慢病毒介导的星形胶质细胞升高基因-1表达下调对肝星状细胞生物学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝纤维化(hepatic fibrosis)是由于各种慢性肝病反复损伤导致的以细胞外基质(extracellular matrix, ECM)过度沉积为特征的病理生理过程,其病因主要包括病毒感染、非酒精或酒精性脂肪性肝炎、免疫损伤和胆汁淤积等。包括肝星状细胞(hepatic stellate cells, HSCs)在内的不同来源的肝脏肌成纤维细胞是此病理生理过程的主要驱动因素。
     静态的HSCs富含维生素A,位于肝细胞及窦内皮细胞之间的狄氏间隙。肝脏受到损伤时,细胞内维生素A脂滴消失,静态HSCs转化为肌成纤维样细胞。这一转化过程对肝纤维化的发生、发展至关重要,称作静态HSCs的“激活”。活化的HSCs被赋予了多种能力,包括增殖速度加快、ECM分泌增加、迁移能力提高等。
     目前,肝纤维化尚缺乏有效治疗手段。肝纤维化逆转需要纤维瘢痕降解消退,此基于胶原分泌细胞数量减少、能力弱化。已有研究证实活化的HSCs是最主要的促纤维化因素,因此,清除活化的HSCs、抑制其增殖、诱导凋亡、抑制其胶原分泌及迁移能力,是逆转肝纤维化的关键治疗靶点和重要策略。
     星型胶质细胞升高基因-1(astrocyte elevated gene-1,AEG-1),也被称作异粘蛋白(metadherin, MTDH),于2002年在人类免疫缺陷病毒(human immunodeficiency virus, HIV)及肿瘤坏死因子-α (tumor necrosisfactor, TNF-α)感染的星型胶质细胞中首次被发现。在过去的十余年间,对AEG-1的研究多集中在与肿瘤的关系上,包括乳腺癌、恶性胶质瘤、成神经细胞瘤及肝癌等。研究认为,AEG-1能够促进肿瘤的发生、发展,与肿瘤的预后密切相关,被认为是一种癌基因。例如,AEG-1在肝细胞癌中高表达,且表达量与癌症分期相关,表达越高则预后较差。近年来,随着国内外学者研究的不断深入,发现AEG-1的功能并非只是局限在肿瘤范围,在非肿瘤的生理、病理过程中也发挥着重要作用,如生长发育、炎症、神经退行性变等。这也促进人们对此基因功能谱的认识及内在机制的研究日益深入。
     AEG-1可通过多条信号转导通路发挥作用,最重要的有磷脂酰肌醇3-激酶(phosphatidylinositol3-kinase,PI3K)/Akt、核因子-κB (nuclearfactor-κB, NF-κB)、细胞外信号调节激酶(extracellular regulated kinase,ERK)等通路,而这些通路在肝纤维化发生、发展中均发挥重要作用。研究证明,在多种细胞中过表达AEG-1可促进细胞的增殖及侵袭、迁移能力,抑制其凋亡。更重要的是,上调AEG-1能促进细胞的炎症反应及血管新生能力,而这些也是肝纤维化形成的关键因素。但迄今为止,AEG-1与肝纤维化及HSCs之间的关系尚无报道。
     本课题旨在研究AEG-1在肝纤维化形成及活化HSCs中的表达,应用慢病毒介导的RNA干扰(RNAinterference, RNAi)技术下调AEG-1表达后,观察其对HSCs细胞活化、凋亡和迁移等生物学行为的影响,并进一步研究导致此些影响所涉及的信号转导通路。本学位论文由以下四部分组成:
     第一部分:星形胶质细胞升高基因-1在肝纤维化大鼠肝组织及活化HSCs中的表达
     目的:研究AEG-1在大鼠纤维化肝脏及促纤维化因子刺激后HSCs中的表达。
     方法:应用胆总管结扎(bile duct ligation,BDL)及二甲基亚硝胺(dimethyl-nitrosamine,DMN)腹腔注射两种方法建立大鼠肝纤维化模型。BDL模型组结扎胆总管,假手术组只分离胆总管不结扎,均于术后2wk取材。DMN模型组腹腔注射1%DMN,每周连续3d,对照组腹腔注射生理盐水,均于4wk后取材。肝组织石蜡切片经HE与天狼星红染色(Sirius Red)检测肝脏病理变化。免疫组织化学法(immunohistochemistry,IHC)观察AEG-1的表达及定位。Western blot及RT-real time PCR检测AEG-1蛋白及mRNA的表达。采用原位灌流、梯度密度离心技术分离大鼠原代HSCs,倒置荧光显微镜观察刚分离静止的大鼠原代HSCs,应用免疫细胞化学染色技术检测α-SMA表达以鉴定活化的大鼠原代HSCs。应用细菌脂多糖(lipopolysaccharide, LPS:0μg/ml,0.5μg/ml,1.5μg/ml)及转化生长因子-β (transforming growth factor beta, TGF-β:0ng/ml,5ng/ml,10ng/ml)刺激HSC-T624h,应用LPS (1.5μg/ml)或TGF-β (10ng/ml)刺激HSC-T6或原代大鼠HSCs0h,24h或48h,Western blot检测干预前后AEG-1蛋白的表达变化。
     结果:①HE与天狼星红染色结果证明BDL和DMN诱导的大鼠肝纤维化模型成功建立。BDL诱导的纤维化模型可见肝脏结构紊乱,大量胶原沉积,胆管明显扩张和增生;DMN诱导的肝纤维化模型除肝脏结构紊乱外,尚可见明显的出血性坏死、肝窦充血及大量炎细胞浸润。②免疫组织化学法染色显示,BDL及DMN诱导的肝纤维化大鼠肝脏细胞AEG-1表达明显升高,主要定位于细胞质,而对照组基本无表达。③Western blot及RT-real time-PCR检测显示,BDL及DMN模型组较对照组AEG-1均明显升高(P<0.05)。④TGF-β (0ng/ml,5ng/ml,10ng/ml)刺激HSC-T624h,5ng/ml刺激组AEG-1蛋白水平无明显升高,10ng/ml组AEG-1蛋白水平明显升高。应用10ng/ml TGF-β刺激HSC-T624h及48h,结果显示,48h刺激组较24h组AEG-1蛋白水平进一步升高(P<0.05)。⑤LPS (0μg/ml,0.5μg/ml,1.5μg/ml)刺激HSC-T624h,0.5μg/ml刺激组AEG-1蛋白水平无明显升高,1.5μg/ml组AEG-1蛋白水平明显升高。应用1.5μg/ml LPS刺激HSC-T624h及48h,结果显示,48h刺激组较24h组AEG-1蛋白水平进一步升高(P<0.05)。⑥采用肝脏原位灌注链酶和胶原酶,以Nycodenz为介质,密度梯度离心一步法成功分离出大鼠原代HSCs。细胞得率为1.0×107至1.5×107/只,细胞存活率和纯度均大于90%。在倒置显微镜下观察刚分离的HSCs呈圆形,胞浆中富含脂滴,在波长328nm的荧光显微镜下观察,刚分离的原代HSCs呈自发蓝色荧光。培养至14d,大鼠HSCs呈活化状态,脂滴消失,变成梭形肌成纤维样细胞。⑦原代HSCs性质鉴定。刚分离的HSCs免疫细胞化学染色α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)表达阴性;原代培养14d后α-SMA阳性染色率达100%。⑧应用10ng/mlTGF-β及1.5μg/ml LPS刺激原代大鼠HSCs24h及48h,刺激24h组AEG-1蛋白表达无明显升高,刺激48h组AEG-1蛋白表达则明显升高(P<0.05)。
     结论:AEG-1在大鼠BDL及DMN诱导的肝纤维化组织中明显升高。TGF-β及LPS刺激HSC-T6及原代大鼠HSCs可使AEG-1表达升高,且呈时间、剂量依赖性。
     第二部分:星形胶质细胞升高基因-1表达下调对肝星状细胞活化的影响
     目的:构建慢病毒介导的短发卡RNA (short hairpin RNA, shRNA)下调AEG-1的表达,观察其对HSC-T6细胞增殖、凋亡及胶原合成的影响。
     方法:设计并合成可抑制AEG-1表达的shRNA,根据转染率摸索出适合靶细胞的感染复数(multiplicity of infection, MOI),转染进入HSC-T6细胞中。利用western blot和RT-real-time PCR方法检测AEG-1蛋白和mRNA表达情况,筛选出一条抑制效率最高的shRNA。成功下调HSC-T6的AEG-1表达后,CCK-8(Cell Counting Kit-8)检测细胞增殖;流式细胞学分析细胞周期变化;western blot和RT-real time PCR方法检测Ⅰ型胶原及α-SMA水平的变化。
     结果:①通过预实验摸索出MOI值为20。转染进入细胞后,根据蛋白及mRNA检测结果,所设计的3条shRNA质粒片段均可显著抑制AEG-1蛋白及基因的表达,蛋白干扰的效果分别达到75.22%、60.21%及64.36%,mRNA表达分别下降85.52%、69.96%及71.10%,与空白对照组相比均有显著性差异(P<0.05)。②下调AEG-1表达促进了HSC-T6细胞增殖,培养24h,Lenti-shAEG-1组(1.13±0.13)较Lenti-shCon组(1.57±0.22)明显下降(P<0.05)。培养48h,Lenti-shAEG-1组(1.49±0.19)较Lenti-shCon组(2.12±0.24)进一步下降(P<0.01)。Lenti-shCon组与uninfected组相比均无明显变化。③流式细胞学检测下调AEG-1表达可影响HSC-T6的细胞周期。 Lenti-shAEG-1组(48.67±4.35%)较Lenti-shCon组(29.70±3.08%) G0/G1期细胞比例上升(P<0.05),而G2/M期细胞比例下降(4.90±1.71vs15.07±3.37, P<0.05),表明细胞被阻滞在G0/G1期。④下调AEG-1后,HSC-T6的α-SMA的蛋白(0.31±0.11vs0.78±0.12, P<0.05)及mRNA (0.57±0.27vs1.14±0.23, P<0.05)水平较阴性对照组分别下降了60.32%及41.34%。⑤Ⅰ型胶原蛋白(0.36±0.12vs0.73±0.23, P<0.05)及mRNA (0.57±0.11vs0.99±0.11, P<0.05)水平较阴性对照组分别下降了50.72%及42.54%。而两者的阴性对照组较未感染组无明显变化。
     结论:成功构建靶向AEG-1的shRNA并下调AEG-1表达。下调AEG-1表达可抑制HSC-T6的活化。
     第三部分:星形胶质细胞升高基因-1表达下调诱导肝星状细胞凋亡、抑制迁移
     目的:观察shRNA下调AEG-1表达后对HSC-T6细胞的凋亡和迁移的影响。
     方法:下调HSC-T6的AEG-1表达后,膜联蛋白(AnnexinV)/藻红蛋白(Phycoerythrin,PE)联合标记流式细胞术检测HSCs凋亡率;末段脱氧核苷酸转移酶介导的脱氧三磷酸尿苷缺口末段标记(terminaldeoxynucleotidy transferrase UTP-nick end labeling,TUNEL)检测HSC-T6凋亡;扫描电镜观察细胞形态;RT-Real time PCR测定caspase-3mRNA的表达;划痕实验及Transwell小室检测细胞迁移。
