咪唑类衍生物的合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咪唑衍生物配合物具有优良的生理活性、独特的光学性质和磁性,在医学、农药、功能材料、表面活性剂、分析化学试剂、有机合成等方面具有广阔的应用前景。本论文主要研究了咪唑类离子液体的合成及应用、咪唑类衍生物的配体及配合物的合成这两个领域,查阅大量文献后,主要作了以下几个方面的工作:
     (I)研究了硼酸、频哪醇、环己醇在离子液体1-甲基咪唑硫酸氢盐[Hmim]HSO_4、1-丁基-3-甲基咪唑硫酸氢盐[C4mim]HSO_4、1-丁基-3-甲基咪唑六氟磷酸盐[Bmim]PF6、1-丁基-3-甲基咪唑四氟硼酸盐[Bmim]BF4、1-甲基-3-丙磺酸基咪唑硫酸氢[(CH_2)3SO3Hmim]HSO_4、1-甲基咪唑四氟硼酸盐[Hmim]BF4中的酯化反应。考察了不同离子液体、反应温度、反应时间和离子液体与反应物物质的量比等对反应的影响。结果表明,当硼酸﹕频哪醇﹕环己醇﹕[Hmim]HSO_4=1:1:1:1,反应温度为80℃和反应时间为2 h时,硼酸酯的产率为95.6%,催化剂循环使用4次,催化活性没有明显下降。
     (II)研究了硼酸与直链醇(甲醇、乙醇、正丙醇、正丁醇、正戊醇)在[Hmim]HSO_4中的酯化反应,直链醇的长短对反应转化率有影响,硼酸三甲酯及硼酸三乙酯与[Hmim]HSO_4离子液互溶,反应体系为均相,随着链的增长,反应后,反应体系变成两相,且离子液体的催化活性随着链的增长有所增加。
     (III)以2,2′-联咪唑为原料,合成了三种新型的N-取代联咪唑衍生物,N,N’-二乙酸-2,2’联咪唑、N,N’-二丁酸-2,2’联咪唑、N,N’-二戊酸-2,2’联咪唑,并对其进行了表征。
     (IV)以N,N’-二乙酸-2,2’联咪唑为配体,与过渡金属钴、镍、锰配位,形成双核和聚合配合物,并对其结构进行X-射线单晶衍射仪、红外、元素分析以及对锰配合物进行磁性表征。
Imidazole derivatives which possess good physiological activities, unique optical and magnetical properties have broad applications as drugs, pesticides, functional materials, surfactants, reagents in chemical analysis and organic synthesis. In this thesis, we mainly studied two areas: the synthesis and application of imidazolium ionic liquids; the synthesis of imidazole derivatives ligands and complexes. Based on the detailed investigation of related literature, our work was carried out as followed:
     (1) Esterification of boric acid, pinacol, and cycloexanol has been studied in ionic liquids, including 1-methylimidazolium hydrogen sulfate [Hmim]HSO_4, 1-butyl-3-methylimidazolium hydrogen sulfate [C4mim]HSO_4, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF_4), 1-methyl-3-(3-sulfopropyl)- imidazolium hydrogen sulfate [(CH2)3SO3Hmim]HSO_4, 1-methylimidazolium tetrafluoroborate [Hmim]BF4. The influences of the types of ionic liquids, reaction temperature, reaction time and mole ratio of reactants to IL on yields of boric acid esters have been investigated. The results showed that under the optimized conditions [n (boric acid)﹕ n (pinacol)﹕ n (cyclohexanol)﹕ n ([Hmim]HSO_4)=1﹕1﹕1﹕1, 80℃and 2 h], the yield of 2-cyclohexyloxy- 4,4,5,5–tetramethyl -[1,3,2] dioxaborolan could reach up to 95.6%. The ionic liquid can be used repeatedly for four times without remarkable loss of catalytic activity.
     (2) Esterification of boric acid, aliphatic alcohols with different length (methanol, ethanol, propanol, butanol, 1-pentanol) has been studied in [Hmim]HSO_4. The length of alkyl chains alcohols could affect the conversion rate greatly, the ionic liquid [Hmim]HSO_4 was entirely miscible with trimethyl borate and triethyl borate, the system was homogenous. With increasing the length of alkyl chains, the reaction systems were biphasic gradually at the end of reaction. It could be seen that the catalytic activity was slightly increased with the increasing the length of alkyl chains.
     (3) Three novel N,N’-sbustituted 2,2′-biimidazole derivatives, 2,2'-(2,2'-biimidazole-1,1'-diyl) diethanoic acid, 2,2'-(2,2'-biimidazole-1,1'-diyl) dibutyric acid, 2,2'-(2,2'-biimidazole-1,1'-diyl) dipentanoic acid have been prepared based on 2,2′-biimidazole, and the products were characterized by IR.
