OVA免疫耐受因子制备及其免疫活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫耐受现象普遍存在,有生理性和病理性两种表现形式。病理性免疫耐受的发生与外周免疫耐受的形成、维持及打破密切相关。1995年,CD4+CD25+调节性T细胞的发现使外周免疫耐受的研究取得了突破性的进展,大量证据证实CD4+CD25+ T细胞在外周免疫耐受形成和维持中发挥关键性作用。CD4+CD25+ T细胞主要是通过细胞接触以及分泌抑制性细胞因子如TGF-β、IL-10来介导外周免疫耐受的形成与维持。CD4+CD25+ T细胞表面的众多分子被证实参与CD4+CD25+ T细胞抑制功能的调节,但这些分子并不能单独介导外周耐受的形成。是否存在一些分子能够不依赖于细胞、独立地传递免疫耐受信息,从而使受体建立并维持抗原特异性的外周免疫耐受,至今未见报道。深入探讨这类分子的存在、来源等,不仅对阐明其形成的分子机理,丰富免疫耐受理论有着重要的学术意义,研究的结果也对临床免疫耐受相关疾病的治疗有着重要的应用价值。
     本研究以卵清蛋白(ovalbumin,OVA)和4周龄BALB/c小鼠为材料,采用尾静脉注射、淋巴细胞分离技术、分子筛离心分离方法、淋巴细胞增殖试验、流式细胞术、ELISA、迟发型超敏反应(delayed type hypersensitivity,DTH)等技术,首先建立OVA外周免疫耐受小鼠模型,对其进行鉴定;分离此模型小鼠脾淋巴细胞,裂解获得不同组分,并鉴定出能够使4周龄正常BALB/c建立OVA外周免疫耐受的组分,命名为OVA免疫耐受因子(OVA immune tolerant factor,OVA ITF);分离OVA外周免疫耐受小鼠的脾淋巴细胞中的各T细胞亚群,按照OVA ITF制备方法制备各亚群的组分,对其转移OVA免疫耐受特性进行研究。获得如下研究结果:
     1.成功建立了OVA外周免疫耐受BALB/c小鼠模型,该小鼠OVA特异性T细胞增殖明显受到抑制,CD4+CD25+ T细胞在CD4亚群中的比例显著升高。
     2.体外试验显示,免疫耐受小鼠脾淋巴细胞裂解物中小于3ku的组分(OVA ITF)能显著抑制静息态OVA特异性T细胞克隆的增殖,抑制率达到60%;同时,该因子对活化态淋巴细胞增殖的抑制率高达70%。而添加分子量大于5ku和3-5ku间的组分,对淋巴细胞增殖的抑制表现为抗原非特异性。
     3.转移OVA免疫耐受小鼠脾淋巴细胞裂解物各组分,只有分子量小于3ku的组分(OVA ITF)能够抗原特异性地抑制受体鼠OVA淋巴细胞克隆的活化;而分子量大于5ku和3-5ku间的组分并无此效应。
     4.转移试验中,只有CD4+CD25+T细胞的ITFCD4+CD25+能够显著性抑制OVA特异性DTH反应、抑制OVA特异性T细胞的增殖,而ITFCD4-和ITFCD4+CD25-无此效应。
     5.在ITFCD4+CD25+建立的OVA免疫耐受小鼠上,脾淋巴细胞中CD4+CD25+ T细胞在CD4亚群的比例显著升高,同时脾淋巴细胞分泌高水平的TGF-β1。
     6.转移ITFCD4+CD25+和CD4+CD25+ T细胞后,受体小鼠脾淋巴细胞中CD4+CD25+ T细胞的比例以及抑制性细胞因子的分泌水平存在差异。
     研究结果表明,从OVA耐受鼠脾淋巴细胞的CD4+CD25+ T细胞亚群中发现了一种新型的低分子量(3ku)的活性成分,即OVA ITF。它能够在分子水平介导正常BALB/c小鼠建立OVA外周免疫耐受,这种分子只能由OVA外周免疫耐受小鼠的CD4+CD25+T细胞产生。
The controls of immune tolerance depend on two regulatory mechanisms which were called central tolerance and peripheral tolerance. To understand the mechanisms of peripheral tolerance will yield practical clues that translate to clinical therapy of autoimmune diseases, graft-rejection, and cancers which escape the CTL killing by forming specific tolerance to peripheral tumor antigen in host. Since 1995, CD4+CD25+ T cell subpopulation was found and accumulating researches have demonstrated that CD4+CD25+ regulatory T cells play a critical role on the establishment and maintenance of peripheral tolerance. The mechanism of Treg-mediated peripheral tolerance is dependent on cell-cell contact and/or suppressor cytokines such as IL-10 and TGF-β. During the formation process of peripheral tolerance, several molecules are related to the regulatory of suppressor activity of CD4+CD25+ T cells; however, they are not the candidate molecules which are responsible for the establishment of peripheral tolerance independently. It is unknown whether some molecules which can induce peripheral tolerance exist. Thus, to investigate the existence, origin and chemical nature of such molecules will not only provide direct molecular evidence to the mechanisms of Treg-medited peripheral tolerance, but also might introduce a novel pathway for clinical therapy present.
