新型两亲分子/DNA复合物的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子生物学的发展使基因疗法有可能实现对疾病在分子水平上的治疗。基因疗法的整个过程为体外重组DNA在基因载体的携带下进入细胞内部并实现基因的表达或干预。基因载体主要可分为:病毒载体和非病毒载体。病毒载体,由于受到免疫原性、承载DNA能力、特定细胞靶向性和成本等因素的影响,应用受到一定的限制。非病毒载体,尤其是一些合成的物质用于DNA转染的研究已引起人们的广泛关注。研究发现,在非病毒载体中,阳离子型表面活性剂和具有类似于表面活性剂结构的多肽能够很好的承载正电荷,可通过静电吸引力和烷基链间的疏水作用将DNA压缩和稳定,聚集体中的DNA亦可免受核酸酶的降解,而且聚集体中的疏水部分可促进DNA从内涵体中释放出来。另外,由于这些表面活性剂、多肽类表面活性剂在结构和性质上与磷脂结构类似,而且类似的自组装特性,有很好的生物相容性,将会是一种很有潜在应用价值的非病毒载体。因此,设计并合成合适的表面活性剂和具有类似表面活性剂结构的多肽作为非病毒载体,并研究它们与DNA的相互作用,对于基因治疗的发展具有重要意义。阳离子型咪唑Gemini表面活性剂[Cn-s-Cnim]Br2是我们课题组设计的一类新型Gemini表面活性剂,它融入了传统Gemini表面活性剂和长链咪唑离子液体的特性,具有高的有效正电荷及优良的自组织特性,有望实现对DNA的有效凝聚。本论文主要包括以下内容:
     1.我们合成了一系列具有不同疏水链长的咪唑Gemini表面活性剂[Cn-4-Cnim]Br2(n=10,12,14),通过圆二色光谱(CD)、荧光光谱等多种谱学手段研究了[Cn-4-Cnim]Br2与鲱鱼精子DNA(短链DNA的常用模型)的相互作用机制,并首次将[Cn-4-Cnim]Br2用于DNA凝聚剂,发现[Cn-4-Cnim]Br2可有效压缩DNA分子。[Cn-4-Cnim]Br2与DNA之间的相互作用力除了静电力以外,疏水作用和π-π堆积力也发挥着重要作用;[Cn-4-Cnim]Br2的烷基链越长,与DNA作用力越强,这表明疏水作用在其中发挥着重要作用。
     2.分别从微观结构、体相性质和细胞水平研究了质粒DNA(基因转染常用到DNA分子)与[C12-4-C12im]Br2复合体系的形貌、细胞毒性和蛋白表达情况。动态光散射(DLS)和原子力显微镜(AFM)实验结果表明,[C12-4-C12im]Br2将空间舒展的线圈状质粒DNA凝聚成均匀、紧密堆积的球状聚集体(尺寸约为100nm)。基因转染实验中,荧光显微镜成像研究表明,质粒DNA上的增强绿色荧光蛋白(EGFP)基因能够成功表达;流式细胞结果定量给出蛋白高表达信息,即对HEK293细胞有高效的基因转染(86%的转染效率)。尺寸均一的球状复合物具有高的基因转染效率和较低的细胞毒性,表明此类阳离子型咪唑Gemini表面活性剂是有应用前景的新型非病毒基因载体。
     3.金纳米颗粒具有高的比表面积、易于表面功能化修饰和良好的生物相容性等特性,可以作为标记物或探针用在生物体系中。我们将咪唑表面活性剂与金纳米颗粒构筑成纳米复合材料,用光谱法、扫描电镜(SEM)、原子力显微镜(AFM)等表征技术,研究了发现[C12-4-C12im]Br2修饰的金纳米颗粒粒径均一、产率较高。在细胞水平对[C12-4-C12im]Br2修饰的金纳米颗粒的细胞毒性和基因转染水平进行了评判。将[C12-4-C12im]Br2偶联到金纳米颗粒上,利用金纳米颗粒的优势将表面活性剂的浓度局部集中,展现多价离子的特性,从而加强了DNA的凝聚效果。这丰富了纳米基因载体的研究内容,而且对阳离子型两亲分子和纳米材料进行优化组合,从而获得更加理想的转染效果,提供了载体设计的新思路。
     4.考虑到[C12-4-C12im]Br2有一定的细胞毒性,会限制其在基因治疗等生物医药领域的应用。我们选用合适氨基酸设计了一系列具有良好生物相容性的类似表面活性剂结构的多肽,对其组装结构和组装过程的研究表明了多肽由分子手性到多级组装手性的转变。我们亦发现此类物质融合了表面活性剂和多肽两者的优越性质,可与DNA通过静电力和疏水效应发生相互作用,并从细胞水平评价了此类凝聚剂的细胞毒性,以期为具有类似表面活性剂结构的多肽在基因治疗领域的应用提供基础数据和理论指导。
Gene therapy has been regarded as a potential treatment for a range of disorders with genetic anomaliea or deficiencies that involve the introduction of encoded therapeutic proteins or suppreeion of abnormally expressed proteins. Generally, genes are delivered either by viral or nonviral systems. Viral vectors still face various challenges including the cellular immune response, limited cargo capacity, targeting deliver into aimed cells and cost. Alternatively, numerous synthetic materials have been developed as nonviral vectors. Cationic surfactants and amphiphilic peptides which carry positive charges could condense and stabilize DNA through attractive electrostatic and hydrophobic interactions, and protect nucleic acids from enzymatic degradation, and release nucleic acids into the cyroplasm by the hydrophobic segment. Moreover, because cationic surfactants and amphiphilic peptides are chemically similar to lipid molecules and could be versatiles by designable synthesis, surfactant or peptides-based vectors have been considered as a promising potential nonviral gene vector strategy. Therefore, it is important to design and synthesize novel surfactants and amphiphilic peptides as nonviral vectors, and to investigate the interaction with DNA, for gene therapy application. The imidazolium Gemini surfactants [Cn-s-Cnim]Br2display better interfacial and self-assembly properties than those traditional monovalent surfactants, owning to the properties of traditional Gemini surfactant and single-chain imidazolium surfactant, which may condense DNA effectly.
     We synthesized a series of imidazoliu Gemini surfactants with a four-methylene spacer group ([Cn-4-Cnim]Br2, n=10,12, and14). Herring sperm DNA is chosen as a model gene system for short DNA, microRNA, and so on. We investigated the interactions between herring sperm DNA and surfactants by CD, ethidium bromide displacement assay, and discussed the DNA condensation mechanism. Upon addition of [Cn-4-Cnim]Br2, DNA molecules undergo the process from DNA compaction to multi-molecular DNA condensation accompanied by conformation change.[Cn-4-Cnim]Br2as novel Gemini surfactants can interact with DNA via electrostatic, hydrophobic and π-π interactions. Moreover, the stronger interaction between DNA and [Cn-4-Cnim]Br2with longer tail demonstrates the important contribution of the hydrophobic interaction.
     Furthermore, we investigated the morphologies, cytotoxicity, and gene transfection of plasmid DNA/[C12-4-C12im]Br2complexes at structural, phase properties, and cellular levels, respectively. Homogeneous DNA/[C12-4-C12im]Br2nanoparticles are formed with a diameter of approximately100nm and investigated by using dynamic light scattering (DLS) and atomic force microscopy (AFM). DNA condensates evolve from supercoiled DNA molecules, to individual toroids, to close-packed particles. Successfully EGFP gene transfection in vitro is demonstrated by using fluorescence microscopy in HEK293and HeLa cells. Quantitative analysis results of gene transfection by flow cytometry show that the efficiency of DNA/[C12-4-C12im]Br2is86.0%. The uniform condensate nanoparticles with nanometer size and spherical shape, high gene tranfection efficiency, moderate toxicity demonstrate that imidazolium Gemini surfactants are a promising nonviral vector in gene therapy.
     Gold nanoparticles have promising application in the fields of gene therapy, duing to their unique optical and photothermal properties, the availability of synthetic protocols that can tune the size and shape of the particles, the ability to modify the surface, and the relative biocompatibility. Novel imidazolium surfactants functionalized gold nanoparticles are expected to use as excellent agents for controlled DNA condensation, and significantly high gene expression, as well as reducing cytotoxicity. The seed growth method and [C12-4-C12im]Br2modified gold nanoparticles surface method were used, respectively, to get uniform size and shape, high yield gold nanoparticles. The gold nanoparticles which are modified [C12-4-C12im]Br2could concentrate [C12-4-C12im]Br2molecules, and exhibit the characteristies of multivalent ions, increasing the effect of DNA condensation as a result. The size distribution and uniform degree are determined by the spectroscopy and microscopy technology, and the gene transfection and the toxicity are evaluated at cellular level.
     The moderate cytotoxicity of [C12-4-C12im]Br2will limit its application in the field of gene therapy and biomedicine. Thus, we designed a series of amphiphilic peptides with excellent biocompatibility and degradability properties (choose the appropriate amino acids). We demonstrate the visualization of chiral hierarchical assembly from molecular level to assembly level and bulk solution level for amphiphilic peptide alone. Moreover, we also confirm that amphiphilic peptides interact and condense DNA through electrostatic and hydrophobic forces, owing to the properties of surfactants and peptides. The effect of amphiphilic peptides on cell viability is evaluated with an MTT assay, indicating the low cytotoxicity. The investigation of amphiphilic peptides could benefit their application in gene therapy, and provide basic data and theoretical guidance.
引文
[1]Lander, E. S.; Linton, L. M.; Birren, B.; Nusbaum, C.; Zody, M. C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; Fitzhugh, W. Initial Sequencing and Analysis of the Human Genome. Nature 2001,409,860-921.