     结果:①下调AEG-1后,HSC-T6的TUNEL染色阳性细胞率较对照组提高了1.93倍(P<0.05)。②流式细胞技术检测显示,下调AEG-1表达后,Lenti-shAEG-1组细胞凋亡率(27.12±5.72%)较Lenti-shCon组(8.88±3.20%)及uninfected (7.97±2.52%)组明显升高(P<0.01)。③AEG-1shRNA干扰HSC-T6细胞后,与阴性对照组相比,细胞体积缩小,细胞表面微绒毛缩短,伪足缩短或消失。④下调AEG-1升高了Caspase-3的mRNA表达,Lenti-shAEG-1组较Lenti-shCon组升高了1.86倍(P<0.05)。⑤划痕愈合实验:划痕后培养24h,Lenti-shAEG-1组划痕愈合率(0.41±0.06)较Lenti-shCon组(0.56±0.05)下降26.8%(P<0.05)。培养48h后,划痕愈合率Lenti-shAEG-1组(0.59±0.13)较Lenti-shCon组(0.88±0.12)下降33.7%(P<0.05)。⑥Transwell assay实验:Tanswell小室中接种细胞后,细胞培养箱培养24h,结果显示,Lenti-shAEG-1组细胞迁移数(18.20±3.44)较Lenti-shCon组(46.60±4.85, P<0.05)降低了71.21%。
     结论:下调AEG-1表达后,可以促进HSC-T6的凋亡,抑制其迁移。
     第四部分:星形胶质细胞升高基因-1调控肝星状细胞生物学行为的信号转导机制
     目的:研究慢病毒介导shRNA下调AEG-1表达对HSC-T6细胞内PI3K/Akt、ERK及P38MAPK信号转导通路的调节作用。
     方法:慢病毒介导的shRNA下调HSC-T6的AEG-1表达后,Westernblot检测PI3K/Akt及ERK、P38MAPK磷酸化及总蛋白活化表达情况。
     结果:①下调AEG-1表达可以抑制PI3K、Akt水平,而对总蛋白无明显影响。ShAEG-1组与shCON组比较,p-PI3K/PI3K、p-AktThr308/Akt和p-AktSer473/Akt明显下调(P<0.05)。②下调AEG-1表达可以抑制ERK、P38MAPK水平,而对总蛋白无明显影响。ShAEG-1组与shCON组比较,p-ERK/ERK和p-P38/P38明显下调(P<0.05)。
     结论:下调AEG-1表达对HSC-T6生物学行为的调控可能是通过抑制PI3K/Akt及ERK、P38的磷酸化实现的。
Hepatic fibrosis, characterized by accumulation of excessiveextracellular matrix (ECM), is a wound-healing response to all chronic liverdiseases including viral infection, non-alcoholic and alcoholic steatohepatitis,immune injury, and others. This process is driven by a heterogeneouspopulation of hepatic myofibroblasts, which mainly derive from hepaticstellate cells (HSCs).
     During liver injury of any etiology, quiescent HSCs, which are vitaminA–rich cells residing between hepatocytes and sinusoidal endothelial cells inthe subendothelial space of Disse, lost vitamin A droplets and convert tomyofibroblast-like cells. This orchestrated response to liver Injury, named as“activation”, is the most important event of hepatic fibrosis. These activatedcells are capable to elevate deposition of ECM components, increaseproliferation and enhance migration. Although many potential anti-fibrotictargets have been fixed,there are no effective treatment of hepatic fibrosis upto now. Regression of liver fibrosis is associated with resorption of fibrousscar and the disappearance of collagen-producing myofibroblasts. It isbelieved that HSCs are the major collagen-producing cells of all fibrogenicmyofibroblasts. Clearance of activated HSCs is a key mechanism forachieving resolution of fibrosis and is linked with regression of fibrotictissue. Suppression of activated HSCs proliferation, or induction of apoptosisis considered as a useful strategy for antifibrotic therapy.
     Astrocyte elevated gene-1(AEG-1), also called metadherin (MTDH)and lysine-rich CEACAM1coisolated (LYRIC), was initially identified as aHIV-1and tumor necrosis factor-α-inducible gene in primary human fetalastrocytes. Over the past decade, AEG-1emerged as a positive regulator oftumorigenesis and a valuable prognostic marker of a diverse array of cancers, such as breast cancer, malignant glioma, neuroblastoma and liver cancer.AEG-1expression was utilized in stratification of hepatocelluar carcinoma(HCC) and high level of AEG-1is poportional to poor prognosis. Recently,studies increasingly focus on functions of AEG-1beyond cancer, such asdevelopment, inflammation and neurodegeneration.
     AEG-1is reported to be a downstream target of Ha-ras and participatesin diverse signaling pathways and interacts with phosphatidylinositol3-linase (PI3K)/Akt, nuclear factor-κB and extracellular signal-regulatedkinase (ERK), which are molecules also involved in liver fibrogenesis.Forced overexpression of AEG-1is demonstrated to increase proliferation,inhibit apoptosis and promote invasion and migration in different types ofcells. It is also noteworthy that up-regulation of AEG-1is associated withenhanced angiogenesis and inflammation, which are key factors of hepaticfibrosis formation. However, the relationship between AEG-1and hepaticfibrogenesis is not known.
     This study was performed to evaluate the function of AEG-1in hepaticfibrogenesis. Lentiviral delivery of shRNA was used to obtain stablesilencing of AEG-1in the rat HSC-T6cell line, and meanwhile, the effects ofAEG-1on cell proliferation, apoptosis, migration andphenotype wereexamined, as well as the possibly associated molecular mechanisms. Theexperiments contain four parts, shown as follows:
     Part1: The expression of AEG-1in fibrotic rats and HSCs.
     Objective: To explore the expression of AEG-1in fibrotic rats inducedby common bile duct ligated (BDL) or dimethylnitrosamine (DMN) andactivated HSCs stimulated by transforming growth factor-β (TGF-β) orlipopolysaccharide (LPS).