     In this study, we used OVA and BALB/c mice as experimental materials to induce immune tolerance model. Then, we prepared three fractions with different molecular weights from splenic lymphocytes of OVA tolerant mice and transferred them into na?ve BALB/c mice to analyze whether any of them could establish peripheral tolerance in recipient mice. Furthermore, to clarify the origin of OVA ITF, we prepared factors smaller than 3ku from CD4+CD25+ T cells, and CD4+CD25- T cells, as well as CD4-T cells from OVA tolerant mice, and transfer them into na?ve mice, respectively. Then, antigen-specific DTH reaction and lymphocyte proliferation, cytokine secretion, the percentage of CD4+CD25+ T cells were assayed, finding the results as following:
     1. After a low dose of OVA were injected into na?ve mice, a significantly lower in proliferation responses of OVA-specific lymphocytes was found and the percentage of CD4+CD25+ T cells within CD4 subset increased dramatically. These results demonstrate that OVA-specific tolerance has been set up in BALB/c mice.
     2. In vitro, adding to OVA ITF suppressed remarkably the proliferation of na?ve OVA-specific lymphocytes and the inhibit effect reached 60%; the inhibit effect to activated OVA-specific lymphocytes was more than 70%, whereas the factors which either larger than 5ku or between 3ku to 5ku suppressed lymphocyte proliferation in an antigen-nonspecific manner.
     3. Adoptive transfer of factors with different molecular weight from splenic lymphocyte lysate of OVA tolerant mice, OVA ITF significantly suppressed the proliferation of OVA-specific lymphocytes, however, the same effects could not be observed on the factors which either larger than 5ku or between 3ku to 5ku.
     4. Mice received either ITFCD4+CD25+ or CD4+CD25+ T cells induced successfully OVA-specific tolerance with a significant reduction of the DTH reaction and the responses of OVA-specific T cell proliferation, while mice transferred with ITFCD4- and ITFCD4+CD25- showed no obvious suppressive effects on the same analysis.
     5. Mice transferred with ITFCD4+CD25+ establish OVA-specific tolerance in recipient mice, performing in a sharp increase in the percentage of CD4+CD25+ T cells within CD4 subset and a high level of TGF-β1.
     6. The effects on peripheral tolerance mediated by ITFCD4+CD25+ were nearly the same as that of CD4+CD25+ T cells of OVA tolerant mice, although the time needed to establish immune tolerance and induction of the level of IL-10 for ITFCD4+CD25+ and CD4+CD25+ T cells were different.
     In conclusion, we have demonstrated that a smaller than 3ku factor (OVA ITF) extracted from CD4+CD25+ T cells in OVA tolerant mice is able to transfer OVA-specific tolerance to na?ve mice. It indicates that OVA ITF might play a crucial role for CD4+CD25+ T cells on exerting their immunoregulatory function, which will provide evidence to further clarify the molecular mechanisms of peripheral tolerance mediated by CD4+CD25+ T cells.
引文
[1]安云庆,高晓明.医学免疫学基础[M].北京:北京大学医学出版社, 2004.
    [2] Polly M. Tolerance, Danger, and the extended family[J]. Annu Rev lmmunol, 1994, 12: 991-1045.