    [2]Herweijer, H.; Wolff, J. A. Progress and Prospects:Naked DNA Gene Transfer and Therapy. Gene Ther. 2003,10,453-458.
    [3]Feingold, E.; Good, P.; Guyer, M.; Kamholz, S.; Liefer, L.; Wetterstrand, K.; Collins, F.; Gingeras, T.; Kampa, D.; Sekinger, E. The Encode (ENCyclopedia of DNA Elements) Project. Science 2004,306,636-640.
    [4]Duca, M.; Vekhoff, P.; Oussedik, K.; Halby, L.; Arimondo, P. B. The Triple Helix:50 Years Later, the Outcome. Nucleic Acids Res.2008,36,5123-5138.
    [5]Kole, R.; Krainer, A. R.; Altman, S. RNA Therapeutics:Beyond RNA Interference and Antisense Oligonucleotides. Nat. Rev. Drug Discovery 2012,11,125-140.
    [6]Chen. E. Y.; Seebrug, P. H. Supercoil Sequencing:A Fast and Simple Method for Sequencing Plasmid DNA. DNA 1985,4,165-170.
    [7]McMahon, H. T.; Gallop, J. L. Membrane Curvature and Mechanisms of Dynamic Cell Membrane Remodelling. Nature 2005,438,590-596.
    [8]Peng, K. W.; Russell, S. J. Viral Vector Targeting. Curr. Opin. Biotech.1999,10,454-457.
    [9]Thomas, C. E.; Ehrhardt, A.; Kay, M. A. Progress and Problems with the Use of Viral Vectors for Gene Therapy. Nat. Rev. Genet.2003,4,346-358.
    [10]Tomanin, R.; Scarpa, M. Why Do We Need New Gene Therapy Viral Vectors? Characteristics, Limitations and Future Perspectives of Viral Vector Transfection. Curr. Gene Ther.2004,4, 357-372.
    [11]Gao, X.; Kim, K.-S.; Liu, D. Nonviral Gene Delivery:What We Know and What is Next. AAPS J.,2007,9, E92-E104.
    [12]Niidome, T.; Huang, L. Gene Therapy Progress and Prospects:Nonviral Vectors. Gene Ther. 2002,9,1647-1662.
    [13]Patil, S. D.; Rhodes, D. G.; Burgess, D. J. DNA-based Therapeutics and DNA Delivery Systems:A Comprehensive Review. AAPS J.,2005,7, E61-E77.
    [14]Mintzer, M. A.; Simanek, E. E. Nonviral Vectors for Gene Delivery. Chem. Rev.2009,109, 259-302.
    [15]Gosule, L. C.; Schellman, J. A. Compact Form of DNA Spermidine. Nature 1976,259, 333-335.
    [16]Estevez-Torres, A.; and Baigl, D. DNA Compaction:Fundamentals and applications. Soft Matter,2011,7,6746-6756.
    [17]Ghirlando, R.; Wachtel, E. J.; Arad; T.; Minsky, A. DNA Packaging Induced by Micellar Aggregates:A Novel in Vitro DNA Condensation System. Biochemistry,1992,31,7110-7119.
    [18]Dias, R. S.; Lindman, B.; Miguel, M. G Compaction and Decompaction of DNA in the Presence of Catanionic Amphiphile Mixtures. J. Phys. Chem. B,2002,106,12608-12612.
    [19]Rao, N. M. Cationic Lipid-mediated Nucleic Acid Delivery:Beyond being Cationic. Chem. Phys. Lipids,2010,163,245-252.
    [20]Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in Vivo: Polyethylenimine. Pro. Natl. Acad. Sci. USA,1995,92,7297-7301.
    [21]Kircheis, R.; Wightman, L.; Wagner, E. Design and Gene Delivery Activity of Modified Polyethylenimines.Adv. Drug Deliver. Rev.2001,53,341-358.
    [22]Canine, B. F.; Hatefi, A. Development of Recombinant Cationic Polymers for Gene Therapy Research Adv. Drug Deliver. Rev.2010,62,1524-1529.
    [23]Ainalem, M.-L.; Nylander, T. DNA Condensation using Cationic Dendrimers-Morphology and Supramolecular Structure of Formed Aggregates. Soft Matter,2011,7,4577-4594.
    [24]Mann, A.; Thakur, G.; Shukla, V.; Ganguli, M. Peptides in DNA Delivery:Current Insights and Future Directions. DrugDiscov. Today,2008,13,152-160.
    [25]Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Adv. Drug Deliver. Rev.2008,60, 1307-1315.
    [26]Boisselier, E.; Astruc, D. Gold Nanoparticles in Nanomedicine:Preparations, Imaging, Diagnostics, Therapies and Toxicity. Chem. Soc. Rev.2009,38,1759-1782.
    [27]Bates, K. Kostarelos, K. Carbon Nanotubes as Vectors for Gene Therapy:Past Achievements, Present Challenges and Future Goals. Adv. Drug Deliver. Rev.2013,65,2023-2033.
    [28]Zhou, T.; Llizo, A.; Wang, C.; Xu, G. Y.; Yang, Y. L. Nanostructure-Induced DNA Condensation. Nanoscale 2013,5,8288-8306.
    [29]Mel'nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K. Discrete Coil-Globule Transition of Large DNA Induced by Cationic Surfactant. J. Am. Chem. Soc.1995,117,2401-2408.
    [30]Bhattacharya, S.; Bajaj, A. Advances in Gene Delivery through Molecular Design of Cationic Lipids. Chem. Commun.2009,4632-4656.
    [31]Templeton, N. S.; Lasic, D. D.; Frederik, P. M.; Strey, H. H.; Roberts, D. D.; Pavlakis, G. N. Improved DNA:Liposome Complexes for Increased Systemic Delivery and Gene Expression. Nat. Biotechnol 1997,15,647-652.
    [32]Radler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Structure of DNA-Cationic Liposome Complexes:DNA Interaction in Multilamellar Membrane in Distinct Interhelical Packing Regimes. Science 1997,275,810-814.
    [33]Flores, K. J.; Craig, M.; Wanekaya, A.; Dong, L.; Ghosh, K.; Smith, J. J.; Delong, R. K. Tipping the Proteome with Gene-Based Vaccines:Weighing in on the Role of Nanomaterials. J. Nanotech.2012,843170,9 pages.
    [34]Feigner, P. L.; Gadek, T. R.; Holm, M.; Roman, R.; Chan, H. W.; Wenz, M.; Northrop, J. P.; Ringold, G. M.; Danielsen, M. Lipofectin:A Highly Efficient, Lipid-Mediated DNA-transfection Procedure. Proc. Natl. Acad. Sci. USA 1987,84,7413-7417
    [35]Midoux, P.; Pichon, C.; Yaouanc, J. J. Chemical Vectors for Gene Delivery:A Current Review on Polymers, Peptides and Lipids Containing Histidine or Imidazole as Nucleic Acids Carriers. British J. Pharm.2009,157,166-178.
    [36]Zaber, J.; Fasbender, A. I.; Moninger, J. T. et al. Cellular and Molecular Barriers to Gene Transfer by a Cationic Lipid. J. Biol. Chem.1995,270,18997-19007.
    [37]Stegmann, T.; Legendre, J. Y. Gene Transfer Mediated by Cationic Lipids:Lack of a Correlation between Lipid mixing and Transfection. Biochim. Biophys. Acta 1997,1325,71-79.
    [38]Wouder, I.; Visser, H. W.; Beest, M. B. A. et al. Parameters Influencing the Introduction of Plasmid DNA into Cells by the Use of Synthetic Amphiphiles as a Carrier System. Biochim. Biophys. Acta 1995,1240,34-40.
    [39]Branco, M. C.; Schneider, J. P. Self-assembling Materials for Therapeutic Delivery. Acta Biomater.2009,5,817-831
    [40]Conwell, C. C.; Vilfan, I. D.; Hud, N. V. Controlling the Size of Nanoscale Toroidal DNA Condensates with Static Curvature and Ionic Strength. Proc. Natl. Acad. Sci. USA 2003,100, 9296-9301.
    [41]Wang, X. L.; Zhang, X. H.; Cao, M. W.; Zheng, H. Z.; Xiao, B.; Wang, Y. L.; Li, M. Gemini Surfactant-Induced DNA Condensation into a Beadlike Structure. J. Phys. Chem. B 2009,113, 2328-2332.
    [42]Foldvari, M.; Wetting, S.; Verrall, B. R.; Bagonluri, M. Dicationic Gemini Surfactant Gene Delivery Complexes Contain Cubic-lamellar mixed Polymorphic Phase. NSTI-Nanotech.2006,2, 400-403.
    [43]Hayakawa, K.; Santerre, J. P.; Kwak, J. C. T. The binding of cationic surfactants by DNA. J. Biophys. Chem.1983,17,175-181
    [44]Spink, C. H.; Chaires, J. B. Thermodynamics of the Binding of a Cationic Lipid to DNA. J. Am. Chem. Soc.1997,119,10920-10928
    [45]Sansone, F.; Dudic, M.; Donofrio, G.; Rivetti, C.; Baldini, L.; Casnati, A.; Cellai, S.; Ungaro, R. DNA Condensation and Cell Transfection Properties of Guanidinium Calixarenes:Dependence on Macrocycle Lipophilicity, Size, and Conformation. J. Am. Chem. Soc.2006,128,14528-14536.
    [46]Bell, P. C.; Bergsma, M.; Dolbnya, I. P.; Bras, W.; Stuart, M. C. A.; Rowan, A. E.; Feiters, M. C.; Engberts, J. B. F. N. Transfection Mediated by Gemini Surfactants:Engineered Escape from the Endosomal Compartment. J. Am. Chem. Soc.2003,125,1551-1558.