     Methods: hepatic fibrosis was induced by BDL and intraperitonealinjections of DMN.For the bile duct ligation (BDL) model of liver fibrosis,rats were laparotomized after anesthetized. The common bile duct wasdouble ligated and sectioned before the abdomen closed. The sham operationwas performed similarly without BDL. Rats were sacrificed2weeks after operation. For the DMN model of liver fibrosis, rats were injectedintraperitoneally with DMN, which was diluted1:100in0.15M NaCl, orwith vehicle (NaCl) at a dose of1μL/100g of body weight. The injectionswere given on the first three consecutive days of each week over a period4weeks. Livers were fixed in4%paraformaldehyde, embedded in paraffin andsectioned. Sections were used for hematoxylin and eosin (H&E), Sirius redstaining and immunohistochemistry following standard procedures.Furthermore,the expressions of AEG-1in above-mentioned groups wereexamined by RT-real time PCR and western blot. Primary rat HSCs wereisolated using pronase/collagenase perfusion digestion followed by densitygradient centrifugation. The quiescent HSCs immediately after plating weretested by fluorescence microscope to evaluate the purity of the cultures andα-SMA monoclonal antibody was used to identify the activated primaryHSCs by immunocytochemistry. To investigate the expression of AEG-1inactivated HSCs, we incubated cells with TGF-β and LPS of variousconcentrations (TGF-β:0ng/ml,5ng/ml,10ng/ml; LPS:0μg/ml,0.5μg/ml,1.5μg/ml) and timespans (0h,24h,48h), followed by western blot.
     Results:①To study the potential role of AEG-1in hepatic fibrosis, weused two well-established models, BDL and DMN, to induce liver fibrosis.As examined by H&E and Sirius red staining, the livers of BDL rats showedsever distortion of architecture, proliferating bile ductules and collagendeposition. Compared to the characters above, the liver of DMN ratsexhibited more hemorrhagic necrosis, sinusoidal congestion andinflammatory cells. These data confirmed that both fibrotic models weresuccessfully established.②AEG-1expression in fibrotic liver wassignificant increased, while little was detected in liver treated with sham orsaline detected by immunohistochemistry. AEG-1was localizedpredominantly in the cytoplasmic region.③Up-regulation of AEG-1infibrotic liver was also confirmed by RT-real time PCR analysis and westernblot (P<0.05).④The expression of AEG-1in HSC-T6stimulated by TGF-βwas up-regulated in a dose-and time-dependent manner.⑤The expression of AEG-1in HSC-T6stimulated by LPS was up-regulated in a dose-andtime-dependent manner.⑥Primary rat HSCs were isolated successfully bysequential digestion of the liver with pronase and eollagenase, followed bysingle step density gradient centrifugation with Nycodenz. Cell viability andcell purity were greater than90%, with a yield ranging from1.2×107to2.0×107HSCs/rat. The primary HSC immediately after plating is round andin rich of lipid droplet under the inverted microscope, while HSCs show blueunder the ultraviolet light (L=328nm). After14days culture,activated HSCslose retinoid and become fusiform myofibroblast-like cell.⑦To indentify theprimary HSCs identification α-SMA staining was performed at day l(quiescent, α-SMA negative cells)and day14(activated,α-SMA positivecells) by immunocytochemistry.⑧The expressions of AEG-1in primary ratHSCs stimulated by TGF-β (10ng/ml) or LPS (1.5μg/ml) for48h wereup-regulated.
     Conclusions: AEG-1expression in fibrotic liver was significantincreased. TGF-β, as well as LPS, induced AEG-1expression of HSCs in adose-and time-dependent manner.
     Part2: Knockdown of AEG-1inhibits activation of HSC-T6cells
     Objective: To investigate the influences of down-regulation of AEG-1on HSC-T6activation.
     Methods: Three shRNA oligonucleotide duplexes targeting rat AEG-1sequence were synthesized and cloned into a lentivirus-based vector carryingthe green fluorescent protein (GFP) gene by GeneChem. Cells wereharvested after infection. Protein and mRNA were detected to determineAEG-1knockdown efficiency and screen for the most efficient shRNAwhich was then used for subsequent experiments. cell count kit-8was usedin cell proliferation assay. The cell cycle was analyzed by flow cytometer.The expression of collagen Ⅰ and α-SMA were examined by RT-real timePCR and western blot after knockdown of AEG-1.
     Results:①AEG-1expression in HSC-T6cells infected with sh-AEG-1lentivirus was significantly decreased at both mRNA and protein levels as compared to control cells. The protein interference efficiencies of threeshRNAs were75.22%,60.21%and64.36%respectively. The mRNAinterference efficiencies of three shRNAs were85.52%,69.96%and71.10%respectively.②Knockdown of AEG-1markedly suppressed cell viability ofHSC-T6cells examined by CCK-8.③Cell cycle analysis showed thatLv-shAEG-1infection led to an increase of cells population in G0/G1phase,but a corresponding decrease in G2/M phase, indicating that knockdown ofAEG-1induced cell cycle arrest in the G0/G1phase.④Gene abolishment ofAEG-1by shRNA interference significantly reduced the expression ofcollagen Ⅰ in both protein and mRNA levels (P<0.05).⑤Gene abolishmentof AEG-1by shRNA interference significantly reduced the expression ofα-SMAin both protein and mRNAlevels (P<0.05).
     Conclusion: Knockdown of AEG-1inhibits the activation of HSC-T6cells
     Part3: Knockdown of AEG-1induces apoptosis and inhibits migrationof HSC-T6
     Objectives: To investigate the influences of knockdown of AEG-1oncell apoptosis and migration of HSC-T6.
     Methods: AEG-1was knockdown by Lenti-shAEG-1in HSC-T6. Theextent of apoptosis was quantified and visualized by Annexin V-PE/7AADstaining. The TUNEL technique using the In Situ Cell Death Detection kitPOD was performed to measure nuclear DNA fragmentation. Morphologicalexamination of HSC-T6was performed by scanning electron microscopy. Toverify the role of AEG-1on HSC-T6migration, wound-healing assay andtranswell insert chambers assay were performed.
     Results:①Knockdown of AEG-1by Lv-shAEG-1infection increasedTUNEL-positive cells distribution at10.43%, as compared to5.01%and5.43%in uninfected and LV-shCon infected cells, respectively.②A flowcytometric analysis also demonstrated that as compared to the LV-shConinfected cells, knockdown of AEG-1in the cells infected with Lv-shAEG-1significantly induced cell apoptosis (7.97±2.52%vs27.12±5.72%, P<0.05). ③Analysis of mRNA showed enhanced Caspase-3expression inLv-shAEG-1infected cells compared with LV-shCon cells.④Knockdown ofAEG-1reduced HSCs cell volume, shortened microvilli on cell surface andvanished dendritic pseudopodia.⑤In the wound-healing assay, the distancemoved by a wounded cell significantly decreased in Lv-shAEG-1group at24h (P<0.05) and even pronounced at48h (P<0.05) after treatment.⑥Inthe transwell insert chambers assay, the number of Lv-shAEG-1infectedcells (18.20±3.44) which penetrated the chamber membrane wassignificantly less than the uninfected cells (58.60±4.82; P<0.05) andLV-shCon infected cells (46.60±4.85; P <0.05).
     Conclusion: Knockdown of AEG-1induces apoptosis and reduces cellmigration capacity of HSC-T6
     Part4: The mechanism of intracellular signal transduction thatcontribute to the impacts of AEG-1on HSC-T6biologicalbehaviours
     Objectives: To explore the regulation of AEG-1knockdown onPI3K/Akt, ERK and P38MAPK signalling pathways in HSC-T6.
     Methods: AEG-1was knockdown by Lenti-shAEG-1in HSC-T6. Thephosphorylated and totle protein expressions of PI3K/Akt, ERK and P38MAPK were examined by Western blot.
     Results:①Knockdown of AEG-1in HSC-T6cells inhibitedphosphorylation of PI3-K and Akt (P<0.05), while total expression of PI3-Kand Akt were unchanged.②Knockdown of AEG-1in HSC-T6cellsinhibited phosphorylation of ERK and P38MAPK (P<0.05), while totalexpression of ERK and P38MAPK were unchanged.