    [3] Herman W, Elizabeth A, Paul J F, et al. Infectious tolerance and the long term acceptance of transplanted tissue[J]. Immunol Rev, 2006, 212: 301-313.
    [4] Herman W, Stephen C. Exploiting Tolerance processes in transplantation[J]. Science, 2004, 305: 209-212.
    [5] Bala KK. and Moudgil KU. Induction and maintenance of self tolerance: the role of CD4+CD25+ regulatory T cells[J]. Arch Immunol Ther Exp (Warsz), 2006, 54:307-321.
    [6] Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakuown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155: 1151-1164
    [7] Wing K, Suri-Payer E, Rudin A. CD4+CD25+-regulatory T cells from mouse to man[J]. Scand J Immunol, 2005, 62(1): 1-15.
    [8] Cobbold SP, Graca L, Lin CY, et al. Regualtory T cells in the induction and maintenance of peripheral transplantation tolerance[J]. Transpl Int, 2003, 16:66-75.
    [9] Kohm AP, Carpentier PA, Anger HA, et al. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis[J]. J Immunol, 2002, 169:4712-4716.
    [10] Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses[J]. Annu Rev Immunol, 2004, 22:531-562.
    [11] Kingsley CI, Karim M, Bushell AR, et al. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregualtion of alloresponses[J]. J Immunol, 2002, 168:1080-1086.
    [12] Nakamura K, Kitani A, Fuss I, et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice[J]. J Immunol, 2004, 172:834-842.
    [13] Nakamura K, Kitani A. and Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta[J]. J Exp Med, 2001, 194:629-644.
    [14] von Boehmer H. Mechanisms of suppression by suppressor T cells[J]. Nat Immunol, 2005, 6:338-344.
    [15] Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance[J]. Nat immunol, 2002, 3:135-142.
    [16] Burnet F. Clonal selection theory of acquired immunity[B]. Cambridge: Cambridge University Press, 1959.
    [17] Dresser DW. Specific inhibition of antibody production II. Paralysis induced in adult mice by small quantities of protein antigen[J]. Immunology, 1962, 5(3), 378-388.
    [18] Mitchison NA. The dosage requirements for immunological paralysis by soluble proteins[J]. Immunology, 1968, 15(4): 509–530.
    [19] Bouneaud C, Kourilsky P. and Bousso P. Impact of negative selection on the T cell repertoirereactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion[J]. Immunity, 2000, 13:829–840.
    [20] Kuchroo VK, Anderson AC, Waldner H, et al. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the auto pathogenic T cell repertoire [J]. Annu Rev Immunol, 2002, 20: 101-123.
    [21] Ohashi PS, Oehen S, Buerki K., et al. Ablation of“tolerance”and induction of diabetes by virus infection in viral antigen transgenic mice[J]. Cell, 1991, 65:305–317.
    [22] Alferink J, Tafuri A, Vestweber D, et al. Control of neonatal tolerance to tissue antigens by peripheral T cell trafficking[J]. Science, 1998, 282:1338–1341.
    [23] Kurts C, Miller JF, Subramaniam RM, et al. Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction[J]. J Exp Med, 1998, 188:409–414.
    [24] Jenkins MK. and Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo[J]. J Exp Med, 1987, 165:302–319.
    [25] Lechner O, Lauber J, Franzke A, et al. Fingerprints of anergic T cells[J]. Curr Biol, 2001, 11:587–595.
    [26] Perez VL, Van Parijs L, Biuckians A, et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement[J]. Immunity,1997, 6:411–417.
    [27] Smith KM, Eaton AD, Finlayson LM, et al. Oral tolerance[J]. Am J Respir Crit Care Med, 2000, 162(4 Pt 2): S175-178.
    [28] Watanabe T, Yoshida M, Shirai Y, et al. Administration of an antigen at a high dose generates regulatory CD4+ T cells expressing CD95 ligand and secreting IL-4 in the liver[J]. J Immuol, 2002, 168(5):2188-2199.
    [29] Zhang ZX, Yang L, Young KJ, et al. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression[J]. Nat Med, 2000, 6: 782-789.
    [30] Lutz MB, Suri RM, Niimi M, et al.Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resisitant and prolong allograft survival in vivo[J]. Eur J Immunol, 2000, 30(7): 1813-1822.