    [47]Rajesh, M.; Sen, J.; Srujan, M.; Mukherjee, K.; Sreedhar, B.; Chaudhuri, A. Dramatic Influence of the Orientation of Linker between Hydrophilic and Hydrophobic Lipid Moiety in Liposomal Gene Delivery. J. Am. Chem. Soc.2007,129,11408-11420.
    [48]Kirby, A. J.; Camilleri, P.; Engberts, J. B. F. N.; Feiters, M. C.; Nolte, R. J. M.; So derman, O.; Bergsma, M.; Bell, P. C.; Fielden, M. L.; Rodriguez, G. et al. Gemini Surfactants:New Synthetic Vectors for Gene Transfection. Angew. Chem. Int. Ed.2003,42,1448-1457.
    [49]Jiang, N.; Li, P.; Wang, Y.; Wang, J.; Yan, H.; Thorns, R. K. Micellization of Cationic Gemini Surfactants with Various Counterions and Their Interaction with DNA in Aqueous Solution. J. Phys. Chem. B 2004,108,15385-15391.
    [50]Jiang, N.; Wang, J.; Wang, Y.; Yan, H.; Thomas, R. K. Microcalorimetric Study on the Interaction of Dissymmetric Gemini Surfactants with DNA. J. Colloid Interf. Sci.2005,284, 759-764.
    [51]Klijin, J. E.; Stuart, M. C. A.; Scarzello, M.; Wagenaar, A.; Engberts, J. B. F. N. pH-Dependent Phase Behavior of Carbohydrate-Based Gemini Surfactants. Effect of the Length of the Hydrophobic Spacer. J. Phys. Chem. B 2006,110,21694-21700.
    [52]Bombelli, C.; Borocci, S.; Diociaiuti, M.; Faggioli, F.; Galantini, L.; Luciani, P.; Mancini, G.; Sacco, M. G. Role of the Spacer of Cationic Gemini Amphiphiles in the Condensation of DNA. Langmuir 2005,21,10271-10274.
    [53]Geng, Y; Romsted, L. S.; Menger, F. Specific Ion Pairing and Interfacial Hydration as Controlling Factors in Gemini Micelle Morphology. Chemical Trapping Studies. J. Am. Chem. Soc. 2006,128,492-501.
    [54]Wetting, S. D.; Badea, I.; Donkuru, M.; Verrall, R. E.; Foldvari, M. Structural and Transfection Properties of Amine-substituted Gemini Surfactant-based Nanoparticles. J. Gene. Med.2007,9,649-658.
    [55]Wettig, S. D.; Deubry, R.; Akbar, J.; Kaur, T.; Wang, H.; Sheinin, T.; Joseph, J. W.; Slavcev, R. A. Thermodynamic Investigation of the Binding of Dissymmetric Pyrenyl-gemini Surfactants to DNAP. Phys. Chem. Chem. Phys.2010,12,4821-4826.
    [56]Bombelli, C.; Faggioli, F.; Luciani, P.; Mancini, G.; Sacco, M. G. Efficient Transfection of DNA by Liposomes Formulated with Cationic Gemini Amphiphiles. J. Med. Chem.2005,48, 5378-5383.
    [57]Kostarelos, K.; Miller, A. D. Synthetic, Self-assembly ABCD Nanoparticles; a Structural Paradigm for Viable Synthetic Non-viral Vectors. Chem. Soc. Rev.2005,34,970-994.
    [58]McGregor, C.; Perrin, C.; Monck, M.; Camilleri, P.; Kirby, A. J. Rational Approaches to the Design of Cationic Gemini Surfactants for Gene Delivery. J. Am. Chem. Soc.2001,123, 6215-6220.
    [59]Wettig, S. D.; Wang, C.; Verrall, R. E.; Foldvari, M. Thermodynamic and Aggregation Properties of Aza-and Imino-substituted Gemini Surfactants Designed for Gene Delivery. Phys. Chem. Chem. Phys.2007,9,871-877.
    [60]Bhadani A.; Singh, S. Synthesis and Properties of Thioether Spacer Containing Gemini Imidazolium Surfactants. Langmuir 2011,27,14033-12044.
    [61]Ronsin, G.; Perrin, C.; Guedat, P.; Kremer, A.; Camilleri, P.; Kirby, A. J. Novel Spermine-based Cationic Gemini Surfactants for Gene Delivery. Chem. Commun.2001, 2234-2235.
    [62]Neu, M.; Fischer, D.; Kissel, T. Recent Advances in Rational Gene Transfer Vector Design Based on Polyethylene imine) and its Derivatives. J. Gene Med.2005,7,992-1009.
    [63]Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA,1995,92,7297-7301.
    [64]Lee, M.; Kim, S. W.; Polyethylene Glycol-conjugated Copolymers for Plasmid DNA Delivery. Pharm. Res.2005,22,1-10.
    [65]郑蒙,《基于低分子量聚乙烯亚胺的高效低毒基因载体》,苏州大学,博士学位论文。
    [66]Lesniak, W. G; Kariapper, M. S. T.; Nair, B. M.; Tan, W.; Hutson, A.; Balogh, L. P.; Khan, M. K. Synthesis and Characterization of PAMAM Dendrimer-Based Multifunctional Nanodevices for Targeting αvβ3 Integrins. Bioconjugate Chem.2007,18,1148-1154.
    [67]Saccardo, P.; Villaverde, A.; Montalban, N. G. Peptide-mediated DNA Condensation for Non-viral Gene Therapy. Biotechnol. Adv.2009,27,432-438.
    [68]Lehto, T.; Simonson, O. E.; Ma ger, I.; Ezzat, K.; Sork, H.; Copolovici, D. M.; Viola, J. R.; Zaghloul, E. M.; Lundin, P.; Smith, C. E. et al. A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo.Mol. Ther.2011,19,1457-1467.
    [69]Zhang, Q.; Tang, J.; Fu, L.; Ran, R.; Liu, Y.; Yuan, M.; He, Q. A pH-responsive a-helical Cell Penetrating Peptide-mediated Liposomal Delivery System. Biomaterials 2013,34,7980-7993.
    [70]Yin, L.; Tang, H.; Kim, K. H.; Zheng, N.; Song, Z.; Gabrielson, N. P.; Lu, H.; Cheng, J. Light-Responsive Helical Polypeptides Capable of Reducing Toxicity and Unpacking DNA: Toward Nonviral Gene Delivery. Angew. Chem. Int. Ed.2013,52,9182-9186.
    [71]Cartier, R.; Reszka, R. Utilization of Synthetic Peptides Containing Nuclear Localization Signals for Nonviral Gene Transfer Systems. Gene Ther.2002,9,157-167.
    [72]Zanta, M. A.; Valladier, P. B.; Behr, J. P. Gene Delivery:A Single Nuclear Localization Signal Peptide is Sufficient to Carry DNA to the Cell Nucleus. Proc. Natl. Acad. Sci. USA 1999,96, 91-96.
    [73]Leng, Q.; Mixson, A. J. Modified Branched Peptides with a Histidine-rich Tail Enhance in Vitro Gene Transfection. Nucleic Acids Res.2005,33, e40,1-9.
    [74]Kichler, A.; Leborgne, C.; Ma rz, J.; Danos, O.; Bechinger, B. Histidine-rich Amphipathic Peptide Antibiotics Promote Efficient Delivery of DNA into Mammalian Cells. Proc. Natl. Acad. Sci. USA 2003,100,1564-1568.
    [75]Yao, X. L.; Yoshioka, Y.; Ruan, G X.; Chen, Y Z.; Mizuguchi, H.; Mukai, Y; Okada, N.; Gao, J. Q.; Nakagawa, S. Optimization and Internalization Mechanisms of PEGylated Adenovirus Vector with Targeting Peptide for Cancer Gene Therapy. Biomacromolecules 2012,13,2402-2409.
    [76]Stefanick, J. F.; Ashley, J. D.; Bilgicer, B. Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. ACS Nano 2013,7,8115-8127.
    [77]Wiradharma, N.; Khan, M.; Tong, Y. W.; Wang, S.; Yang, Y. Y. Self-assembled Cationic Peptide Nanoparticles Capable of Inducing Efficient Gene Expression In Vitro. Adv. Funct. Mater. 2008,18,943-951.
    [78]Niidome, T.; Takaji, K.; Urakawa, M.; Ohmori, N.; Wada, A.; Hirayama, T.; Aoyagi, H. Chain Length of Cationic r-Helical Peptide Sufficient for Gene Delivery into Cells. Bioconj. Chem.1999, 10,773-780.
    [79]Nakase, I.; Niwa, M.; Takeuchi, T.; Sonomura, K.; Kawabata, N.; Koike, Y.; Takehashi, M.; Tanaka, S.; Ueda, K.; Jones, A. T. Cellular Uptake of Arginine-Rich Peptides:Roles for Macropinocytosis and Actin Rearrangement. Mol. Ther.2004,10,1011-1022.
    [80]Melikov, K.; Chemomordik, L. V. Arginine-rich Cell Penetrating Peptides:from Endosomal Uptake to Nuclear Delivery. Cell. Mol. Life Sci.2005,62,2739-2749.
    [81]Hamley, I. W. Self-assembly of Amphiphilic Peptides. Soft Matter 2011,7,4122-4138.
    [82]Sandhu, K. K.; Mclntosh, C. M.; Simard, J. M.; Smith, S. W.; Rotello, V. Gold Nanoparticle-Mediated Transfection of Mammalian Cells. Bioconjugate Chem.2002,13,3-6.