     Conclusion: Knockdown of AEG-1changed HSC-T6biologicalbehaviours probably via down-regulation of phosphorylations of PI3-K, Akt,ERK and P38MAPK signaling pathways
引文
1Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. AnnuRev Pathol,2011,6:425~456
    2Friedman SL. Molecular regulation of hepatic fibrosis, an integratedcellular response to tissue injury. J Biol Chem,2000,275:2247~2250
    3Ghiassi-Nejad Z, Friedman SL. Advances in antifibrotic therapy. ExpertRev Gastroenterol Hepatol,2008,2:803~816
    4Schuppan D, Gorrell MD, Klein T, et al. The challenge of developingnovel pharmacological therapies for non-alcoholic steatohepatitis. LiverInt,2010,30:795~808
    5Friedman SL. Hepatic Stellate Cells: Protean, Multifunctional, andEnigmatic Cells of the Liver. Physiol Rev,2008,88:125~172
    6Bataller R, Brenner DA. Hepatic stellate cells as a target for the treatmentof liver fibrosis. Semin Liver Dis,2001,21:437~451
    7Parola M,Marra F,Pinzani M. Myofibroblast-like cells and liverfibrogenesis:Emerging concepts in a rapidly moving scenario. MolAspects Med,2008,29:58~66
    8Su ZZ, Kang DC, Chen Y, et al. Identification and cloning of humanastrocyte genes displaying elevated expression subtraction hybridization,RaSH. Oncogene,2002,21:3592~3602
    9Su ZZ, Chen Y, Kang DC, et al. Customized rapid subtractionhybridization (RaSH) gene microarrays identify overlapping expressionchanges inhuman fetal astrocytes resulting from human immuno-deficiency virus-1infection or tumor necrosis factor-alpha treatment.Gene,2003,306:67~78
    10Kang DC, Su ZZ, Sarkar D, et al. Cloning and characterization ofHIV-1-inducible astrocyte elevated gene-1, AEG-1. Gene,2005,353:8~15
    11Ying Z, Li J, Li M, et al. Astrocyte elevated gene-1: biological functionsand molecular mechanism in cancer and beyond. Cell Biosci,2011,1:36
    12Popov Y, Schuppan D. Targeting liver fibrosis: strategies fordevelopment and validation of antifibrotic therapies. Hepatology,2009,50:1294~1306
    13Tams EG. Morphoiogical and functional changes in the livers of rats afterligation and excision of the common bile duct. Am J pathol,1957,33:13
    14KITAMURAK, NAKAMOTOY, AKIYAMAM, et al. Pathogenic roles oftumor necrosis factor receptor p55-mediated signals in dimethylnitro-samine-induced murine liver fibrosis. Laboratory Investigation,2002,82:571~583
    15YASUDA M, SHIMIZU I, SHIBA M, et al. Suppressive effects ofestradiolon dimethylnitrosamine-induced fibrosis of the liver in rats.Hepatology,1999,29:719~727
    16GEORGE J, RAO KR, STEM R, et al. Dimethylnitrosamine-inducedliver injury in rats: the early deposition of collagen. Toxicology,2001,156:129~138
    17Yoo BK, Emdad L, Su ZZ, et al. Astrocyte elevated gene-1regulateshepatocellular carcinoma development and progression. The Journal ofClinical Investigation,2009,119:465~477
    18Zhu K, Dai Z, Pan Q, et al. Metadherin promotes hepatocellularcarcinoma metastasis through induction of epithelial-mesenchymaltransition. Clinical Cancer Research,2011,17:7294~7302
    19Gong Z, Liu W, You N, et al. Prognostic significance of metadherinoverexpression in hepatitis B virus-related hepatocellular carcinoma.Oncology Reports,2012,27:2073~2079
    20Hyun Yong Jeon, Murim Choid, Eric L, et al. Expression patterns ofastrocyte elevated gene-1(AEG-1) during development of the mouseembryo Gene Expr Patterns.2010;10:361~367
    21Mohamed Suhaimi NA, Zhuo L. Imidazolium salt attenuatesthioacetamide-induced liver fibrosis in mice by modulatinginflammation and oxidative stress. Dig Liver Dis,2012,44:665~673
    22Srivastava J, Siddiq A, Emdad L, et al. Astrocyte elevated gene-1promotes hepatocarcinogenesis: novel insights from a mouse model.Hepatology,2012,56:1782~1791
    23Giampieri MP, Jezequel AM, Orlandi F. The lipocytes in normal humanliver. Digestion,1981,22:165~169
    24Jezequel AM, Novelli G, Venturini C, et al. Quantitative analysis of theperisinusoidal cells in human liver, the lipocytes. Front GastrointestinalRes,1984,8:85~90
    25Wake K. Three-dimensional structure of the sinusoidal wall in the liver: aGolgi study. Prog Clin Biol Res,1989,295:257~262
    26Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. MolAspects Med,2000,2:49~98
    27Gressner AM, Weiskir chenR. Modern pathogenetic concepts on liverfibrosis suggest stellate cells and TGF-beta as major players andtherapeutic targets. J Cell Biol Med,2006,10:76~99
    28Elsharkawy AM, Oakley F, Mann DA, et al. The role and regulation ofhepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis,2005,10:927~939
    29Imtiaz IE, Khuda, Naoki Koide, et al. Astrocyte elevated gene-1(AEG-1)is induced by lipopolysaccharide as toll-like receptor4(TLR4) ligand andregulates TLR4signalling. Immunology,2009, sep;128(1Suppl):e700~706
    30Friedman SL. Hepatic Stellate Cells: Protean, Multifunctional, andEnigmatic Cells of the liver Physiol Rev,2008,88:125~172
    1Bataller R, Brenner DA. Liver fibrosis. J Clin Invest,2005,11:209~218
    2Parsons CJ, Takashima M, Rippe RA. Molecular mechanisms of hepaticfibrogenesis. J Gastroenterol Hepatol,2007,22Suppl1:S79~84
    3Isseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis andthe reversal of fibrosis. J Gastroenterol Hepatol,2007,22Suppl l:73~78
    4Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNAdirects the ATP-dependent cleavage of mRNA at21to23nucleotideintervals. Cell,2000,101(1):25~33
    5Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nucleasemediates post-transcriptional gene silencing in Drosophila cells. Nature,2000,404(6775):293~6
    6Blomhoff R, Blomhoff HK. Overview of retinoid metabolism andfunction. J Neurobiol,2006,66:606~30
    7George J, Roulot D, Koteliansky VE, et al. In vivo inhibition of ratstellate cell activation by soluble transforming growth factor β type IIreceptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad SciU S A,1999,96:12719~12724
    8Sohara N, Znoyko I, Levy MT, et a1. Reversal of activation of humanmyofibroblast-like cells by culture on a basement membrane-likesubstrate. J Hepatol,2002,37(2):214~221
    9Maubach G, Lim MC, Zhuo L, et a1. Nuclear cathepsin F regulatesactivation markers in rat hepatic stellate cells. Mol Biol Cell,2008,19(10):4238~4248
    10Lee SG, Jeon HY, Su ZZ, et al. Astrocyte elevated gene-1contributes tothe pathogenesis of neuroblastoma. Oncogene,2009,28:2476~84
    11Yoo BK, Emdad L, Su ZZ, et al. Astrocyte elevated gene-1regulateshepatocellular carcinoma development and progression. J Clin Invest,2009;119:465~77
    12Kikuno N, Shiina H, Urakami S, et al. Knockdown of astrocyte-elevatedgene-1inhibits prostate cancer progression through upregulation ofFOXO3a activity. Oncogene,2007,26:7647~55
    13Yu C, Chen K, Zheng H, et al. Overexpression of astrocyte elevatedgene-1(AEG-1) is associated with esophageal squamous cell carcinoma(ESCC) progression and pathogenesis. Carcinogenesis,2009,30:894~901
    14Li J, Zhang N, Song LB, et al. Astrocyte elevated gene-1is a novelprognostic marker for breast cancer progression and overall patientsurvival. Clin Cancer Res,2008,14:3319~26
    15Friedman SL. Hepatic stellate cells:protean,multifunctional,andEnigmatic cells of the liver. Physiol Rev,2008,88:l25~172
    16Gabbiani G, Schmid E, Winter S, et a1. Vascular smooth muscle cellsdiffer from other smooth muscle cells: predominance of vimentinfilaments and a specific alpha-type actin. Proc Natl Acad Sci USA,1981,78:298~302
    17Skalli O, Schurch W, Seemayer T, et a1. Myofibroblasts from diversepathologic settings are heterogeneous in their content of actin isoformsand intermediate filament proteins. Lab Invest,1989,60:275~285
    18Schmitt-Graff A, Kruger S, Bochard F, et a1. Modulation of alphasmooth muscle actin and desmin expression in perisinusoidal cells ofnormal and diseased human livers. Am J Pathol,1991,138:1233~1242
    19Serini G, Gabbiani G. Mechanisms of myofibroblast activity andphenotypic modulation. Exp Cell Res,1999,250:273~283