     (4) 2,2'-(2,2'-Biimidazole-1,1'-diyl)diethanoic acid was employed to synthesize binuclear metal complexes [Co2L2(H2O)4]·6H2O, [Ni2L2(H2O)4]·6H2O and polymeric complexes {[Mn_4L_4(H_2O)_4]·6H_2O}n, which were characterized by X-ray single-crystal diffraction, IR and elemental analysis. The magnetic property of Mn complex was investigated by solid state magnetic susceptibility (χm) measurements.
引文
[1] Namboodin, V. V.; Vanna, R. S.. An Improved Preparation of l,3-Dialkyllinidazoliu-mtetrafluoroborate Ionic Liquids using Microwaves. Tetrahedr. Ltt., 2002, 43: 5381-5383.
    [2] Hirao, M.; Sugimoto, H.; Ohno, H.. Preparation of Novel Room-temperature Molten Salts by Neutralization of Amines. J. Electro. Chem. Soc., 2000, 147: 4168-4172.
    [3] Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.. Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-temperature Ionic Liquids for Electrochemistry, Spectro-scopy and Synthesis. Inorg. chem., 1982, 21: 1263-1264.
    [4] Inoue, K.; Hayamizu, T.; Iwamura, H.; Hashizume, D.; Ohashi, Y. J.. Assemblage and Alignment of the Spins of the Organic Trinitroxide Radical with a Quartet Ground State by Means of Complexation with Magnetic Metal Ions. A Molecule-Based Magnet with Three-Dimensional Structure and High TC of 46 K. J. Am. Chem. Soc., 1996, 118: 1803-1804.
    [5] Boghaei, D. M.; Askarizadeh, E.; Bezaatpour, A.. Synthesis, Characterization, Spectroscopic and Thermodynamic Studies of Charge Transfer Interaction of a New Water Soluble Cobalt(II) Schiff Base Complex with Imidazole Derivatives. Spectrochimica Acta Part A: Mol. Biomol. Spectr., 2008, 69: 624-628.
    [6] Materazzi, S.; Vasca, E.. Thermoanalytical Investigation of Ni(II), Co(II) and Cu(II) Complexs with Imidazole-4-acetic acid. Thermochimica Acta, 2001, 373: 7-11.
    [7] Horvth, I. T.; Anastas, P. T.. Innovations and Green Chemistry. Chem. Rev., 2007, 107: 2169-2173.
    [8] (a) Van Rantwijk, F.; Sheldon, R. A.. Biocatalysis in Ionic Liquids. Chem. Rev., 2007, 107: 2757-2785; (b) Plaquevent, J. C.; Levillain, J.; Guillen, F.; Malhiac, C.; Gaumont, A. C.. Ionic Liquids: New Targets and Media forα–Amino Acid and Peptide Chemistry. Chem. Rev., 2008, 108: 5035-5060.
    [9] Miyaura, N.; Suzuki, A.. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev., 1995, 95: 2457-2483.
    [10] (a) Wilkes, J. S.. A Short History of Ionic Liquids-from Molten Salts to Neoteric Solvents. Green Chem., 2002, 4: 73-78; (b) Wasserscheid, P.; B?smann, A.; Bolm, C.. Synthesis and Properties of Ionic Liquids Derived from the“Chiral Pool”. Chem. Commun., 2002, 2001-2021; (c) Rogers, R. D.; Seddon, K. R.. Ionic Liquids-Solvents of the Future, Science, 2003, 302: 792-793.
    [11] Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage, P. D.. Inorg. Chem., 1983, 22: 2099-2100.
    [12] Seddon, K. R.; Hussey, C. L.. Room-temperature Ionic Liquids as Solvents for Electronic Absorption Spectroscopy of Hadlide Complexes. Nature, 1986, 323: 614-616.
    [13] Wilkes, J. S.; Zaworotko, M. J.. Air and Water Stable 1-Ethyl-3-methylimidazolium based Ionic Liquids. J. Chem. Soc., 1992, 965-967.
    [14] Abbott, A. P.; Capper, G.; Davies, D. L.. Quaternary Ammonium Zinc- or Tin-Containing Ionic Liquids: Water Insensitive, Recyclable Catalysts for Diels-Alder Reactions, Green Chem., 2002, 4: 24-26.
    [15] Howarth, J.; Dallas, A.. Moisture Stable Ambient Temperature Ionic Liquids: Solvents for the New Millennium I. The Heck Reaction. Molecules, 2000, 5: 851-855.