    [83]Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312,1027-1030.
    [84]Rana, S.; Bajaj, A.; Mout, R.; Rotello, V. M. Monolayer Coated Gold Nanoparticles for Delivery Applications. Adv. Drug Deliver. Rev.2012,64,200-216.
    [85]Yuan, H.; Fales, A. M.; Dinh, T. V. TAT Peptide-Functionalized Gold Nanostars:Enhanced Intracellular Delivery and Efficient NIR Photothermal Therapy Using Ultralow Irradiance. J. Am. Chem. Soc.2012,134,11358-11361.
    [86]Chen, C. C.; Lin, Y. P.; Wang, C. W.; Tzeng, H. C.; Wu, C. H.; Chen. Y. C.; Chen, C. P.; Chen, L. C.; Wu, Y. C. DNA-Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by near Infrared Irradiation. J. Am. Chem.Soc.2006,128,3709-3715.
    [87]Stobiecka, M.; Hepel, M. Double-shell Gold Nanoparticle-based DNA-carriers with Poly-L-lysine Binding Surface. Biomaterials 2011,32,3312-3321.
    [88]Liu, Y; Yu, Z.-L.; Zhang, Y.-M.; Guo, D.-S.; Liu, Y.-P. J. Am. Chem. Soc.,2008,130,10431.
    [89]Liang, W.; Lam, J. K.W. Endosomal Escape Pathways for Non-Viral Nucleic Acid Delivery Systems, chapter 2012,429-457.
    [90]Desai, M. P.; Labhasetwar, V.; Amidon, G. L.; Levy, R. Gastrointestinal Uptake of Biodegradable Microparticles:Effect of Particle Size. J. Pharm. Res.1996,13,1838-1845.
    [91]Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett.2006,6,662-668.
    [92]Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; Desimone, J. M. The Effect of Particle Design on Cellular Internalization Pathways. Proc. Natl. Acad. Sci. USA 2008,105,11613-11618.
    [93]Desai, M. P.; Labhasetwar, V.; Amidon, G. L.; Levy, R. Gastrointestinal Uptake of Biodegradable Microparticles:Effect of Particle Size. J. Pharm. Res.1996,13,1838-1845.
    [94]Albanese, A.; Chan, W. C. W. Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity. ACS Neno 2011,5,5478-5489.
    [95]Zuber, G.; Italiano, L. Z.; Dauty, E.; Behr, J. P. Targeted Gene Delivery to Cancer Cells: Directed Assembly of Nanometric DNA Particles Coated with Folic Acid. Angew. Chem. Int. Ed. 2003,42,2666-2669.
    [96]Ao, M. Q.; Xu, G. Y.; Zhu, Y. Y.; Bai, Y. Synthesis and Properties of Ionic Liquid-type Gemini Imidazolium Surfactants. J. Colloid Interf. Sci.2008,326,490-495.
    [97]Ao, M. Q.; Huang, P. P.; Xu, G. Y.; Yang, X. D.;Wang, Y. J. Aggregation and Thermodynamic Properties of Ionic Liquid-Type Gemini Imidazolium Surfactants with Different Spacer Length. Colloid Polym. Sci.2009,287,395-402.
    [98]Ao, M. Q.; Xu, G. Y.; Pang, J. Y.; Zhao, T. T. Comparison of Aggregation Behaviors between Ionic Liquid-Type Imidazolium Gemini Surfactant [C]2-4-C12im]Br2 and Its Monomer [C12mim]Br on Silicon Wafer. Langmuir 2009,25,9721-9727.
    [99]Ao, M. Q.; Xu, G. Y.; Kang, W. L.; Meng, L. W.; Gong, H. J.; Zhou, T. Surface Rheological Behavior of Gelatin/Ionic Liquid-Type Imidazolium Gemini Surfactant Mixed Systems. Soft Matter 2011,7,1199-1206.
    [100]Zhou, T.; Ao, M. Q.; Xu, G. Y.; Liu, T.; Zhang, J. Interactions of Bovine Serum Albumin with Cationic Imidazolium and Quaternary Ammonium Gemini Surfactants:Effects of Surfactant Architecture. J. Colloid Interf. Sci.2013,389,175-181.
    [1]Mel'nikov, S. M.; Sergeyev, V. G; Yoshikawa, K. Discrete Coil-Globule Transition of Large DNA Induced by Cationic Surfactant. J. Am. Chem. Soc.1995,117,2401-2408.
    [2]Dias, R. S.; Innerlohinger, J.; Glatter, O.; Miguel, M. G.; Lindman, B. Coil-Globule Transition of DNA Molecules Induced by Cationic Surfactants:A Dynamic Light Scattering Study. J. Phys. Chem. B 2005,109,10458-10463.
    [3]Bally, M. B.; Harvie, P.; Wong, F. M. P.; Kong, S.; Wasan, E. K.; Reimer, D. Biological Barriers to Cellular Delivery of Lipid-based DNA Carriers. Adv. Drug. Deliver. Rev.1999,38, 291-315.
    [4]Spink, C. H.; Chaires, J. B. Thermodynamics of the Binding of a Cationic Lipid to DNA. J. Am. Chem. Soc.1997,119,10920-10928.
    [5]Wong, F. M. P.; Reimer, D. L.; Bally, M. B. Cationic Lipid Binding to DNA:Characterization of Complex Formation. Biochemistry 1996,35,5756-5763.
    [6]Marchetti, S.; Onori, G; Cametti, C. DNA Condensation Induced by Cationic Surfactant:A Viscosimetry and Dynamic Light Scattering Study. J. Phys. Chem. B 2005,109,3676-3780.
    [7]Jadhav, V.; Maiti, S. Effect of the Head-Group Geometry of Amino Acid-Based Cationic Surfactants on Interaction with Plasmid DNA. Biomacromolecules 2008,9,1852-1869.
    [8]Guo, X.; Cui, B.; Li, H.; Gong, Z. Y.; Guo, R. Facilitation Effect of Oligonucleotide on Vesicle Formation from Single-Chained Cationic Surfactant-Dependences of Oligonucleotide Sequence and Size and Surfactant Structure. J. Poly. Sci. Poly. Chem.2009,47,434-449.
    [9]Moran, M. C.; Miguel, M. G; Lindman, B. DNA Gel Particles from Single and Double-tail Surfactants:Supramolecular Assemblies and Release Characteristics. Soft Matter 2011,7, 2001-2010.
    [10]Reineke, T. M. Poly(glycoamidoamine)s:Cationic Glycopolymers for DNA Delivery. J. Poly. Sci. Poly. Chem.2006,44,6895-6908.
    [11]Ainalem, M. L.; Nylander, T. DNA Condensation using Cationic Dendrimers-morphology and Supramolecular Structure of formed Aggregates. Soft Matter 2011,7,4577-4594.
    [12]Chen, H.; Zou, Q. C.; Yu, H.; Peng, M.; Song, G. W.; Zhang, J. Z.; Chai, S. G.; Zhang, Y. H.; Yan, C. E. Study on Interaction between Cationic Polystyrene Nanoparticles and DNA, and the Detection of DNA by Resonance Light Scattering Technology. Microchim. Acta 2010,168, 331-340.
    [13]Tecle, M.; Preuss, M.; Miller, A. D. Kinetic Study of DNA Condensation by Cationic Peptides Used in Nonviral Gene Therapy:Analogy of DNA Condensation to Protein Folding, Biochemistry 2003,42,10343-10347.
    [14]Kuhn, P. S.; Barbosa, M. C.; Levin, Y. Complexation of DNA with Cationic Surfactant, Phys. A 1999,269,278-284.
    [15]Clamme, J. P.; Bernacchi, S.; Vuilleumier, C.; Duportail, G; Mely, Y. Gene Transfer by Cationic Surfactants is Essentially Limited by the Trapping of the Surfactant/DNA Complexes onto the Cell Membrane:a Fluorescence Investigation. Biochim. Biophys. Acta.2000,1467, 347-361.
    [16]Lleres, D.; Clamme, J. P.; Dauty, E.; Blessing, T.; Krishnamoorthy, G.; Duportail, G; Mely, Y. Investigation of the Stability of Dimeric Cationic Surfactant/DNA Complexes and Their Interaction with Model Membrane Systems. Langmuir 2002,18,10340-10347.
    [17]Leal, C.; Moniri, E.; Pegado, L.; Wennerstrom, H. Electrostatic Attraction between DNA and a Cationic Surfactant Aggregate. The Screening Effect of Salt. J. Phys. Chem.B 2007,111, 5999-6005.
    [18]Sheng, R. L.; Luo, T.; Zhu, Y. D.; Li, H.; Cao, A. M. Interactions of New Synthesized Fluorescent Cationic Amphiphiles Bearing Pyrene Hydrophobe with Plasmid DNA:Binding Affinities, Aggregation and Intracellular Uptake. Macromol. Biosci.2010,10,974-982.
    [19]Matulis, D.; Rouzina, I.; Bloomfield, V. A. Thermodynamics of Cationic Lipid Binding to DNA and DNA Condensation:Roles of Electrostatics and Hydrophobicity. J. Am. Chem. Soc. 2002,124,7331-7342.
    [20]Zhu, D. M.; Evans, R. K. Molecular Mechanism and Thermodynamics Study of Plasmid DNA and Cationic Surfactants Interactions. Langmuir 2006,22,3735-3743.
    [21]Jadhav, V. M.; Valaske, R.; Maiti, S. Interaction Between 14mer DNA Oligonucleotide and Cationic Surfactants of Various Chain Lengths. J. Phys. Chem. B 2008,112,8824-8831.