    20Ercelino R, Crespo I, de Souza GF, et a1. S-nitroso-N-acetylcysteineattenuates liver fibrosis in cirrhotic rats. J Mol Med,2010,88:401~411
    1Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenol-menon with wide-ranging implications in tissue kinetics. Br J Cancer,1972,26:239~257
    2Zhou X, Murphy FR, Gehdu N, et al. Engagement of alphavbeta3in-tegrin regulates proliferation and apoptosis of hepatic stellate cells. J BiolChem,2004,279:23996~4006
    3Brenner DA, Waterboer T, Choi SK, et al. New aspects of hepatic fibrosis.J Hepatol,2000,32:32~38
    4Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology,2008,134:1655~1669
    5Iredale JP. Models of liver fibrosis: exploring the dynamic nature ofinflammation and repair in a solid organ. J Clin Invest,2007,117:539–548
    6Yang C, Zeisberg M, Mosterman B, et al. Liver fibrosis: insights intomigration of hepatic stellate cells in response to extracellular matrix andgrowth factors. Gastroenterology,2003,124:147~159
    7Yamada S, Maruyama I. HMGB1, a novel inflammatory cytokine. ClinChim Acta,2007,375:36–42
    8Wirkowska A,Paczek L. Liver fibrosis and cirrhosis causes. PrzeglLek,2011,68:222~227
    9Hazra S, Xiong S, Wang J, et al. Peroxisome proliferator-activatedreceptor gamma induces a phenotypic switch from activated to quiescenthepatic stellate cells. J Biol Chem,2004,279:11392~401
    10Chang YZ, Yang L, Yang CQ, et al. Migration of hepatic stellate cells infibrotic microenvironment of diseased liver model. HepatobiliaryPancreat Dis Int,2008,7:401~5
    11Iwaisako K, Brenner DA, Kisseleva T. What's new in liver fibrosis? Theorigin of myofibroblasts in liver fibrosis. J Gastroenterol Hepatol,2012,27:65~8
    12De Minicis S, Seki E, Uchinami H, et al. Gene expression profiles duringhepatic stellate cell activation in culture and in vivo. Gastroenterology,2007,132:1937~46
    13Iredale JP. Hepatic stellate cell behavior during resolution of liver injury.Semin Liver Dis,2001,21:427~36
    14Issa R, Williams E, Trim N, et al. Apoptosis of hepatic stellate cells:involvement in resolution of biliary fibrosis and regulation by solublegrowth factors. Gut,2001,48:548~57
    15Adaeva S, Sun R, Jaruga B, et al. Natural killer cells ameliorate liverfibrosis by killing activated stellate cells in NKG2D-dependent andtumor necrosis factor-related apoptosis-inducing ligand-dependentmanners. Gastroenterology,2006,130:435~52
    16Melhem A, Muhanna N, Bishara A, et al. Anti-fibrotic activity of NKcells in experimental liver injury through killing of activated HSC.Hepatol,2006,45:60~71
    17Poynard T, Mathurin P, Lai CL, et al. A comparison of fibrosisprogression in chronic liver diseases. J Hepatol,2003,38:257~65
    18Lang A, Schoonhoven R, Tuvia S, et al. Nuclear factor kappa B inproliferation, activation, and apoptosis in rat hepatic stellate cells. JHepatol,2000,33:49~58
    19Fischer R, Schmitt M, Bode JG, et al. Expression of the peripheral-typebenzodiazepine receptor and apoptosis induction in hepatic stellate cells.Gastroenterology,2001,120:1212~1226
    20Lee SG, Su ZZ, Emdad L, et al. Astrocyte elevated gene-1activates cellsurvival pathways through PI3K-Akt signaling. Oncogene,2008,27:1114~21
    21Creagh EM1, Conroy H, Martin SJ, et al. Caspase-activation pathways inapoptosis and immunity. Immunol Rev,2003,193:10~21
    22Shi Y. Caspase activation, inhibition, and reactivation: a mechanisticview. Protein Sci,2004,13:1979~87
    23Kuo LM, Kuo CY, Lin CY, et al. Intracellular glutathione depletion byoridonin leads to apoptosis in hepatic stellate cells. Molecules,2014,19:3327~44
    24Wang Y, Gao J, Zhang D, et al. New insights into the antifibrotic effectsof sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol,2010,53:132~44
    25Zhang D, Zhang J, Jiang X, et al. Heparin-binding epidermal growthfactor-like growth factor: a hepatic stellate cell proliferation inducer viaErbB receptors. J Gastroenterol Hepatol,2014,29:623~32
    26Gonzalo T, Beljaars L, van de Bovenkamp M, et al. Local inhibition ofliver fibrosis by specific delivery of a platelet-derived growth factorkinaseinhibitor to hepatic stellate cells. J Pharmaeol Exp Ther,2007,321:
    856~865
    27Adachi T, Togashi H, Suzuki. A NAD(P)H oxidase plays a crucial role inPDGF-induced proliferation of hepatic stellate cells. Hepatology,2005,41:1272~1281
    28Borkham Kamphorst E, Hemnann J, et al. Dominant-negative sohblePDGF-beta receptor inhibits hepatic stellate cell activation and attenuatesliver fibrosis. Lab Invest,2004,84:766~77
    29Wang FP, Li L, Li J et al. High mobility group box-1promotes theproliferation and migration of hepatic stellate cells via TLR4-dependentsignal pathways of PI3K/Akt and JNK. PLoS One,2013,8:e64373
    30Hu G, Wei Y, Kang Y, et al. The multifaceted role of MTDH/AEG-1incancer progression. Clin Cancer Res,2009,15:5615~20
    31Ma J, Xie SL, Geng YJ, et al. In vitro regulation of hepatocellularcarcinoma cell viability, apoptosis, invasion, and AEG-1expression byLY294002. Clin Res Hepatol Gastroenterol,2014,38:73-80
    32Liu B, Wu Y, Peng D. Astrocyte elevated gene-1regulates osteosarcomacell invasion and chemoresistance via endothelin-1/endothelin Areceptor signaling. Oncol Lett,2013,5:505-510
    33Wang YP, Liu IJ, Chiang CP, et al. Astrocyte elevated gene-1isassociated with metastasis in head and neck squamous cell carcinomathrough p65phosphorylation and upregulation of MMP1. Mol Cancer.2013,12:109
    1Bataller R, Brenner DA. Liver fibrosis. ain Invest,2005,115:209~218
    2Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. ClinClim Acta,2006,364:33~60
    3Borkham Karnphorst E, van Roeyen CR, Ostendorf T, et a1.Profibrogenic potential of PDGF-D in liver fibrosis. J Hepatol,2007,46:1064~1074
    4Engelman JA, Luo J, Cantley LC, et al. The evolution of phosphate-dylinositol3-kinases as regulators of growth and metabolism. NatureReviews. Genetics,2006,7:606~619
    5Hennessy BT, Smith DL, Ram PT, et al. Exploiting the PI3K/AKTpathway for cancer drug discovery. Nature Reviews. Drug Discovery,2005,4:988~1004
    6Bellacosa A, Kumar CC, Di Cristofano A, et al. Activation of AKTkinases in cancer:implications for therapeutic targeting. Advances inCancer Research,2005,94:29~86
    7Yang ZZ, Tschopp O, Baudry A, et al. Physiological functions of proteinkinase B/Akt. Biochemical Society Transactions,2004,32:350~354
    8Eng FJ, Friedman SL. Fibrogenesis I: new insights into hepatic stellatecell activation: the simple becomes complex. Am J Physiol GastrointestLiver Physiol,2000,279: G7~G11
    9Friedman SL. Molecular regulation of hepatic fibrosis, an integratedcellular response to tissue injury. J Biol Chem,2000,275:2247~2250
    10Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellatecells. Semin Liver Dis,2001,21:397~416
    11Pinzani M. PDGF and signal transduction in hepatic stellate cells. FrontBiosci,2002,7: d1720~d11726
    12Gabele E, Relf S, Tsukada S, et a1. The role of pT0S6K in hepaticstellate cell collagen gene expression and cel proliferation. J Biol Chem,2005,280:13374~13382
    13Gentilini A, Mal Ta F, Gentilini P, et a1. Phosphat idylinositol-3kinaseand extracellular signa1regulated kinase mediate the chemotactic andmitogenie effects of insulin like growth factor-I in human hepatic stellatecells. J Hepatol,2000,32:227~234
    14Son G, Hines IN, Lindquist J, et a1. Inhibition of phosphatidy linositol3-kinase signaling in hepatic stellate cells blocks the progression ofhepatic fibrosis. Hepatology,2009,50:1512~1523
    15Blancher C, Moore JW, Robertson N, et al. Effects of ras and vonHippel-Lindau (VHL) gene mutations on hypoxia-inducible factor(HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factorexpression and their regulation by the phosphatidylinositol3′-kinase/Aktsignaling pathway. Cancer Research,2001,61:7349~7355
    16Jiang BH, Jiang G, Zheng JZ, et al. Phosphatidylinositol3-kinasesignaling controls levels of hypoxia inducible factor1. Cell GrowthDifferentiation,2001,12:363~369