    [31] Matsue H, Kusuhara M, Matsue K, et al. Dendritic cell-based immunoregulatory strategies[J].Int Arch Allergy Immunol, 2002, 127(4): 251-258.
    [32] Wakkach A, Fournier N, Brun Valérie, et al. Characterization of dendritic cells that induce tolerance and T regulatory cell differentiation in vivo[J]. Immunity, 2003, 18: 605–617.
    [33] Takahashi T, Kuniyasu Y, Toda M, et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state[J]. Int immunol, 1998, 10:1969-1980.
    [34] Brunkow ME, Jeffery EW. Hjerrild KA., et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse[J]. Natrue, 2001, 27:68-73.
    [35] Hu H, Djuretic I, et al. Transcriptional partnwes in regulatory T cells:Foxp3, Runx and NFAT[J]. Trends In Immunology, 2007, 28:329-332.
    [36] Wu YQ, Borde M, Heissmeyer V, et al. Foxp3 controls regulatory T cell function throughcooperation with NFAT[J]. Cell, 2006,126:375-387.
    [37] Longhi MS, Hussain MJ, Mitry RR, et al. Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis[J]. J Immunol, 2006, 176(7): 4484-4491.
    [38] Viglietta A, Weiner HL, Hafler DA, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple scerosis[J]. J. Exp. Med, 2004, 199(7): 971-979.
    [39] Elhrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory Tcells in rheumatoid arthritis and seversal by anti-TNFαtherapy[J]. J. Exp. Med, 2004, 200(3): 277-285.
    [40] Lindley S, Dayan CM, Bishop A, et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes[J]. Diabetes, 2005, 174(1): 164-173.
    [41] Balandina A, Lecart S, Dartevelle P, et al. Functoinal defect of CD4+CD25+ regulatory T cells in patients with autoimmune myasthenia gravis[J]. Blood, 2005, 105(2): 735-741.
    [42] Inada S, Yoshino S, Haque MA, et al. Clonal an ergy is a potent mechanism of oral tolerance in the suppression of acute antigen-induced arthritis in rats by oral administration of the inducing antigen [J].Cell Immunol, 1997, 175(1): 67-75.
    [43] Morris GP, Kong YC. Interference with CD4+CD25+ T-cell-mediated tolerance to experimental autoimmune thyroiditis by glucocorticoid-induced tumor necrosis factor receptor monoclonal antibody[J]. J Autoimmun, 2006 Feb;26(1):24-31.
    [44] Howard L, Weiner MD. Oral tolerance for the treatment of autoimmune diseases[J] Annu Rev Med, 1997, 48: 341-351.
    [45] Rossini AA. Autoimmune diabetes and the circle of tolerance[J]. Diabetes, 2004, 53(2): 267-75.
    [46]谢蜀生,何球藻,龚非力,等.国外医学免疫学分册,2000, 23(1): 60-62.
    [47] Hall BM, Fava L, Chen J, et al. Anti-CD4 monoclonal antibody-induced tolerance to MHC-incompatible cardiac allografts maintained by CD4+ suppressor T cells that are not dependent upon IL-4[J]. J Immunol, 1998, 161(10):5147-56.
    [48] Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakuown of a single mechanism of self-tolerance causes various autoimmune diseases[J].J Immunol, 1995, 155(3): 1151-64.
    [49] Rouse BT, Sarangi PP, Suvas S. Regulatory T cells in virus infectionsal[J]. Immunol Rev, 2006, 212(1): 272–286.
    [50] Stoop JN, Molen RG, Baan CC. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection[J].Hepatology, 2005, 41(4): 771–778.
    [51] Rushbrook SM, Ward SM, Unitt E, et al. Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection[J]. J Virol, 2005, 79(12): 7852–7859.
    [52] MacDonald AJ, Duffy M, Brady MT, et al. CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis C virus-infected persons[J]. J Infect Dis , 2002, 185(6): 720–727.
    [53] Suvas S, Azkur AK, Kim BS, et al. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions4[J]. J Immunol, 2004, 172(7): 4123–4132.