    [22]Kirby, A. J.; Camilleri, P.; Engberts, J. B. F. N.; Feiters, M. C.; Nolte, R. J. M. et al. Gemini Surfactants:New Synthetic Vectors for Gene Transfection. Angew. Chem. Int. Ed.2003,42, 1448-1457.
    [23]Karlsson, L.; Eijk, M. C. P.; Soderman, O. J. Compaction of DNA by Gemini Surfactants: Effects of Surfactant Architecture. J. Colloid Interf. Sci.2002,252,290-296.
    [24]Chen, X. D.; Wang, J. B.; Shen, N.; Luo, Y. H.; Li, L.; Liu, M. H.; Thomas, R. K. Gemini Surfactant/DNA Complex Monolayers at the Air-Water Interface:Effect of Surfactant Structure on the Assembly, Stability, and Topography of Monolayers. Langmuir 2002,18,6222-6228.
    [25]Wang, C. Z.; Li, X. F.; Wetting, S. D.; Badea, I.; Foldvari, M.; Verrall, R. E. Investigation of Complexes formed by Interaction of Cationic Gemini Surfactants with Deoxyribonucleic Acid. Phys. Chem. Chem. Phys.2007,9,1616-1628.
    [26]Wang, X. L.; Zhang, X. H.; Cao, M. W.; Zheng, H. Z.; Xiao, B.; Wang, Y. L.; Li, M. Gemini Surfactant-Induced DNA Condensation into a Beadlike Structure. J. Phys. Chem. B 2009,113, 2328-2332.
    [27]Ao, M. Q.; Xu, G Y.; Zhu, Y. Y; Bai, Y Synthesis and Properties of Ionic Liquid-type Gemini Imidazolium Surfactants. J. Colloid Interface Sci.2008,326,490-495.
    [28]Ao, M. Q.; Xu, G. Y; Pang, J. Y; Zhao, T. T. Comparison of Aggregation Behaviors between Ionic Liquid-Type Imidazolium Gemini Surfactant [C12-4-C12im]Br2 and its Monomer [C12mim]Br on Silicon Wafer. Langmuir 2009,25,9721-9727.
    [29]Ao, M. Q.; Huang, P. P.; Xu, G Y.; Yang, X. D.; Wang, Y J. Aggregation and Thermodynamic Properties of Ionic Liquid-type Gemini Imidazolium Surfactants with Different Spacer Length. Colloid Polym Sci.2009,287,395-402.
    [30]Ao, M. Q.; Xu, G Y; Kang, W. L.; Meng, L. W.; Gong, H. J.; Zhou, T. Surface Rheological Behavior of Gelatin/Ionic Liquid-type Imidazolium Gemini Surfactant mixed Systems. Soft Matter 2011,7,1199-1206.
    [31]Inoue, T.; Ebina, H.; Dong, B.; Zheng, L. Q. Electrical Conductivity Study on Micelle Formation of Long-chain Imidazolium Ionic Liquids in Aqueous Solution. J. Colloid Interf. Sci. 2007,314,236-241.
    [32]Ding, Y H.; Zhang, L.; Xie, J.; Guo, R. Binding Characteristics and Molecular Mechanism of Interaction between Ionic Liquid and DNA. J. Phys. Chem. B 2010,114,2033-2043.
    [33]Yu, W.; Pirollo, K. F.; Yu, B.; Rait, A.; Xiang, L. M.; Huang, W. Q.; Zhou, Q.; Ertem, G; Chang, E. H. Enhanced Transfection Efficiency of a Systemically Delivered Tumor-targeting Immunolipoplex by Inclusion of a pH-sensitive Histidylated Oligolysine Peptide. Nucleic Acids Res.2004,32, e48.
    [34]Chargaff, E.; Lipshitz, R. Composition of Mammalian Desoxyribonucleic Acids. J. Am. Chem. Soc.1953,75,3658-3661.
    [35]Jorge, A. F.; Dias, R. S.; Pereira, J. C.; Pais, A. A. C. C. DNA Condensation by pH-Responsive Polycations. Biomacromolecules 2010,11,2399-2406.
    [36]Zhao, X. F.; Shang, Y. Z.; Liu, H. L.; Hu, Y. Complexation of DNA with Cationic Gemini Surfactant in Aqueous Solution. J. Colloid Interf. Sci.2007,314,478-483.
    [37]Kypr, J.; Kejnovska, I.; Renciuk, D.; Vorlickova, M. Circular Dichroism and Conformational Polymorphism of DNA. Nucleic Acids Res.2009,37,1713-1725.
    [38]Mercado, M. C.; Tomasz, M. Circular Dichroism of Mitomycin-DNA Complexes. Evidence for a Conformational Change in DNA. Biochemistry 1977,16,2040-2046.
    [39]Pasternack, R. F.; Caccam, M.; Keogh, B.; Stephenson, T. A.; Williams, A. P.; Gibbs, E. J. Long-Range Fluorescence Quenching of Ethidium Ion by Cationic Porphyrins in the Presence of DNA. J. Am. Chem. Soc.1991,113,6835-6840.
    [40]Rodriguez-Pulido, A.; Aicart, E.; Junquera, E. Electrochemical and Spectroscopic Study of Octadecyltrimethylammonium Bromide/DNA Surfoplexes. Langmuir 2009,25,4402-4411.
    [41]Zhao, X. F.; Shang, Y. Z.; Hu, J.; Liu, H. L.; Hu, Y. Biophysical Characterization of Complexation of DNA with Oppositely Charged Gemini Surfactant 12-3-12. Biophys. Chem.2008, 138,144-149.
    [42]Kool, E. T. Replacing the Nucleobases in DNA with Designer Molecules. Acc. Chem. Res. 2002,35,936-943.
    [43]Cardoso, L..; Micaelo, N. M. DNA Molecular Solvation in Neat Ionic Liquids. ChemPhysChem.2011,12,275-277.
    [44]Song, L. D.; Rosen, M. J. Surface Properties, Micellization, and Premicellar Aggregation of Gemini Surfactants with Rigid and Flexible Spacers. Langmuir 1996,12,1149-1153.
    [1]Qasba, P. K. H.; Aposhian, V. DNA and Gene Therapy:Transfer of Mouse DNA to Human and Mouse Embryonic Cells by Polyoma Pseudovirions. Proc. Natl. Acad. Sci. USA 1971,68, 2345-2349.
    [2]Robbins, P. D.; Ghivizzani, S. C. Viral Vectors for Gene Therapy. Pharmacol. Ther.1998,80, 35-47.
    [3]Guo, X.; Huang, L. Recent Advances in Nonviral Vectors for Gene Delivery. Acc. Chem. Res. 2012,45,971-979.
    [4]Luo, D.; Saltzman, W. M. Synthetic DNA Delivery Systems. Nat. Biotechnol.2000,18,33-37.
    [5]Pouton, C. W.; Seymour, L. W. Key Issues in Non-viral Gene Delivery. Adv. Drug Deliver. Rev.1998,34,3-19.
    [6]Benihoud, K.; Yeh, P.; Perricaudet, M. Adenovirus Vectors for Gene Delivery. Curr. Opin. Biotechnol.1999,10,440-447.
    [7]Lehn, P.; Fabrega, S.; Oudrhiri, N.; Navarro, J. Gene Delivery systems:Bridging the Gap between Recombinant Viruses and Artificial Vectors. Adv. Drug Deliver. Rev.1998,30,5-11.
    [8]Levine, R. M.; Scott, C. M.; Kokkoli, E. Peptide Functionalized Nanoparticles for Nonviral Gene Delivery. Soft Matter 2013,9,985-1004.
    [9]Zhu, Y. F.; Meng, W. J.; Gao, H.; Hanagata, N. Hollow Mesoporous Silica/Poly(L-Lysine) Particles for Codelivery of Drug and Gene with Enzyme-Triggered Release Property. J. Phys. Chem. C2011,115,13630-13636.
    [10]Ainalem, M. L.; Nylander, T. DNA Condensation using Cationic Dendrimers-Morphology and Supramolecular Structure of Formed Aggregates. Soft Matter 2011,7,4577-4594.
    [11]Lima, M. C. P.; Simoes, S.; Pires, P.; Faneca, H.; Duzgus, N. Cationic Lipid-DNA Complexes in Gene Delivery:from Biophysics to Biological Applications. Adv. Drug Deliver. Rev. 2001,47,277-294.
    [12]Mann, A.; Thakur, G.; Shukla, V.; Ganguli, M. Peptides in DNA Delivery:Current Insights and Future Directions. Drug Discovery Today 2008,13,152-160.
    [13]Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in culture and in Vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995,92,7297-7301.
    [14]Peng, S. F.; Su, C. J.; Wei, M. C.; Chen, C. Y.; Liao, Z. X.; Lee, P. W.; Chen, H. L.; Sung, H. W. Effects of the Nanostructure of Dendrimer/DNA Complexes on their Endocytosis and Gene Expression. Biomaterials 2010,31,5660-5670.
    [15]LaManna, C. M.; Lusic, H.; Camplo, M.; Mclntosh, T. J.; Barthelemy, P.; Grinstaff, M. W. Charge-Reversal Lipids, Peptide-Based Lipids, and Nucleoside-Based Lipids for Gene Delivery. Acc. Chem. Res.2012,45,1026-1038.
    [16]Khalil, I. A.; Kogure, K.; Akita, H.; Harashima, H. Uptake Pathways and Subsequent Intracellular Trafficking in Nonviral Gene Delivery. Pharmacol. Rev.2006,58,32-45.
    [17]Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano-bio Interface. Nat. Mater.2009,8,543-557.