    17Emdad L, Lee SG, Su ZZ, et al. Astrocyte elevated gene-1(AEG-1)functions as an oncogene and regulates angiogenesis. Proceedings of theNational Academy of Sciences of the United States of America,2009,106:21300~21305
    18Lee SG, Su ZZ, Emdad L, et al. Astrocyte elevated gene-1(AEG-1) is atarget gene of oncogenic Ha-ras requiring phosphatidylinositol3-kinaseand c-Myc. Proceedings of the National Academy of Sciences of theUnited States of America,2006,103:17390~17395
    19Lee SG, Su ZZ, Emdad L, et al. Astrocyte elevated gene-1activates cellsurvival pathways through PI3K-Akt signaling. Oncogene,2008,27:1114~21
    20Lee SG, Jeon HY, Su ZZ, et al. Astrocyte elevated gene-1contributes tothe pathogenesis of neuroblastoma. Oncogene,2009,28:2476~84
    21Kikuno N, Shiina H, Urakami S, et al. Knockdown of astrocyte-elevatedgene-1inhibits prostate cancer progression through upregulation ofFOXO3a activity. Oncogene,2007,26:7647~55
    22Yu C, Chen K, Zheng H, et al. Overexpression of astrocyte elevatedgene-1(AEG-1) is associated with esophageal squamous cell carcinoma(ESCC) progression and pathogenesis. Carcinogenesis,2009,30:894~901
    23Yoo BK, Chen D, Su ZZ, et al. Molecular mechanism of chemoresistanceby astrocyte elevated gene-1. Cancer Research,2010,70:3249~3258
    24Ke ZF, Mao X, Zeng C, et al. AEG-1expression characteristics in humannon-small cell lung cancer and its relationship with apoptosis. MedicalOncology,2013,30:383
    25Noch E, Bookland M, Khalili K, et al. Astrocyte-elevated gene-1(AEG-1)induction by hypoxia and glucose deprivation in glioblastoma. CancerBiology Therapy,2011,11:32~39
    26Downward J. Targeting RAS signalling pathways in cancer therapy.Nature Reviews. Cancer,2003,3:11~22
    27Katz M, Amit I, Yarden Y, et al. Regulation of MAPKs by growth factorsand receptor tyrosine kinases. Biochimica et Biophysica Acta,2007,1773:1161~1176
    28Yoo BK, Emdad L, Su ZZ, et al. Astrocyte elevated gene-1regulateshepatocellular carcinoma development and progression. J Clin Invest,2009;119:465~77
    29Kong X, Moran MS, Zhao Y, et al. Inhibition of metadherin sensitizesbreast cancer cells to AZD6244. Cancer Biology and Therapy,2012,13:43~49
    30Jiali Wei, Zhuori Li, Wenfang Chen, et al. AEG-1participates inTGF-beta1-induced EMT through p38MAPK Activation. Cell Biol Int,2013,37:1016~21
    1Giampieri MP, Jezequel AM, Orlandi F. The lipocytes in normal humanliver. Digestion,1981,22:165~169
    2Jezequel AM, Novelli G, Venturini C, et al. Quantitative analysis of theperisinusoidal cells in human liver; the lipocytes. Front GastrointestinalRes,1984,8:85~90
    3Mousavi SA, Sato M, Sporst l M, et al. Uptake of collagen into hepaticstellate cells: evidence of the involvement of urokinase plasminogenactivator associated protein/Endo180. Biochem J,2005,387:39~46
    4Imai K, Senoo H. Morphology of sites of adhesion between hepaticstellate cells (vitamin A-storing cells) and a three-dimensionalextracellular matrix. Anat Rec,1998,250:430~7
    5Imai K, Senoo H. Morphology of sites of adhesion between extracellularmatrix and hepatic stellate cells. Connect Tissue,2000,32:395~400
    6Blomhoff R, Blomhoff HK. Overview of retinoid metabolism andfunction. J Neurobiol,2006,66:606~30
    7Moriwaki H, Blaner WS, Piantedosi R, et al. Effects of dietary retinoidand triglyceride on the lipid composition of rat liver stellate cells andstellate cell lipid droplets. J Lipid Res,1988,29:1523~34
    8Pinzani M, Marra F. Cytokine receptors and signalling in hepatic stellatecells. Semin Liver Dis,2001,21:397~416
    9Notas G, Kisseleva T, Brenner D. NK and NKT cellsin liver injury andfibrosis. Clin Immunol,2009,130:16~26
    10Winau F, Hegasy G, Weiskirchen R, et al. Ito cells are liver-residentantigen-presenting cells for activating T cell responses. Immunity,2007,26:9~10
    11Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. MolAspects Med,2000,2:49~98
    12Gressner AM, Weiskir chenR. Modern pathogenetic concepts on liverfibrosis suggest stellate cells and TGF-beta as major players andtherapeutic targets. J Cell Biol Med,2006,10:76~99
    13Benyon RC, Arthur MJP. Extracellular matrix degradation and the role ofhepatic stellate cells. Semin Liver Dis,2001,21:373~84
    14Rockey DC. Hepatic blood flow regulation by stellate cells in normal andinjured liver. Semin Liver Dis,2001,21:337~50
    15Scott L. Hepatic Stellate Cells: Protean, Multifunctional, and EnigmaticCells of the Liver Friedman Physiol Rev,2008,88:125~172
    16Friedman SL, Rockey DC, McGuire RF, et al. Isolated hepatic lipocytesand Kupffer cells from normal human liver: morphological and functionalcharacteristics in primary culture. Hepatology,1992,15:234~43
    17Matsuura T, Nagamori S, Fujise K, et al. Retinol transport in cultured fatstoring cells of rat liver, Quantitative analysis by anchored cell analysisand sorting system. Lab Invest,1989,61:107~15
    18Gutierrez-Ruiz MC, Gomez-Quiroz LE. Liver fibrosis: searching for cellmodel answers. Liver Int,2007,27:434~39
    19Matsuoka M, Tsukamoto H. Stimulation of hepatic lipocyte collagenproduction by Kupffer cellderived transforming growth factor beta:implication for a pathogenetic role in alcoholic liver fibrogenesis.Hepatology,1990,11:599~605
    20Matsuoka M, Zhang MY, Tsukamoto H. Sensitization of hepatic lipocytesby high-fat diet to stimulatory effects of Kupffer cell-derived factors:implication in alcoholic liver fibrogenesis. Hepatology,1990,11:173~82
    21Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as amodulator of hepatic fibrogenesis. Semin Liver Dis,2001,21:351~72
    22Davis BH. Transforming growth factor beta responsiveness is modulatedby the extracellular collagen matrix during hepatic ito cell culture. J CellPhysiol,1988,136:547~53
    23Gaca MD, Zhou X, Issa R, et al. Basement membrane-like matrix inhibitsproliferation and collagen synthesis by activated rat hepatic stellate cells:evidence for matrix-dependent deactivation of stellate cells. Matrix Biol,2003,22:229~39
    24Roskams T. Different types of liver progenitor cells and their niches. JHepatol,2006,45:1~4
    25Baba S, Fujii H, Hirose T, et al. Commitment of bone marrow cells tohepatic stellate cells in mouse. J Hepatol,2004,40:255~60
    26Cassiman D, Libbrecht L, Sinelli N, et al. The vagal nerve stimulatesactivation of the hepatic progenitor cell compartment via muscarinicacetylcholine receptor type3. Am J Pathol,2002,161(2):521~30
    27Asahina K, Sato H, Yamasaki C, et al. Pleiotrophin/heparin-bindinggrowth-associated molecule as a mitogen of rat hepatocytes and its rolein regeneration and development of liver. Am J Pathol,2002,160:2191~2205
    28Yoshino R, Miura K, Segawa D, et al. Epimorphin expression and stellatecell status in mouse liver injury. Hepatol Res,2006,34:238~49
    29Berg T, Rountree CB, Lee L, et al. Fibroblast growth factor10is criticalfor liver growth during embryogenesis and controls hepatoblast survivalvia β-catenin activation. Hepatology,2007,46:1187~1197
    30Schmitt-Graeff A, Jing R, Nitschke R, et al. Synemin expression iswidespread in liver fibrosis and is induced in proliferating and malignantbiliary epithelial cells. Hum Pathol,2006,37:1200~1210
    31Kubota H, Yao H, Reid LM. Identification and characterization ofvitamin-A storing cells in fetal liver: implication of functional importanceof hepatic stellate cells in development and hematopoiesis. Stem Cells2007;25:2339~2349
    32Kordes C, Sawitza I, Muller-Marbach A, et al. CD133(+) hepatic stellatecells are progenitor cells. Biochem Biophys Res Commun,2007,352:410~417
    33Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. Nonalcoholicsteatohepatitis: association of insulin resistance and mitochondrialabnormalities. Gastroenterology,2001,120:1183~1192
    34Day CP, James OF. Steatohepatitis: a tale of two ‘hits’? Gastroenterology,1998,114:842~845