    [54] Suvas S, Kumaraguru U, Pack CD, et al. CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses,”[J]. J. Exp. Med, 2003, 198(6): 889–901.
    [55] Weiss L, Donkova-Petrini V, Caccavell L, et al. Human immunodeficiency virusdriven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients[J]. Blood, 2004 ,104(10): 3249–3256.
    [56]郝春秋,冯志华,周永兴等. T细胞疫苗对HCV的清除作用[J].第四军医大学学报, 2004, 25(24):封2-01.
    [57] K?ser T, Gerner W, Hammer SE, et al. Phenotypic and functional characterisation of porcine CD4(+)CD25(high) regulatory T cells[J]. Vet Immunol Immunopathol, 2008, 122(1-2): 153-158.
    [58] Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance[J]. Nat Rev Cancer, 2005, 5(4): 263–274.
    [59] Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer[J]. Cancer Res, 2001, 61(12): 4766–4772.
    [60] Wolf AM, Wolf D, Steurer M, et al. Increase of regulatory T cells in the peripheral blood of cancer patients[J].Clin Cancer Res, 2003,9(2): 606–612.
    [61] Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma[J]. J Immunol, 2002, 169(5): 2756–2761.
    [62] Ormandy LA, Hillemann T, Wedemeyer H, et al. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma[J]. Cancer Res, 2005, 65(6): 2457–2464.
    [63] Fiore F, Nuschak B, Peola S, et al. Exposure to myeloma cell lysates affects the immune competence of dendritic cells and favors the induction of Tr1-like regulatory T cells[J]. Eur J Immunol, 2005, 35(4): 1155–1163.
    [64] Wei S, Kryczek I, Zou L, et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinomar[J]. Cancer Res, 2005, 65(12): 5020–5026.
    [65] Zou WP. Immunosuppressive networks in the tumor environment and their therapeutic relevance [J]. Nat Rev Cancer, 2005, 5(4): 263-274.
    [66] Sutmuller RP, van Duivenvoorde LM, van Elsas A, et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses[J]. J Exp med, 2001, 194: 823–832.
    [67] Koni PA, Sacca R, Lawton P, et al. Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice[J]. Immunity. 1997, 6(4): 491-500.
    [68] Burks AW, Laubach S, Jones SM. Oral tolerance, food allergy, and immunotherapy Implications for future treatment[J]. J Allergy Clin Immunol. 2008, 121(6): 1344-1350.
    [69] Weiner HL, Mackin GA, Matsui M, et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis[J]. Science. 1993, 259(5099):1321-1324.
    [70] Matta B, Jha P, Bora PS, et al. Tolerance to melanin-associated antigen in autoimmune uveitis is mediated by CD4+CD25+ T-regulatory cells[J]. Am J Pathol, 2008, 173(5):1440-1454.
    [71] Chen Y, Inobe J, Weiner HL. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression[J]. J Immuol, 1995, 155(2): 910-916.
    [72] Qian JH, Hashimoto T, Fujiwara H, et al. Studies on the induction of tolerance to alloantigensⅠ. The abrogation of potentials for delayed-type-hypersensitivity responses to alloantigens by portal venous inoculation with allogeneic cells[J]. J Immunol, 1985, 134: 3656-3661.
    [73] Wilkinson I, Chung-Ja, Glen ML, et al. Tolerance Induction in mice by Conjugates of Monoclonal Immunoglobulins and Monomethoxypolyethylene Glycol[J]. J Immunol, 1987, 139: 326-331.
    [74] Takayashiki T, Asakura H, Ku G, et al. Infectious tolerance develops after intrathymic alloantigen induced acceptance of rat heart allograft can be adoptively transferred [J]. Surgery, 2005, 138(2): 254-260.
    [75] Tang HW, Braley-Mullen H. Intravenous administration of deaggregated mouse thyroglobulin suppresses induction of experimental autoimmune thyroiditis and expression of both Th1 and Th2 cytokines[J]. Int Immunol, 1997, 9(5):679-687.
    [76] Goss JA, Nakafusa Y, Roland CR, et al. Immunological tolerance to a defined myelin basic protein antigen administered intrathymically[J]. J Immunol, 1994, 153(9): 3890-3898.