    [16] Adams, C. J.; Earle, M. J.; Roberts, G.. Friedel–Crafts Reactions in Room Temperature Ionic Liquids. Chem Commun., 1998, 19: 2097-2098.
    [17]顾彦龙,彭家建,乔琨.室温离子液体及其在催化和有机合成中的应用.化学进展,2003, 14: 222-241.
    [18]张所波,丁孟贤,高连勋.离子液体在有机反应中的应用.有机化学, 2002, 22: 159-163.
    [19]孙学文,赵锁奇,王仁安.离子液体在石油化工中的应用.石油化工, 2002, 31: 855-857.
    [20] Dupont, J.; Suarez, P. A. Z.; Umpierre, A. P.. Pd(П)–Dissolved in Ionic Liquids: A Recyclable Catalytic System for the Selective Biphasic Hydrogenation of Dienes to Monoenes J Braz. Chem Soc., 2000, 11: 293-297.
    [21] Consorti, C. S.; Umpierre, A. P.; Souza, R. F.. Selective Hydrogenation of 1, 3-Butadiene by Transition Metal Compounds Immobilized in 1-Butyl-3-methyl Imidazolium Room Tem-perature Ionic Liquids J Braz. Chem Soc., 2003, 14: 401-405.
    [22] Zhao, G. Y.; Jiang, T.; Gao, H. X.. Mannich Reaction using Acidic Ionic Liquids as Catalysts and Solvents. Green Chem., 2004, 6: 75-77.
    [23]张帆,许丹倩,刘宝友. Br?nsted酸性离子液体催化醛酮与二元醇的缩合反应.催化学报, 2005, 26: 815-818.
    [24] Zhu, H. P.; Yang, F.; Tang, J.; He, M. Y.. Br?nsted Acidic Ionic Liquid 1-Methylimidazolium Tetrafluorobrate: A Green Catalyst and Recyclable Medium for Esterification. Green Chem., 2003, 5: 38-39.
    [25]岳彩波,魏运洋,吕敏杰.新型酸性离子液体[Hmim]HSO4中合成乙酸酯,应用化学, 2006, 23: 1282-1285.
    [26] Maseioechi, N.; Bruni, S.; Cariati, F.; Gall, S.; Sironi, A.. Extended Polymorphism in Copper(II) Imidazolate Polymers: A Spectroscopic and XRPD Structural Study. Inorg. Chem., 2001, 40: 5897-5905.
    [27] Zurowska, B.; Mrozinski, J.; Julve, M.; Lloret, F.; Masiejova, A.; Sawka-Dobrowolska, W.. Structural, Spectral, and Magnetic Properties of End-to-End Di-μ-thiocyanato-BridgedPolymeric Complexes of Ni(II) and Co(II). X-ray Crystal Structure of Di-μ-thiocyanatobis(imidazole)nickel(II). Inorg. Chem., 2002, 41: 1771-1777.
    [28] Carballo, R.; Castineiras, A.; Covelo, B.. Solid State Coordination Chemistry of Mononuclear Mixed-ligand Complexes of Ni(II), Cu(II) and Zn(II) withа-hydroxycarboxylic Acid and Imidazole. Polyhedron, 2004, 23: 1505-1518.
    [29] Melloni, P.; Dradi, E.; Logemann, W.; Carneri, I. D.; Trane, F.. Synthesis and Antiprotozoal Activity of Methylnitro Derivatives of 2,2’-Biimidazole. J. Med. Chem., 1972, 15: 926-930.
    [30] Matthews, D. P.; Mccarthy, J. R.; Whitten, J. P.; Kastner; Barney, C. L.; Marshall, F. N.; Ertel, M. A.; Burkhard, T.; Shea, P. J.; Kariya, T.. Synthesis and Cardioyonic Activity of Novel Biimidazoles. J. Med. Chem., 1990, 33: 317-327.
    [31] Barnett, M.; Secondo, P.; Collier, H.. Synthesis and Characterization of New 1,1'-Diester, Diketone and Dinitrile Derivatives of 2,2′-Biimidazole. J. Heterocyclic Chem., 1996, 33: 1363-1369.
    [32] Secondo, P.; Barnett, M.; Collier, H.; Baughman, R. G.. 1,1'-Diketone and 1,1'-Dinitrile Derivatives of 2,2'-Biimidazole. Acta Cryst., 1996, C52: 2636-2638.
    [33] Barnett, M.; Baughman, R.; Secondo, P.; Hermansen, C.. 1,1'-Di(hydrazinecarbonyl methyl)-2,2'-biimidazole Monohydrate and 1,1'-Di[2-(hydrazinocarbonyl)ethyl]-2,2'-biimidazole. Acta Cryst., 2002, C58: o565-o567.