    35Svegliati-Baroni G, Ridolfi F, Di Sario A, et al. Insulin and insulin-likegrowth factor-1stimulate proliferation and type I collagen accumulationby human hepatic stellate cells:differential effects on signal transductionpathways. Hepatology,1999,29:1743~1751
    36Paradis V, Perlemuter G, Bonvoust F, et al. High glucose andhyperinsulinemia stimulate connective tissue growth factor expression: apotential mechanism involved in progression to fibrosis in nonalcoholicsteatohepatitis. Hepatology,2001,34:738~744
    37Grotendorst GR. Connective tissue growth factor: a mediator of TGF-betaaction on fibroblasts. Cytokine Growth Factor Rev,1997,8:171~179
    38Hyogo H, Yamagishi S, Iwamoto K, et al. Elevated levels of serumadvanced glycation end products in patients with non-alcoholicsteatohepatitis. J Gastroenterol Hepatol,2007,22:1112~1119
    39Teixeira-Clerc F, Julien B, Grenard P, et al. CB1cannabinoid receptorantagonism: a new strategy for the treatment of liver fibrosis. Nat Med,2006,12:671~676
    40Julien B, Grenard P, Teixeira-Clerc F, et al. Antifibrogenic role of thecannabinoid receptor CB2in the liver. Gastroenterology,2005,128:742~755
    41Bataller R, Sancho-bru P, Ginès P, et al. Activated human hepatic stellatecells express the reninangiotensin system and synthesize angiotensin II.Gastroenterology,2003,125:117~125
    42Rombouts K, Niki T, Wielant A, et al. Effect of aldosterone on collagensteady state levels in primary and subcultured rat hepatic stellate cells. JHepatol,2001,34:230~238
    43Marra F, Bertolani C. Adipokines in liver diseases. Hepatology,2009,50:957~969
    44Ding X, Saxena NK, Lin S, et al. The roles of leptin and adiponectin: anovel paradigm in adipocytokine regulation of liver fibrosis and stellatecell biology. Am J Pathol,2005,166:1655~1669
    45Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory andproangiogenic cytokines by leptin in human hepatic stellate cells.Hepatology,2005,42:1339~1348
    46Jiang JX, Mikami K, Shah VH, et al. Leptin induces phagocytosis ofapoptotic bodies by hepatic stellate cells via a Rho guanosinetri-phosphatase-dependent mechanism. Hepatology,2008,48:1497~1505
    47Zhan SS, Jiang JX, Wu J, et al. Phagocytosis of apoptotic bodies byhepatic stellate cells induces NADPH oxidase and is associated with liverfibrosis in vivo. Hepatology,2006,43:435~443
    48Bertolani C, Sancho-Bru P, Failli P, et al. Resistin as an intrahepaticcytokine: overexpression during chronic injury and induction ofproinflammatory actions in hepatic stellate cells. Am J Pathol,2006,169:2042~2053
    49Galli A, Crabb DW, Ceni E, et al. Antidiabetic thiazolidinediones inhibitcollagen synthesis and hepatic stellate cell activation in vivo and in vitro.Gastroenterology,2002,122:1924~1940
    50Zheng S, Chen A: Activation of PPARgamma is required for curcumin toinduce apoptosis and to inhibit the expression of extracellular matrixgenes in hepatic stellate cells in vitro.Biochem J,2004,384:149~157
    51Purohit V, Brenner DA. Mechanisms of alcohol-induced hepatic fibrosis:a summary of the Ron Thurman Symposium. Hepatology,2006,43:872~878
    52Powell EE, Jonsson JR, Clouston AD. Steatosis: co-factor in other liverdiseases. Hepatology,2005,42:5~13
    53Jeong WI, Osei-Hyiaman D, Park O, et al. Paracrine activation of hepaticCB1receptors by stellate cell-derived endocannabinoids mediatesalcoholic fatty liver. Cell Metab,2008,7:227~235
    54Siegmund SV, Uchinami H, Osawa Y, et al. Anandamide induces necrosisin primary hepatic stellate cells. Hepatology,2005,41:1085~1095
    55Quiroz SC, Bucio L, Souza V, et al. Effect of endotoxin pretreatment onhepatic stellate cell response to ethanol and acetaldehyde. J GastroenterolHepatol,2001,16:1267~1273
    56Cubero FJ, Nieto N. Ethanol and arachidonic acid synergize to activateKupffer cells and modulate the fibrogenic response via tumor necrosisfactor alpha, reduced glutathione, and transforming growth factorbeta-dependent mechanisms. Hepatology,2008,48:2027~2039
    57Friedman SL. Hepatic stellate cells: protean, multifunctional, andenigmatic cells of the liver. Physiol Rev,2008,88:125~72
    58Wake K. Three-dimensional structure of the sinusoidal wall in the liver: aGolgi study. Prog Clin Biol Res,1989,295:257~62
    59Bonacchi A, Petrai I, Defranco RM, et al. The chemokine CCL21modulates lymphocyte recruitment and fibrosis in chronic hepatitis C.Gastroenterology,2003,125:1060~76
    60Friedman SL. Mechanisms of hepatic fibrosis and therapeuticimplications. Nature Clinical Practice in Gastroenterology&Hepatology,2004,1:98~105
    61Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activatedstellate cells limits liver fibrosis. Cell,2008,134:657~67
    62George J, Roulot D, Koteliansky VE, et al. In vivo inhibition of ratstellate cell activation by soluble transforming growth factor β type IIreceptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad SciU S A,1999,96:12719~12724
    63Parkes JG, Templeton DM. Effects of retinol and hepatocyte-conditionedmedium on cultured rat hepatic stellate cells. Ann Clin Lab Sci,2003,33:295~305
    64Senoo H, Wake K. Suppression of experimental hepatic fibrosis byadministration of vitamin A. Lab Invest,1985,52:182~94
    65Murakami K, Kaji T, Shimono R, et al. Therapeutic effects of vitamin Aon experimental cholestatic rats with hepatic fibrosis. Pediatr Surg Int,2011,27:863~70
    66Kluwe J, Wongsiriroj N, Troeger JS et al. Absence of hepatic stellate cellretinoid lipid droplets does not enhance hepatic fibrosis but decreaseshepatic carcinogenesis. Gut,2011,60:1260~8
    67Zhao Z, Murasko DM, Ross AC. The role of vitamin A in natural killercell cytotoxicity, number and activation in the rat. Nat Immun,1994,13:29~41
    68Radaeva S, Sun R, Jaruga B, et al. Natural killer cells ameliorate liverfibrosis by killing activated stellate cells in NKG2D-dependent and tumornecrosis factor-related apoptosis-inducing ligand-dependent manners.Gastroenterology,2006,130:435~52
    69Jeong WI, Park O, Suh YG, et al. Suppression of innate immunity (naturalkiller cell/interferon-gamma) in the advanced stages of liver fibrosis inmice. Hepatology,2011,53:1342~51
    70Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepato-carcinogenesis. Hepatology,2012,56:769~775
    71Enzan H, Himeno H, Iwamura S, et al. Alpha-smooth muscle actin-positive perisinusoidal stromal cells in human hepatocellular carcinoma.Hepatology,1994,19:895~903
    72Amann T, Bataille F, Spruss T, et al. Activated hepatic stellate cellspromote tumorigenicity of hepatocellular carcinoma. Cancer Sci,2009,100:646~653
    73Campbell JS, Hughes SD, Gilbertson DG, et al. Platelet-derived growthfactor C induces liver fibrosis, steatosis, and hepatocellular carcinoma.Proc Natl Acad Sci USA,2005,102:3389~3394
    74Van Zijl F, Mair M, Csiszar A, et al. Hepatic tumor-stroma crosstalkguides epithelial to mesenchymal transition at the tumor edge. Oncogene,2009,28:4022~4033
    75Zhao W, Zhang L, Yin Z, et al. Activated hepatic stellate cells promotehepatocellular carcinoma development in immunocompetent mice. Int JCancer,2011,129:2651~2661
    76Kluwe J, Wongsiriroj N, Troeger JS, et al. Absence of hepatic stellate cellretinoid lipid droplets does not enhance hepatic fibrosis but decreaseshepatic carcinogenesis. Gut,2011,60:1260~1268
    77Shirakami Y, Gottesman ME, Blaner WS. Diethylnitrosamine-inducedhepatocarcinogenesis is suppressed in lecithin:retinol acyltransferase-deficient mice primarily through retinoid actions immediately aftercarcinogen administration. Carcinogenesis,2012,33:268~274
    78Liu W1, Chen JR, Hsu CH, et al. A zebrafish model of intrahepaticcholangiocarcinoma by dual expression of hepatitis B virus X andhepatitis C virus core protein in liver. Hepatology,2012,56:2268~2276
    79Bertino G, Ardiri A, Malaguarnera M, et al. Hepatocellualar carcinomaserum markers. Semin Oncol,2012,39:410~433
    80Shirai Y1, Kawata S, Tamura S, et al. Plasma transforming growthfactor-beta1in patients with hepatocellular carcinoma. Comparison withchronic liver diseases.Cancer,1994,73:2275~2279