    [77] Akkoc T, Eifan AO, Aydogan M, et al.Transfer of T cells from intranasal ovalbumin-immunized mice ameliorates allergic response in OVA-sensitized recipient mice[J]. Allergy Asthma Proc, 2008, 29(4):411-416.
    [78]金莉萍,李大金,王明雁,等.过继转输胚胎抗原耐受T细胞诱导自然流产孕鼠母-胎免疫耐受[J].现代免疫学, 2004, 24(6): 507-511.
    [79] Kupiec-Weglinski JW, Onodera K, Volk HD. The "infectious" tolerance pathway in organ allograft recipients[J].Transplant Proc, 1998, 30(4):1595-7.
    [80] Ostroukhova M, Devaux C, Oriss T, et al. Tolerance induced by inhaled antigen involves CD4+T cells expressing membrane-bound TGF-βand FOXP3[J]. J Clin Invest, 2004, 114:28-38.
    [81] Kataoka M, Margenthaler JA, Ku G, et al. "Infectious tolerance" develops after the spontaneous acceptance of Lewis-to-Dark Agouti rat liver transplants [J]. Surgery, 2003, 134(2): 227-234.
    [82] Cyprian A, Gardine, Tsuyoshi K, et al. Characterization of the T lymphocyte subsets and lymphoid populations involved in the induction of low-dose oral tolerance to human thyroglobulin [J]. Cell Immunol, 2001, 212: 1-15.
    [83] Kearley J, Robinson DS, Lloyd CM. CD4+CD25+ regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling[J]. J Allergy Clin Immunol, 2008, 122(3): 617-624.
    [84] Jee Y, Piao WH, Liu R, et al. CD4+CD25+ regulatory T cells contribute to the therapeutic effects of glatiramer acetate in experimental autoimmune encephalomyelitis[J]. Clin Immunol, 2007, 125(1): 34-42.
    [85] Zenclussen AC, Gerlof K., et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion[J]. American Journal of Pathology, 2005, 166(3):811-822.
    [86] Taylor PA., Noelle RJ, Blazar BR, et al. CD4 (+) CD25 (+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade [J]. J Exp Med, 2001, 193: 1311-1318.
    [87] Hofmann P, Famann J, Edier M, et al. Doaor-type CD4 (+) CD25 (+) Regulatory T cells suppresses lethal acute graft-versus-host Disease after allogeneic bone marrow transplantation [J]. J Exp Med,2002, 196(3): 389-399.
    [88] Hanash AM, Levy RB. Donor CD4+ CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation [J]. Blood, 2005, 105(4): 1828-1836.
    [89] Graca L, Thompson S, Lin CY, et al. Both CD4 (+) CD25 (+) and CD4 (+) CD25 (-) regulatory cells mediate dominant transplantation tolerance [J]. J Immunol, 2002, 168: 5558-5565.
    [90] Unger WW, Hauet-Broere F, Jansen W, et al. Early events in peripheral regulatory T cell induction via the nasal mucosa[J]. J Immunol, 2003, 171(9):4592-603.
    [91] Sun JB, Raghavan S, Sj?ling A, et al. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+CD25+ and Foxp3-CD25- CD4+ regulatory T cells[J]. J Immunol, 2006, 177(11):7634-7644.
    [92] Zheng SG, Wang JH, Gray JD, et al. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-βand IL-10[J]. J Immunol, 2004, 172(9): 5213-5221.
    [93] Bektas H, Schrem H, Lehner F, et al. Blood transfers infectious immunologic tolerance in MHC-incompatible heart transplantation in rats [J]. J Heart Lung Transplant, 2005, 24(5): 614-617.
    [94] Witkowski P, Liu JW, Jin MX, et al. Infectious tolerance mediated by CD8+ T-suppressor cells after UV-B-irradiated donor-specific transfusion and rat heart transplantation[J]. Transplant Proc, 2005, 37(1): 43-45.
    [95] Bushell A, Karim M, Kingsley CI, et al. Pretransplant blood transfusion without additional immunotherapy generates CD25+ CD4+ regulatory T cells: a potential explanation for the blood-transfusion effect [J]. Transplantation, 2003, 76 (3): 449-455.