    [18]Albanese, A.; Tang, P. S.; Chan, W. C. W. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng.2012,14,1-16.
    [19]Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold Nanoparticles are Taken up by Human Cells but do not Cause Acute Cytotoxicity. Small 2005,1,325-327.
    [20]Gratton, S. E. A.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; Desimone, J. M. The Effect of Particle Design on Cellular Internalization Pathways. Proc. Natl. Acad. Sci. USA 2008,105,11613-11618.
    [21]Desai, M. P.; Labhasetwar, V.; Amidon, G. L.; Levy, R. Gastrointestinal Uptake of Biodegradable Microparticles:Effect of Particle Size. J. Pharm. Res.1996,13,1838-1845.
    [22]Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett.2006,6,662-668.
    [23]Zabner, J.; Fasbender, A. J.; Moninger, T.; Poellinger, K. A.; Welsh, M. J. Cellular and Molecular Barriers to Gene Transfer by a Cationic Lipid. J. Biol. Chem.1995,270,18997-19007.
    [24]Blessing, T.; Remy, J. S.; Behr, J. P. Monomolecular Collapse of Plasmid DNA into Stable Virus-like Particles. Proc. Natl. Acad. Sci. USA 1998,95,1427-1431.
    [25]Felgner, P. L.; Gadek, T. R.; Holm, M.; Roman, R.; Chan, H. W.; Wenz, M.; Northrop, J. P.; Ringold, G. M.; Danielsen, M. Lipofectin:A Highly Efficient, Lipid-Mediated DNA-transfection Procedure. Proc. Natl. Acad. Sci. USA 1987,84,7413-7417.
    [26]Menger, F. M.; Keiper, J. S. Gemini Surfactants. Angew. Chem. Int. Ed.2000,39,1906-1920.
    [27]Zana, R. Dimeric and Oligomeric Surfactants. Behavior at Interfaces and in Aqueous Solution:A Review. Adv. Colloid Interf.2002,97,205-253.
    [28]Mel'nikov, S. M.; Sergeyev, V. G.; Yoshikawa, K. Discrete Coil-Globule Transition of Large DNA Induced by Cationic Surfactant. J. Am. Chem. Soc.1995,117,2401-2408.
    [29]Karlsson, L.; Eijk, M. C. P.; Soderman, O. Compaction of DNA by Gemini Surfactants: Effects of Surfactant Architecture. J. Colloid Interf. Sci.2002,252,290-296.
    [30]Zhou, S., Liang, D.; Burger, C.; Yeh, F.; Chu, B. Nanostructures of Complexes Formed by Calf Thymus DNA Interacting with Cationic Surfactants. Biomacromolecules 2004,5,1256-1261.
    [31]Dias, R. S.; Innerlohinger, J.; Glatter, O.; Miguel, M. G.; Lindman, B. Coil-Globule Transition of DNA Molecules Induced by Cationic Surfactants:A Dynamic Light Scattering Study.J. Phys. Chem. B 2005,109,10458-10463.
    [32]Chen, Q. B.; Kang, X. L.; Li, R.; Du, X. Z.; Shang, Y. Z.; Liu, H. L.; Hu, Y. Structure of the Complex Monolayer of Gemini Surfactant and DNA at the Air/Water interface. Langmuir 2012, 28,3429-3438.
    [33]Wang, X. L.; Zhang, X. H.; Cao, M. W.; Zheng, H. Z.; Xiao, B.; Wang, Y. L.; Li, M. Gemini Surfactant-Induced-DNA Condensation into a Beadlike Structure. J. Phys. Chem. B 2009,113, 2328-2332.
    [34]Bell, P. C.; Bergsma, M.; Dolbnya, I. P.; Bras, W.; Stuart, M. C. A.; Rowan, A. E.; Feiters, M. C.; Engberts, J. B. F. N. Transfection Mediated by Gemini Surfactants:Engineered Escape from the Endosomal Compartment. J. Am. Chem. Soc.2003,125,1551-1558.
    [35]Dauty, E.; Remy, J. S.; Blessing, T.; Behr, J. P. Dimerizable Cationic Detergents with a Low cmc Condense Plasmid DNA into Nanometric Particles and Transfect Cells in Culture. J. Am. Chem. Soc.2001,123,9227-9234.
    [36]Kirby, A. J.; Camilleri, P.; Engberts, J. B. F. N.; Feiters, M. C.; Nolte, R. J. M.; Soderman, O.; Bergsma, M.; Bell, P. C.; Fielden, M. L.; Rodriguez, C. L. G. et al. Gemini Surfactants:New Synthetic Vectors for Gene Transfection. Angew. Chem. Int. Ed.2003,42,1448-1457.
    [37]McGregor, C.; Perrin, C.; Monck, M.; Camilleri, P.; Kirby, A. J. Rational Approaches to the Design of Cationic Gemini Surfactants for Gene Delivery. J. Am. Chem. Soc.2001,123, 6215-6220.
    [38]Ao, M. Q.; Xu, G. Y.; Zhu, Y. Y.; Bai, Y. Synthesis and Properties of Ionic Liquid-type Gemini Imidazolium Surfactants. J. Colloid Interf. Sci.2008,326,490-495.
    [39]Ao, M. Q.; Huang, P. P.; Xu, G. Y.; Yang, X. D.;Wang, Y. J. Aggregation and Thermodynamic Properties of Ionic Liquid-Type Gemini Imidazolium Surfactants with Different Spacer Length. Colloid Polym. Sci.2009,287,395-402.
    [40]Ao, M. Q.; Xu, G. Y.; Pang, J. Y.; Zhao, T. T. Comparison of Aggregation Behaviors between Ionic Liquid-Type Imidazolium Gemini Surfactant [C12-4-C12im]Br2 and Its Monomer [C12mim]Br on Silicon Wafer. Langmuir 2009,25,9721-9727.
    [41]Ao, M. Q.; Xu, G. Y.; Kang, W. L.; Meng, L. W.; Gong, H. J.; Zhou, T. Surface Rheological Behavior of Gelatin/Ionic Liquid-Type Imidazolium Gemini Surfactant Mixed Systems. Soft Matter 2011,7,1199-1206.
    [42]Zhou, T.; Xu, G. Y.; Ao, M. Q.; Yang, Y. L.; Wang, C. DNA Compaction to Multi-Molecular DNA Condensation Induced by Cationic Imidazolium Gemini Surfactants. Colloids Surf. A 2012, 414,33-40.
    [43]Zhou, T.; Ao, M. Q.; Xu, G. Y.; Liu, T.; Zhang, J. Interactions of Bovine Serum Albumin with Cationic Imidazolium and Quaternary Ammonium Gemini Surfactants:Effects of Surfactant Architecture. J. Colloid Interf. Sci.2013,389,175-181.
    [44]Lo, S. L.; Wang, S. An Endosomolytic Tat Peptide Produced by Incorporation of Histidine and Cysteine Residues as a Nonviral Vector for DNA Transfection. Biomaterials 2008,29, 2408-2414.
    [45]Bhadani, A.; Singh, S. Synthesis and Properties of Thioether Spacer Containing Gemini Imidazolium Surfactants. Langmuir 2011,27,14033-14044.
    [46]Chargaff, E.; Lipshitz, R. Composition of Mammalian Desoxyribonucleic Acids. J. Am. Chem. Soc.1953,75,3658-3661.
    [47]Mann, A.; Richa, R.; Ganguli, M. DNA Condensation by Poly-L-Lysine ar the Single Molecule Level:Role of DNA Concentration and Polymer Length. J. Control. Release 2008,125, 252-262.
    [48]Zhou, T.; Llizo, A.; Wang, C.; Xu, G. Y.; Yang, Y. L. Nanostructure-Induced DNA Condensation. Nanoscale 2013,5,8288-8306.
    [49]Marko, J. F.; Siggia, E. D. Stretching DNA. Macromolecules 1995,28,8759-8770.
    [50]Liu, L.; Yang, Y. L.; Wang, C.; Yao, Y.; Ma, Y. Z. Hou, S.; Feng, X. Z. Polymeric Effects on DNA Condensation by Cationic Polymers Observed by Atomic Force Microscopy. Colloids Surf. B 2010,75,230-238.
    [51]Corsi, K.; Chellat, F.; Yahia, L. H.; Fernandes, J. C. Mesenchymal Stem Cells, MG63 and HEK293 Transfection using Chitosan-DNA Nanoparticles. Biomaterials 2003,24,1255.
    [52]Liu, X. X.; Wu, J. Y.; Yammine, M.; Zhou, J. H.; Posocco, P.; Viel, S.; Liu, C.; Ziarelli, F.; Fermeglia, M.; Pricl, S.; Victorero, G.; Nguyen, C.; Erbacher, P.; Behr, J. P.; Peng, L. Structurally Flexible Triethanolamine Core PAMAM Dendrimers are Effective Nanovectors for DNA Transfection in Vitro and in Vivo to the Mouse Thymus. Bioconj. Chem.2011,22,2461-2473.
    [53]Pedraza, C. E.; Bassett, D. C.; McKee, M. D.; Nelea, V.; Gbureck, U.; Barralet, J. E. The Importance of Particle Size and DNA Condensation Salt for Calcium Phosphate Nanoparticle Transfection. Biomaterials 2008,29,3384-3392.
    [1]Ramos, J.; Rege, K. Transgene Delivery Using Poly(Amino Ether)-Gold Nanorod Assemblies. Biotechnol. Bioeng.2013,109,1336-1346.
    [2]Stobiecka, M.; Hepel, M. Double-shell Gold Nanoparticle-based DNA-carriers with Poly-L-lysine Binding Surface. Biomaterials 2011,32,3312-3321.