    81Shang S, Plymoth A, Ge S, et al. Identification of osteopontin as anovelmarker for early hepatocellular carcinoma. Hepatology,2012,55:483~490
    1Su ZZ, Kang DC, Chen Y, et al. Identification and cloning of humanastrocyte genes displaying elevated expression after infection with HIV-1or exposure to HIV-1envelope glycoprotein by rapid subtractionhybridization, RaSH. Oncogene,2002,21:3592~3602
    2Emdad L, Sarkar D, Su ZZ, et al. Astroeyte elevated gene-1: Recentinsights into a novel gene involved in tumor progression, metastasis andneurodegeneration. Pharmacology and Therapeutics,2007,114:155~170
    3Sarkar D, Emdad L, Lee SG, et al. Astrocyte elevated gene-1: Far morethan just a gene regulated in astrocytes. Cancer Research,2009,69:8529~8535
    4Anttila V, Stefansson H, Kallela M, et al. Genome-wide association studyof migraine implicates a common susceptibility variant on8q22.1. NatureGenetics,2010,42:869~873
    5Jeon HY, Choi M, Howlett EL, et al. Expression patterns of astrocyteelevated gene-1(AEG-1) during development of the mouse embryo. GeneExpression Patterns,2010,10:361~367
    6Sarkar D, Park ES, Emdad L, et al. Molecular basis of nuclearfactor-kappaB activation by astrocyte elevated gene-1. Cancer Research,2008,68:1478~1484
    7Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB asthe matchmaker. Nature Immunology,2011,12:715~723
    8Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell,2008,132:344~362
    9Karin M, Cao Y, Greten FR, et al. NF-kappaB in cancer: From innocentbystander to major culprit. Nature Reviews Cancer,2002,2:301~310
    10Emdad L, Sarkar D, Su ZZ, et al. Activation of the nuclear factor kappaBpathway by astrocyte elevated gene-1: Implications for tumor progressionand metastasis. Cancer Research,2006,66:1509~1516
    11Khuda II, Koide N, Noman AS, et al. Astrocyte elevated gene-1(AEG-1)is induced by lipopolysaccharide as toll-like receptor4(TLR4) ligand andregulates TLR4signalling. Immunology,2009,128:e700~e706
    12Zhao Y, Kong X, Li X, et al. Metadherin mediates lipopolysaccharide-induced migration and invasion of breast cancer cells. PLoS One,2011,6:e29363
    13Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol3-kinases as regulators of growth and metabolism. Nature ReviewsGenetics,2006,7:606~619
    14Hennessy BT, Smith DL, Ram PT, et al. Exploiting the PI3K/AKTpathway for cancer drug discovery. Nature Reviews. Drug Discovery,2005,4:988~1004
    15Bellacosa A, Kumar CC, Di Cristofano A, et al. Activation of AKTkinases in cancer:Implications for therapeutic targeting. Advances inCancer Research,2005,94:29~86
    16Yang ZZ, Tschopp O, Baudry A, et al. Physiological functions of proteinkinase B/Akt. Biochemical Society Transactions,2004,32:350~354
    17Lee SG, Su ZZ, Emdad L, et al. Astrocyte elevated gene-1(AEG-1) is atarget gene of oncogenic Ha-ras requiring phosphatidylinositol3-kinaseand c-Myc. Proceedings of the National Academy of Sciences of theUnited States of America,2006,103:17390~17395
    18Lee SG, Su ZZ, Emdad L, et al. Astrocyte elevated gene-1activates cellsurvival pathways through PI3K–Akt signaling. Oncogene,2008,27:1114~1121
    19Lee SG, Jeon HY, Su ZZ, et al. Astrocyte elevated gene-1contributes tothe pathogenesis of neuroblastoma. Oncogene,2009,28:2476~2484
    20Kikuno N, Shiina H, Urakami S, et al. Knockdown of astrocyteelevatedgene-1inhibits prostate cancer progression through upregulation ofFOXO3a activity. Oncogene,2007,26:7647~7655
    21Yu C, Chen K, Zheng H, et al. Overexpression of astrocyte elevatedgene-1(AEG-1) is associated with esophageal squamous cell carcinoma(ESCC) progression and pathogenesis. Carcinogenesis,2009,30:894~901
    22Yoo BK, Chen D, Su ZZ, et al. Molecular mechanism of chemoresistanceby astrocyte elevated gene-1. Cancer Research,2010,70:3249~3258
    23Ke ZF, Mao X, Zeng C, et al. AEG-1expression characteristics in humannon-small cell lung cancer and its relationship with apoptosis. MedicalOncology,2013,30:383
    24Blancher C, Moore JW, Robertson N, et al. Effects of ras and vonHippel-Lindau (VHL) gene mutations on hypoxia-inducible factor(HIF)-1alpha, HIF-2alpha, and vascular endothelial growth factorexpression and their regulation by the phosphatidylinositol3′-kinase/Aktsignaling pathway. Cancer Research,2001,61:7349~7355
    25Jiang BH, Jiang G, Zheng JZ, et al. Phosphati-dylinositol3-kinasesignaling controls levels of hypoxia-inducible factor1. Cell Growth&Differentiation,2001,12:363~369
    26Emdad L, Lee SG, Su ZZ, et al. Astrocyte elevated gene-1(AEG-1)functions as an oncogene and regulates angiogenesis. Proceedings of theNational Academy of Sciences of the United States of America,2009,106:21300~21305
    27Noch E, Bookland M, Khalili K. Astrocyte-elevated gene-1(AEG-1)induction by hypoxia and glucose deprivation in glioblastoma. CancerBiology and Therapy,2011,11:32~39
    28Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell,2012,149:1192~1205
    29Clevers H. Wnt/beta-catenin signaling in development and disease. Cell,2006,127:469~480
    30Yoo BK, Emdad L, Su ZZ, et al. Astrocyte elevated gene-1regulateshepatocellular carcinoma development and progression. The Journal ofClinical Investigation,2009,119:465~477
    31Jian-bo X, Hui W, Yu-long H, et al. Astrocyte-elevated gene-1overexpression is associated with poor prognosis in gastric cancer.Medical Oncology,2011,28:455~462
    32Zhang F, Yang Q, Meng F, et al. Astrocyte elevated gene-1interacts withbeta-catenin and increases migration and invasion of colorectal carcinoma.Molecular Carcinogenesis,2013,52:603~610
    33Ge X, Lv X, Feng L, et al. Metadherin contributes to the pathogenesis ofdiffuse large B-cell lymphoma. PLoS One,2012,7:e39449
    34Downward J. Targeting RAS signalling pathways in cancer therapy.Nature Reviews. Cancer,2003,3:11~22
    35Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors andreceptor tyrosine kinases.Biochimica et Biophysica Acta,2007,1773:1161~1176
    36Kong X, Moran MS, Zhao Y, et al. Inhibition of metadherin sensitizesbreast cancer cells to AZD6244. Cancer Biology&Therapy,2012,13:43~49
    37Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancerin2008: GLOBOCAN2008. International Journal of Cancer,2010,127:2893~2917
    38Song H, Li C, Li R, et al. Prognostic significance of AEG-1expression incolorectal carcinoma.International Journal of Colorectal Disease,2010,25:1201~1209
    39ESerag HB. Hepatocellular carcinoma. The New England Journal ofMedicine,2011,365:1118~1127
    40Zhu K, Dai Z, Pan Q, et al. Metadherin promotes hepatocellularcarcinoma metastasis through induction of epithelial-mesenchymaltransition. Clinical Cancer Research,2011,17:7294~7302
    41Gong Z, Liu W, You N, et al. Prognostic significance of metadherinoverexpression in hepatitis B virus-related hepatocellular carcinoma.Oncology Reports,2012,27:2073~2079
    42Chan AO, Wong BC, Lam SK. Gastric cancer: Past, present and future.Canadian Journal of Gastroenterology,2001,15:469~474
    43Baygi ME, Nikpour P. Deregulation of MTDH gene expression in gastriccancer. Asian Pacific Journal of Cancer Prevention,2012,13:2833~2836
    44Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence,mortality, and prevalence across five continents: Defining priorities toreduce cancer disparities in different geographic regions of the world.Journal of Clinical Oncology,2006,24:2137~2150
    45Hiyama T, Yoshihara M, Tanaka S, et al. Genetic polymorphisms andesophageal cancer risk.International Journal of Cancer,2007,121:1643~1658
    46Miller G, Jarnagin WR. Gallbladder carcinoma. European Journal ofSurgical Oncology,2008,34:306~312
    47Malka D, Boige V, Dromain C et al. Biliary tract neoplasms: Update2003.Current Opinion in Oncology,2004,16:364~371
    48Sun W, Fan YZ, Xi H, et al. Astrocyte elevated gene-1overexpression inhuman primary gallbladder carcinomas: An unfavorable and independentprognostic factor. Oncology Reports,2011,26:1133~1142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700