    [34] Barnett, M.; Baughman, R.; Collier, H.; Vizuete, W.. Synthesis and Crystal Structure of 1,1′-Di(ethylpropionato)-2,2′-biimidazole, A Macromolecular Precursor. J. Chem. Crystal., 1999, 29: 765-768.
    [35] Holmes, K.; Jones, K. M.; Torrible, E. G.. Complex-forming Agents Similar to 2,2 -Bipyridyl. Part I. Some Ligands Containing Imidazole. J. Chem. Soc., 1961, 4790-4794.
    [36] Mighell, A. D.; Reimann, C. W.; Maucer, F. A.. The Crystal and Molecular Structure of Diaquobis-(2,2'-biimidazole) Nickel(II) Dinitrate, Ni(C6H6N4)2 (H2O)2(NO3)2 . Acta Crystallogr, Sect. B, 1996, 25: 60-66.
    [37] Kaiser, S. W.; Saillant, R. B.; Butler, W. M.; Rasmussen, P. G.. Rhodium and Iridium Complexes of Biimidazole 2. Tetranuclear Carbonyl Derivatives. Inorg. Chem., 1976, 15: 2688-2695.
    [38] Sang, R. L.; Xu, L.. Counterion-induced Formation of Cis and Tans Singly and Doubly H2biim-Briged Di-, Hexa-, and Poly meric Ag-H2biim Complexes. Eur. J. Inorg. Chem., 2006: 1260-1267.
    [39] Fortin, S.; Beauchamp, A. L.. Preparations, Characterizations and Structures of (Biimidazole)dihalobis(triphenylphosphine)rhenium(III) Salts: Strong Ion-Pairing and Acid-Base Properties. Inorg. Chem., 2001, 40: 105-112.
    [40] Fortin, S.; Fabre, P. L; Dartiguenave, M.; Beauchamp, A. L.. Neutral and Cationic Biimidazole Dihalogenobis (trimethylphosphine)rhenium(III) Complexes: Ion-pairing, Acid–base and Redox Properties. J. Chem. Soc., Dalton Trans., 2001, 3520-3527.
    [41] Ateneio, R.; Chaeon, M.; Gonzalez, T.; Brieeno, A.; Agriofglio, G.; Sierraalta, A.. Robust Hydrogen-bonded Self-assemblies from Biimidazole Complexes. Synthesis and Structural Characterization of [M(biimidazole)2(OH2)2]2+(M = Co2+, Ni2+) Complexes and Carboxylate modules. Datlon .Trans., 2004, 505-513.
    [42] Ghosh, A. K.; Jana, A. D.; Ghoshal, D.; Mostaaf, G.; Ray Chaudhuri, N.. Toward the Recognition of Enolates/Dicarboxylates: Syntheses and X-ray Crystal Structures of Supramolecular Architectures of Zn(II)/Cd(II) using 2,2'-Biimidazole .Crystal. Growth. design. 2006, 6: 701-707.
    [43] Hester, C. A.; Baughman, R. Q.; Collier, H. C.. A Simple Helix Based on 2,2′-biimidazole. Crystal and Molecular Structure of [Ag(NO3)(H2biim)]n. Polyhedron, 1997, 16: 2893-2895.
    [44] Taokoro, M.; Toyoda, J.; Isobe, K.; Itch, T.; Miyazaki, A.; Enoki, T.. Quantitative Analyses of Lesion Areas of Coronary Atherosclerosis in Cholesterol-fed Rabbits. Chem. Lett., 1995, 6: 613-614.
    [45] Taokoro, M.; Isobe, K.; Uekusa, H.; Ohashi, Y.; Toyoda, J.; Nakasuji, K.. Cation-dependent Formation of Superstructures by One-pot Self-organization of Hydrogen-bonded Nickel Complexes. Angew. Chem. Int. Ed., 1999, 38: 95-98.
    [46] Comba, P.; Mayboroda, A.; Pritzkow, H.. Homogeneous Hydrogenation Catalyzed by Trinuclear RhI-OsIII-RhI Complexes. Eur. J. Inorg. Chem., 2003, 16: 3042-3046.
    [47] Kaiser, S. W.; Saillnat, R. B.; Butler, W. M.; Rasmussen, P. G.. Rhodium and Iridium Complexes of Biimidazole. 1. Mononuclear and Dinuclear Species. Inorg. Chem., 1976, 15: 2681-2687.