    [3]Feng, L.; Wu, X.; Ren, L.; Xiang, Y. He, W.; Zhang, K.; Zhou, W.; Xie, S. Well-Controlled Synthesis of Au@Pt Nanostructures by Gold-Nanorod-Seeded Growth. Chem. Eur. J.2008,14, 9764-9771.
    [4]Patel, P. C.; Giljohann, D. A.; Seferos, D. S.; Mirkin, C. A. Peptide Antisense Nanoparticles. Proc. Natl. Acad. Sci. USA 2008,105,17222-17226.
    [5]Sandhu, K. K.; McIntosh, C. M.; Simard, J. M.; Smith, S. W.; Rotello, V. Gold Nanoparticle-Mediated Transfection of Mammalian Cells. Bioconjugate Chem.2002,13,3-6.
    [6]Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312,1027-1030.
    [7]Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; Sisco, P. N.; Murphy, C. J. Gold Nanorods: Their Potential for Photothermal Therapeutics and Drug Delivery, Tempered by the Complexity of their Biological Interactions. Adv. Drug Deliver. Rev.2012,64,190-199.
    [8]Park, S.; Schifferli, K. H. Enhancement of In Vitro Translation by Gold Nanoparticle_DNA Conjugates. ACS Nano 2010,4,2555-2560.
    [9]Yan, X. H.; Blacklock, J.; Li, J. B.; Mo hwald, H. One-Pot Synthesis of Polypeptide Gold Nanoconjugates for in Vitro Gene Transfection. ACS Neno 2012,6,111-117.
    [10]Li, P.; Li, D.; Zhang, L.; Li, G.; Wang, E. Cationic Lipid Bilayer Coated Gold Nanoparticles-mediated Transfection of Mammalian Cells. Biomaterials 2008,29,3617-3624.
    [11]Sullivan, M. O.; Green, J. J.; Przybycien, T. M. Development of a Novel Gene Delivery Scaffold Utilizing Colloidal Gold-polyethylenimine Conjugates for DNA Condensation. Gene Ther. 2003,10,1882-1890.
    [12]Thomas, M.; Klibanov, A. M. Conjugation to Gold Nanoparticles Enhances Plyethylenimine's Transfer of Plasmid DNA into Mammalian Cells. Proc. Natl. Acad. Sci. USA 2003,100,9138-9143.
    [13]Liu, Y. C.; Chen, H. L.; Lin, H. K.; Liu, W. L.; Chou, Y. W.; Lo, S. C.; Tai, C. H. DNA Condensation Induced by Nanoparticle-Embedded Dendrimer Leading to Pearl-Chain Nanowires. Biomacromolecules 2005,6,3481-3485.
    [14]Shan, Y.; Luo, T.; Peng, C.; Sheng, R.; Cao, A.; Cao, X.; Shen, M.; Guo, R.; Tomas, H.; Shi, X. Gene Delivery using Dendrimer-entrapped Gold Nanoparticles as Nonviral Vectors. Biomaterials 2012,33,3025-3035.
    [15]Ganguli, M.; Babu, J. V.; Maiti, S. Complex Formation between Cationically Modified Gold Nanoparticles and DNA:An Atomic Force Microscopic Study. Langmuir,2004,20,5165-5170.
    [16]He, W.; Hou, S.; Mao, X.; Wu, X.; Ji. Y; Liu, J.; Hu, X.; Zhang, K.; Wang, C.; Yang, Y; Wang, Q. Peptide-tailored Assembling of Au Nanorods. Chem. Commun.2011,47,5482-5484.
    [17]Xu, C.; Yang, D.; Mei, L.; Lu, B.; Chen, L.; Li, Q.; Zhu, H.; Wang, T. Encapsulating Gold Nanoparticles or Nanorods in Graphene Oxide Shells as a Novel Gene Vector. ACS Appl. Mater. Interfaces 2013,5,2715-2724.
    [18]Chen, A. M.; Taratula, O.; Wei, D.; Yen, H. I.; Thomas, T.; Thomas, T. J.; Minko, T.; He, H. Labile Catalytic Packaging of DNA/siRNA:Control of Gold Nanoparticles " out" of DNA/siRNA Complexes. ACS Nano 2010,4,3679-3688.
    [19]Ghosh, P. S.; Kim, C. K.; Han, G; Forbes, N. S.; Rotello, V. M. Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano 2008,2,2213-2218.
    [20]Cebrian, V.; Saavedra, F. M.; Yague, C.; Arruebo, M.; Santamaria, J.; Vilaboa, N. Size-dependent Transfection Efficiency of PEI-coated Gold Nanoparticles. Acta Biomaterialia 2011,7,3645-3655.
    [21]Goodman, C. M.; Chari, N. S.; Han, G; Hong, R.; Ghosh, P.; Rotello, V. M. DNA-binding by Functionalized Gold nanoparticles:Mechanism and Structural Requirements. Chem. Biol. Drug. Des.2006,67,297-304.
    [22]Nelson, E. M.; Rothberg, L. J. Kinetics and Mechanism of Single-Stranded DNA Adsorption onto Citrate-Stabilized Gold Nanoparticles in Colloidal Solution. Langmuir,2011,27,1770-1777.
    [23]Yuan, H.; Fales, A. M.; Dinh, T. V. TAT Peptide-Functionalized Gold Nanostars:Enhanced Intracellular Delivery and Efficient NIR Photothermal Therapy Using Ultralow Irradiance. J. Am. Chem. Soc.2012,134,11358-11361.
    [24]Chen, C. C.; Lin, Y. P.; Wang, C. W.; Tzeng, H. C.; Wu, C. H.; Chen. Y C.; Chen, C. P.; Chen, L. C.; Wu, Y. C. DNA-Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by near Infrared Irradiation. J. Am. Chem. Soc.2006,128,3709-3715.
    [25]Xu, L.; Liu, Y; Chen, Z.; Li, W; Liu, Y; Wang, L.; Liu, Y.; Wu, X. C.; Ji, Y; Zhao, Y; Ma, L.; Shao, Y.; Chen, C. Y. Surface-Engineered Gold Nanorods: Promising DNA Vaccine Adjuvant for HIV-1 Treatment. Nano Lett.2012,12,2003-2012.
    [1]Mckenzie, D.; Smiley, E.; Kwok, K. Y.; Rice, K. G Low Molecular Weight Disulfide Cross-Linking Peptides as Nonviral Gene Delivery Carriers. Bioconj. Chem.2000,11,901-909.
    [2]Balicki, D.; Putnam, C. D.; Scaria, P. V.; Beutler, E. Structure and Function Correlation in Histone H2A Peptide-mediated Gene Transfer. Proc. Natl. Acad. Sci. USA 2002,99,7467-7471.
    [3]Qu, W.; Qin, S. Y.; Ren, S.; Jiang, X. J.; Zhuo, R. X.; Zhang, X. Z. Peptide-Based Vector of VEGF Plasmid for Efficient Gene Delivery in Vitro and Vessel Formation in Vivo. Bioconj. Chem. 2013,24,960-967.
    [4]Yolamanoval, M.; Meier, C.; Shaytan, A. K.; Vas, V; Bertoncini, C. W.; Arnold, F.; Zirafi, O.; Usmani, S. M.; Miiller, J. A.; Munch, J. et al. Peptide Nanofibrils Boost Retroviral Gene Transfer and Provide a Rapid Means for Concentrating Viruses. Nat. Nanotechnol.2013,8,130-136.
    [5]Clements, B. A.; Incani, V; Kucharski, C.; Lavasanifar, A.; Ritchie, B.; Uludag, H. A Comparative Evaluation of Poly-L-Lysine-Palmitic Acid and Lipofectamine TM 2000 for Plasmid Delivery to Bone Marrow Stromal Cells. Biomaterials 2007,28,4693-4704.
    [6]Hoyer, J.; Neundorf, I. Peptide Vectors for the Nonviral Delivery of Nucleic Acids. Accounts Chem. Res.2012,45,1048-1056.
    [7]Veiman, K. L.; Ma ger, I.; Ezzat, K.; Margus, H.; Lehto, T.; Langel, K.; Kurrikoff, K.; Arukuusk, P.; Suhorutsenko, J.; Padari, K.; Pooga, M.; Lehto, T.; Langel,U. PepFectl4 Peptide Vector for Efficient Gene Delivery in Cell Cultures. Mol. Pharmaceut.2013,10,199-210.
    [8]Saccardo, P.; Villaverde, A.; Montalban, N. G Peptide-mediated DNA Condensation for Non-viral Gene Therapy. Biotechnol. Adv.2009,27,432-438.
    [9]Tu, R. S.; Marullo, R.; Pynn, R.; Bitton, R.; Peled, H. B.; Tirrell, M. V. Cooperative DNA Binding and Assembly by a bZip Peptide-amphiphile. Soft Matter 2010,6,1034-1044.
    [10]Lehto, T.; Simonson, O. E.; Ma ger, I.; Ezzat, K.; Sork, H.; Copolovici, D. M.; Viola, J. R.; Zaghloul, E. M.; Lundin, P.; Smith, C. E. et al. A Peptide-based Vector for Efficient Gene Transfer In Vitro and In Vivo. Mol. Then 2011,19,1457-1467.
    [11]Gabrielson, N. P.; Lu, H.; Yin, L. C.; Li, D.; Wang, F.; Cheng, J. J. Reactive and Bioactive Cationic a-Helical Polypeptide Template for Nonviral Gene Delivery. Angew. Chem. Int. Ed.2011, 50,1-6.