    [96] Karlsson M, Lundin S, Dahlgren U, et al.”tolersomes”are produced by intestinal epithelial cells[J]. Eur J Immunol, 2001, 1(10):2892-2900.
    [97] Karlsson MR, Kahu H, Hanson L? , et al. Tolerance and bystander suppression, with involvment of CD25-positive cells, is induced in rats receiving serum from ovalbumin-fed donors[J].Immunology, 2000, 100: 326-333.
    [98] Ostman S, Taube M, Telemo E. Tolerosome-induced oral tolerance is MHC dependent[J]. Immunology, 2005, 116: 464-476.
    [99] Gershon R, Kondo K. Antigenic competition between heterogonous erythrocytes. I. Thymic dependency [J]. Immunology, 1971, 21: 903-914.
    [100] Rieger M, Gunther J, Kristofova H, et al. Evidence of suppressor cell-mechanism of allograft tolerance induced by spleen estract and hydrocortisone[J]. Folia Biol (praha), 1978, 24:145-161.
    [101] Jones TB, Kaplan AM. Immunologic tolerance to HGG in mice.I. Suppression of the HGG response in normal mice with spleen cells or a spleen cell lysate from tolerant mice[J]. J Immunol, 1977, 118: 1880-1884
    [102] Taniguchi M. and Miller J F. Specific suppression of the immune response by a factor obtained from spleen cells of mice tolerant to human gamma-globulin[J]. J Immunol, 1978,120:21-27.
    [103] Kapp JA, Sorensen CM, Pierce CW. Antigen specific suppressor T cell interactions. II. Characterization of two different types of suppressor T cell factors for L-glutamic acid[J]. J Exp Med, 1983, 158: 1962-1966.
    [104] Taniguchi M, Tokuhisa T. Functional roles of two polypeptide chains that compose an antigen-specific suppressor T cell factor[J]. J Exp Med, 1984,159:1096-1100
    [105] Takata M, Maiti PK, Bitoh S, et al. Downregulation of helper T cells by antigen-specific monoclonal Ts factor[J]. Cell Immunol, 1991, 137(1): 139-149.
    [106] Randolph DA, Fathman CG. CD4+CD25+ regulatory T cells and their therapeutic potential[J]. Annu Rev Med, 2006, 57:381-402.
    [107] Wong J, Obst R, Correia-Neves M, et al. Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells[J]. J Immunol, 2007, 178(11):7032-7041.
    [108] Pacholczyk R, Kern J. The T-cell receptor repertoire of regulatory T cells. Immunology, 2008, 125(4):450-458.
    [109] Takahashi T, Yuhshi K, Masaaki T, et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state [J]. Int Immunol, 1998, 10: 1969-1980.
    [110] Dieckmann D, Bmett CH, Plocttner H, et al. Human CD4 (+) CD25 (+) regulatory, contact-dependent T cells induce interleukin 1-producing, contact-independent type1-like regulatory T cells [J]. J Exp Med, 2002, 196(2): 247-253.
    [111] McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor[J]. Immunity, 2002, 16: 311-323.
    [112] Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance[J].Nat Immunol, 2002, 3: 135–342.
    [113] Nakamura K, Kitani A, Strober W. Cell contact dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factorβ[J]. J Exp Med, 2001,194 (5): 629-644.
    [114] Shevach EM. CD4+CD25+ suppressor T cells: more questions than answers[J]. Nat Rev Immunol, 2002, 2(6): 389-400.
    [115] Taylor A, Verhagen J, Blaser K, et al. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells[J]. Immunology, 2006, 117:433-442.
    [116] Dieckmann D, Plottner H, et al. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood[J]. J Exp Med, 2001,193:1303–1310.
    [117] Jonuleit H, et al. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood[J]. J Exp Med, 2001, 193:1285–1294.
    [118] Kearley J, Barker JE, et al. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent[J]. J Exp Med, 2005, 202:1539–1547.
    [119] Asseman C, Mauze S, et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation[J]. J Exp Med, 1999, 190:995–1004.
    [120] Bergmann C, Strauss L, et al. Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment[J]. Cancer Immunol Immunother, 2007, 56:1429–1442.