    [48] Kaiser, S. W.; Saillant, R. B.; Rasmussen, P. G.. Rhodium(I) and Iridium(I) Complexes of Anions of 2,2'-Biimidazole. J. Am. Chem. Soc., 1975, 97: 425-426.
    [49] Majumdar, P.; Kamar, K. K.; Castineiras, A.; Goswami, S.. Unusual Binding Mode of the Biimidazolate Bridging Ligand in Two Novel Heteropolynuclear Complexes with an M2Ag2 [M = Ru(II) or Os(II)] Core. Chem. Commun., 2001, 1292-1293.
    [50] Kama, K. K.; Falvello, L. R.; Fanwick, P. E.; Kim, J.; Goswami, S.. Designed Synthesis of a Multimetallic System having Ru4Cu2 Core using Trimetallic Coordination of 2,2 -Biimidazolate Ion. J. Chem. Soc. Dalton Trans., 2004, 1827-1831.
    [51] Lopez, C.; Gonzalez, A.; Garcia, M. E.; Casas, J. S.. Organotin Compounds with 2,2′-Biimidazole Derivatives. The Crystal Structure of Dibromo (N,N′-dimethyl-2,2′-biimidazole) Dimethyltin(IV). J. Organomet. Chem, 1992, 81: 261-267.
    [52] Casas, J. S.. (1,1'-Dimethyl-2,2'-biimidazole-N3,N3')diiodoplatinum(II). Acta Crystallogr., 1998, C54: 1777-1779.
    [53] Sang, R.-L.; Xu, L.. A Series of Single, Double, and Triple Me2biim-bridged Dinuclear, Trinuclear and Polymeric Complexes: Syntheses, Crystal Structures, and Luminescent Properties. Inorg. Chem., 2005, 44: 3731-3737.
    [54] Rasmussen, P. G.; Bailey, O. H.; Bayon, J. C.. Complexes of Tetracyanobiimidazole. 1. Dimeric and Tetrameric Species. Inorg. Chem., 1915, 23: 338-343.
    [55] Allen, W. E.; Fowler, C. J.; Lynch, V. M.; Sessler, J. L.. Self-assembled Helices from 2,2′-Biimidazoles. Chem. Eur. J., 2001, 7: 721-729.
    [56] Aromi, G.; Gamez, P.; Kooijman, H.; Spek, A. L.; Driessen, W. L.; Reedijk, J.. Two New Diunclear Sterically Crowded CuII Complexes as Catalyst Precursors for the Oxidative Coupling of 2,6-Dimethylphenol. Eur. J. Inorg. Chem., 2003, 1394-1400.
    [57] Liu, S. W.; Yu, S. T.; Liu, F. S.; Xie, C. X.; Li, L.; Ji, K. H.. Reactions ofα-pinene using Acidic Ionic Liquids as Catalysts. J. Mol. Catal. A: Chemical, 2008, 279: 177–181.
    [58] Zhao, Y. W.; Long, J. X.; Deng, F. G.; Liu, X. F.; Li, Z.; Xia, C. G.; Peng, J. J.. Catalytic Amounts of Br?sted Acidic Ionic Liquids Promoted Esterification: Study of Acidity–activity Relationship. Catal. Commun., 2009, 10: 732–736.
    [59] Imrie, C.; Elago, R. T.; Cedric W, M. C.; Williams, N.. Esterification Reactions in Ionic Liquids. The Efficient Synthesis of Ferrocenyl Esters in the Ionic Liquids [bmim][BF4] and [bmim][PF6]. Green Chem., 2002, 4: 159–160.
    [60] Li, H. L.; Yu, S. T.; Liu , F. S.; Xie, C. X.; Li, L.. Synthesis of Dioctyl Phthalate using Acid Functionalized Ionic Liquid as Catalyst. Catal. Commun., 2007, 8: 1759–1762.
    [61] Thummel, R. P.; Goulle, V.; Chen, B.. Bridged Derivatives of 2,2'-Biimidazole. J. Org. Chem., 1989, 54: 3057-3061.
    [62] Wang, M.; Ma, C. B.; Chen, C. N.; Liu, Q. T.. Synthesis and Characterization of Two Cobalt Complexes Derived from the System Containing Phenylphosphonic Acid. J. Mol. Struct., 2008, 891: 292–297.
    [63]李薇,李昶红,杨颖群,张少华.二维配位聚合物[Mn(2,4-DAA)2(4,4′-bipy)]n的合成、晶体结构及荧光性质研究.无机化学学报, 2008, 25: 369-372.
    [64] C. J. O’Connor, Magnetochemistry-advances in Theory and Experimentation. Prog. Inorg. Chem., 1982, 29: 203-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700