Polymorphism within the Cyclin Dl gene is associated with prognosis in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res,1998,4:2411-2418.
    130. Dhar, K. K., Branigan, K., Howells, R. E., et al. Prognostic significance of Cyclin Dl gene (CCND1) polymorphism in epithelial ovarian cancer. Int J Gynecol Cancer,1999,9:342-347.
    131. Kong, S., Wei, Q., Amos, C. I., et al. Cyclin Dl Polymorphism and Increased Risk of Colorectal Cancer at Young Age. J Natl Cancer Inst,2001,93:1106-1108.
    132. Wang, L., Habuchi, T., Takahashi, T., et al. Cyclin Dl gene polymorphism is associated with an increased risk of urinary bladder cancer. Carcinogenesis,2002,23: 257-264.
    133. Wang, L., Habuchi, T., Mitsumori, K., et al. Increased risk of prostate cancer associated with AA genotype of Cyclin DI gene A870G polymorphism. Int J Cancer, 2003,103:116-120.
    134. Zhang, J., Li, Y., Wang, R., et al. Association of Cyclin Dl (G870A) polymorphism with the susceptibility to esophageal and gastric cardiac carcinoma in a northern Chinese population. Int J Cancer,2003,105:281-284.
    135. Qiuling, S., Yuxin, Z., Suhua, Z., et al. Cyclin Dl Gene Polymorphism and Susceptibility to Lung Cancer in a Chinese Population. Carcinogenesis,2003,24: 1499-1503.
    136. Feig, L. A., Cooper, G.M.Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol Cell Biol,1988,8:3235-3243.
    137. Feig, L. A. The many roads that lead to Ras. Science,1993,260:767-768.
    138. Boguski, M. S., McCormick, F. Proteins regulating Ras and its relatives. Nature, 1993,366:643-654.
    139. McCormick, F. How receptors turnras on. Nature,1993,363:15-16.
    140. Filmus, J., Robles, A. I., Shi, W., et al. Induction of Cyclin DI overexpression by activated ras. Oncogene,1994,9:3627-3633.
    141. Engelman, J. A., Lee, R. J., Karnezis, A., et al. Reciprocal Regulation of Neu Tyrosine Kinase Activity and Caveolin-1 Protein Expression in Vitro and in Vivo. J Biol Chem,1998,273:20448-20455.
    142. Yu, Q., Geng, Y., Sicinski, P. Specific protection against breast cancers by Cyclin Dl ablation. Nature,2001,411:1017-1021.
    143. Robles, A. I., Rodriguez-Puebla, M. L., Glick, A. B., et al. Reduced skin tumor development in Cyclin Dl-deficient mice highlights the oncogenic ras pathway in vivo. Genes Dev,1998,12:2469-2474.
    144. Lee, R. J., Albanese, C., Fu, M., et al. Cyclin Dl is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol,2000,20:672-683.
    145 Bowe, D. B., Kenney, N. J., Adereth, Y., et al. Suppression of her2/neu mammary tumor growth in Cyclin Dl-deficient mice is compensated for by Cyclin E. Oncogene, 2002,21:291-298.
    146. Bromberg, J. Stat proteins and oncogenesis. J Clin Invest,2002,109:1139-1142.
    147. Battle, T. E., Frank, D. A. The Role of STATs in Apoptosis. Curr Mol Med,2002, 2:381-392.
    148. Epling-Burnette, P. K., Zhong, B., Bai, F., et al. Cooperative regulation of Mcl-1 by Janus kinase/stat and phoshatidylinositol 3-kinase contribute to granulocyte-macrophage colony-simulating factor-delayed apoptosis in human neutrophils. J Immunol,2001,166:7486-7495.
    149. de Groot, R. P., Raaijmakers, J. A., Lammers, J. W., et al. STAT5-Dependent CyclinDl and Bcl-xL expression in Bcr-Abl-transformed cells. Mol Cell Biol Res Commun,2000,3:299-305.
    150. Silva, M., Benito, A., Sanz, C., et al. Erythropoietin Can Induce the Expression of Bcl-xL through Stat5 in Erythropoietin-dependent Progenitor Cell Lines. J Biol Chem,1999,274:22165-22169.
    151. Qin, J. Z., Zhang, C. L., Kamarashev, J., et al. IL-7 and IL-15 regulate the expression of the bcl-2 and c-myb genes in cutaneous T cell lymphoma (CTCL) cells. Blood,2001,98:2778-2783.
    152. Catlett-Falcone, R., Landowski, T. H., Oshiro, M. M., et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity,1999,10:105-115.
    153. Brockman, J. L., Schroeder, M. D., Schuler, L. A. PRL Activates the Cyclin DI Promoter Via the Jak2/Stat Pathway. Mol Endocrinol,2002,16:774-784.
    154. Bellido, T., O'Brien, C. A., Roberson, P. K., et al. Transcriptional Activation of the p21WAF1,CIP1,SDI1 Gene by Interleukin-6 Type Cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cell. J Biol Chem,1998,273:21137-21144.
    155. Bowman, T., Broome, M. A., Sinibaldi, D., et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA,2001,98:7319-7324.
    156. Darnell, J. E., Jr. STATs and Gene Regulation. Science,1997,277:1630-1635.
    157. Liu, J. J., Chao, J. R., Jiang, M. C., et al. Ras transformation results in an elevated level of Cyclin Dl and acceleration of Gl progression in NIH 3T3 cells. Mol Cell Biol,1995,15:3654-3663.
    158. Polakis, P. Wnt signaling and cancer. Genes Dev,2000,14:1837-1851.
    159. Barker, N., Clevers, H. Catenins. Wnt signaling and cancer. Bioessays,2000,22: 961-965.
    160. Barker, N., Morin, P. J., Clevers, H. The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res,2000,77:1-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700