    [121] Loser K, et al. IL-10 controls ultraviolet-induced carcinogenesis in mice[J]. J Immunol, 2007, 179:365–371.
    [122] Stoop JN, et al. Tumor necrosis factor alpha inhibits the suppressive effect of regulatory T cells on the hepatitis B virus-specific immune response[J]. Hepatology, 2007, 46:699–705.
    [123] Tadokoro CE, et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo[J]. J Exp Med, 2006, 203:505–511.
    [124] Tang Q, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice[J]. Nat Immunol, 2006, 7:83–92.
    [125] Fallarino F, et al. Modulation of tryptophan catabolism by regulatory T cell[J]. Nat Immunol, 2003, 4:1206–1212.
    [126] Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation[J]. J Exp Med, 2000, 192(2): 295-302.
    [127] Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism[J]. Nat Rev Immunol, 2004, 4:762–774.
    [128] Cederbom L, Hall H, Ivars F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells[J]. Eur J Immunol, 2000, 30:1538–1543.
    [129] Taams LS, et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells[J]. Hum Immunol, 2005, 66:222–230.
    [130] Tiemessen MM, et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages[J]. Proc Natl Acad Sci U S A, 2007,104:19446–19451.
    [131] Nishimura E, Sakihama T, et al. Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+CD25+CD4+ regulatory T cells[J]. Int Immunol, 2004, 16(8): 1189-201.
    [132] Joffre O, Gorsse N, et al. Induction of antigen-specific tolerance to bone marrow allografts with CD4+CD25+ T lymphocytes[J]. Blood, 2004, 103:4216-4221.
    [133] Hori S, Haury M, et al. Specificity requirements for selection and effector functions of CD25+4+ regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice[J]. Proc Natl Acad Sci U S A, 2002, 99:8213-8218.
    [134] Li J, Bracht M, et al. Ex vivo activated OVA specific and non-specific CD4+CD25+ regulatory T cells exhibit comparable suppression to OVA mediated T cell responses[J]. Cel Immunol, 2006, 241:75-84.
    [135]金伯泉.细胞与分子免疫学实验技术[M].西安:第四军医大学出版社,2002.
    [136]沈二霞.流式细胞仪的原理和临床应用[J].现代医学仪器与应用, 2008, 20(1):49-53.
    [137] Thornton AM and Ahevach EM. Suppressor effector function of CD4+CD25+ immunoregulatoty T cells if antigen nonspecific[J]. J Immunol, 2000, 164: 183-190.
    [138] Strid J, Thomson M, Hourihane J, et al. A novel model of sensitization and oral tolerance to peanut protein[J].Immunology, 2004, 113(3):293-303.
    [139] Thorstenson KM, Khoruts A. Generation of anergic and potentially immunoregulatory CD25+CD4+ T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen [J]. J Immunol, 2001, 167: 188-195.
    [140] Cools N, Ponsaerts P, Van Tendeloo VFI, et al. Regulatory T cells and human disease[J]. Clin DevImmunol, 2007, 2007: 1-11.
    [141] Wijngaard PL, Schuurman HJ, Meyling FH, et al. Transplantation tolerance in heart transplant recipients as demonstrated by unresponsiveness in cell-mediated lympholysis[J]. Hum Immunol, 1992, 34(3):167-172.
    [142] Huibregtse IL, Snoeck V, de Creus A, et al. Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin[J]. Gastroenterology, 2007, 133:517-528.
    [143] Zhang X, Izikson L, Liu L, et al. Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration[J]. J Immunol, 2001,167:4245-4253.
    [144] Tang Haiwen, Helen B M. Intravenous administration of deaggregated mouse thyroglobulin suppresses induction of experimental autoimmune thyroiditis and expression of both Th1 and Th2 cytokines [J]. Int Immunol, 1997, 9: 679-687.
    [145] Zhang G, Xu Hui, Masahiko K, et al. The Role of IL-12 in the induction of intravenous tolerance in experimental autoimmune encephalomyelitis [J]. J Immunol, 2002, 168: 2501-2507.
    [146] Boris B, Bruno M, Cedric A, et al. Peripheral CD8+CD25+ T lymphocytes from MHC class II-deficient mice exhibit regulatory activity [J]. J Immunol, 2005, 175: 246-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700