    [12]Zhang, Q.; Tang, J.; Fu, L.; Ran, R.; Liu, Y.; Yuan, M.; He, Q. A pH-responsive a-helical Cell Penetrating Peptide-mediated Liposomal Delivery System. Biomaterials 2013,34,7980-7993.
    [13]Yin, L.; Tang, H.; Kim, K. H.; Zheng, N.; Song, Z.; Gabrielson, N. P.; Lu, H.; Cheng, J. Light-Responsive Helical Polypeptides Capable of Reducing Toxicity and Unpacking DNA: Toward Nonviral Gene Delivery. Angew. Chem. Int. Ed.2013,52,9182-9186.
    [14]Cartier, R.; Reszka, R. Utilization of Synthetic Peptides Containing Nuclear Localization Signals for Nonviral Gene Transfer Systems. Gene Ther.2002,9,157-167.
    [15]Zanta, M. A.; Valladier, P. B.; Behr, J. P. Gene Delivery:A Single Nuclear Localization Signal Peptide is Sufficient to Carry DNA to the Cell Nucleus. Proc. Natl. Acad. Sci. USA 1999,96, 91-96.
    [16]Leng, Q.; Mixson, A. J. Modified Branched Peptides with a Histidine-rich Tail Enhance in Vitro Gene Transfection. Nucleic Acids Res.2005,33, e40,1-9.
    [17]Kichler, A.; Leborgne, C.; Ma rz, J.; Danos, O.; Bechinger, B. Histidine-rich Amphipathic Peptide Antibiotics Promote Efficient Delivery of DNA into Mammalian Cells. Proc. Natl. Acad. Sci. USA 2003,100,1564-1568.
    [18]Yao, X. L.; Yoshioka, Y.; Ruan, G. X.; Chen, Y. Z.; Mizuguchi, H.; Mukai, Y.; Okada, N.; Gao, J. Q.; Nakagawa, S. Optimization and Internalization Mechanisms of PEGylated Adenovirus Vector with Targeting Peptide for Cancer Gene Therapy. Biomacromolecules 2012,13,2402-2409.
    [19]Stefanick, J. F.; Ashley, J. D.; Bilgicer, B. Enhanced Cellular Uptake of Peptide-Targeted Nanoparticles through Increased Peptide Hydrophilicity and Optimized Ethylene Glycol Peptide-Linker Length. ACS Nano 2013,7,8115-8127.
    [20]Mann, A.; Thakur, G.; Shukla, V.; Ganguli, M. Peptide in DNA Delivery:Current Insights and Future Directions. Drug Discov. Today 2008,12,152-160.
    [21]Lakshmanan. M.; Kodama, Y; Yoshizumi, T.; Sudesh, K.; Numata, K. Rapid and Efficient Gene Delivery into Plant Cells Using Designed Peptide Carriers. Biomacromolecules 2013,14, 10-16.
    [22]Collins, L.; Fabre, J. W. A Synthetic Peptide Vector System for Optimal Gene Delivery to Corneal Endothelium. J. Gene Med.2004,6,185-194.
    [23]Wiradharma, N.; Khan, M.; Tong, Y. W.; Wang, S.; Yang, Y. Y. Self-assembled Cationic Peptide Nanoparticles Capable of Inducing Efficient Gene Expression In Vitro. Adv. Funct. Mater. 2008,18,943-951.
    [24]Niidome, T.; Takaji, K.; Urakawa, M.; Ohmori, N.; Wada, A.; Hirayama, T.; Aoyagi, H. Chain Length of Cationic r-Helical Peptide Sufficient for Gene Delivery into Cells. Bioconj. Chem.1999, 10,773-780.
    [25]Yan, X. H.; He, Q.; Wang, K. W.; Duan, L.; Cui, Y.; Li, J. B. Transition of Cationic Dipeptide Nanotubes into Vesicles and Oligonucleotide Delivery. Angew. Chem. Int. Ed.2007,46, 2431-2434.
    [26]Tang, Q.; Cao, B.; Wu, H.; Cheng, G Selective Gene Delivery to Cancer Cells Using an Integrated Cationic Amphiphilic Peptide. Langmuir 2012,28,16126-16132.
    [27]Fominaya, J.; Gasset, M.; Garcia, R.; Roncal, F.; Albar, J. P.; Bernad, A. An Optimized Amphiphilic Cationic Peptide as an Efficient Non-viral Gene Delivery Vector. J. Gene Med.2000, 2,455-464.
    [28]Kichler, A.; Mason, A. J.; Bechinger, B. Cationic Amphipathic Histidine-rich Peptides for Gene Delivery. Biochimie.2006,1758,301-307.
    [29]Nakase, I.; Niwa, M.; Takeuchi, T.; Sonomura, K.; Kawabata, N.; Koike, Y; Takehashi, M.; Tanaka, S.; Ueda, K.; Jones, A. T. Cellular Uptake of Arginine-Rich Peptides:Roles for Macropinocytosis and Actin Rearrangement. Mol. Ther.2004,10,1011-1022.
    [30]El-Sayed, A.; Futaki, S.; Harashima, H. Delivery of Macromolecules Using Arginine-Rich Cell-Penetrating Peptides:Ways to Overcome Endosomal Entrapment. AAPSJ.2009,11,13-22.
    [31]Melikov, K.; Chernomordik, L. V. Arginine-rich Cell Penetrating Peptides:from Endosomal Uptake to Nuclear Delivery. Cell. Mol. Life Sci.2005,62,2739-2749.
    [32]Won, Y. W.; Kim, H. A.; Lee, M.; Kim, Y. H. Reducible Poly(oligo-d-arginine) for Enhanced Gene Expression in Mouse Lung by Intratracheal Injection. Mol. Ther.2010,18,734-742.
    [33]Kim, T.; Ou, M.; Lee, M.; Kim, S. W. Arginine-grafted Bioreducible Poly(disulfide amine) for Gene Delivery Systems. Biomaterials 2009,30,658-664.
    [34]Nakase, I.; Takeuchi, T.; Tanaka, G.; Futaki, S. Methodological and Cellular Aspects that Govern the Internalization Mechanisms of Arginine-rich Cell-penetrating Peptides. Adv. Drug Deliver. Rev.2008,60,598-607.
    [35]Sharma, R.; Shivpuri, S.; Anand, A.; Kulshreshtha, A.; Ganguli, M. Insight into the Role of Physicochemical Parameters in a Novel Series of Amphipathic Peptides for Efficient DNA Delivery. Mol. Pharmaceut.2013,10,2588-2600.
    [1]Ho, R. M.; Li, M. C.; Lin, S. C.; Wang, H. F.; Lee, Y. D.; Hasegawa, H.; Thomas, E. L. Transfer of Chirality from Molecule to Phase in Self-Assembled Chiral Block Copolymers. J. Am. Chem. Soc.2012,134,10974-10986.
    [2]George, S. J.; Tomovic, Z.; Schenning, A. P. H. J.; Meijer, E. W. Insight into the Chiral Induction in Supramolecular Stacks through Preferential Chiral Salvation. Chem. Commun.2011, 47,3451-3453.
    [3]Harada, N.; Nakanishi, K. The Exciton Chirality Method and Its Application to Configurational and Conformational Studies of Natural Products. Acc. Chem. Res.1972,5, 257-263.
    [4]Kurouski, D.; Kar, K.; Wetzel, R.; Dukor, R. K.; Lednev, I. K.; Nafie, L.A. Levels of Supramolecular Chirality of Polyglutamine Aggregates Revealed by Vibrational Circular Dichroism. FEBS Letters 2013,587,1638-1643.
    [5]Luo, Z.; Yue, Y.; Zhang, Y.; Yuan, X.; Gong, J.; Wang, L.; He, B.; Liu, Z.; Sun, Y.; Liu, J.; Hu, M.; Zheng, J. Designer D-form Self-assembling Peptide Nanofiber Scaffolds for 3-dimensional Cell Cultures. Biomaterials 2013,34,4902-4913.
    [6]Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E. M.; Ho gele, A.; Simmel, F. C.; Govorov, A.; Liedl, T. DNA-based Self-assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature 2012,483,311-314.
    [7]Datta, S.; Samanta, S. K.; Bhattacharya, S. Induction of Supramolecular Chirality in the Self-Assemblies of Lipophilic Pyrimidine Derivatives by Choice of the Amino Acid-Based Chiral Spacer. Chem. Eur. J.2013,19,11364-11373.
    [8]Hamley, I. W. Self-assembly of Amphiphilic Peptides. Soft Matter 2011,7,4122-4138.
    [9]Zhao, X.; Pan F.; Xu, H.; Yaseen, M.; Shan, H.; Hauser, C. A. E.; Zhang S.; Lu, J. R. Molecular Self-assembly and Applications of Designer Peptide Amphiphiles. Chem. Soc. Rev., 2010,39,3480-3498.
    [10]Hebert, M. L.; Shah, D. S.; Blake, P.; Turner, J. P.; Servoss, S. L. Tunable peptoid Microspheres:Effects of Side Chain Chemistry and Sequence. Org. Biomol. Chem.2013,11, 4459-4464.
    [11](a) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. Science 2001,294,1684-1688; (b) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Peptide-amphiphile nanofibers:A versatile scaffold for the preparation of self-assembling materials. Proc. Natl. Acad. Sci. USA 2002,99,5133-5138; (c)Tovar, J. D.; Claussen, R. C.; Stupp, S. I. Probing the Interior of Peptide Amphiphile Supramolecular Aggregates. J. Am. Chem. Soc.2005,127,7337-7345; (d) Sur, S.; Newcomb, C. J.; Webber, M. J.; Stupp, S. I. Tuning Supramolecular Mechanics to Guide Neuron Development. Biomaterials 2013, 34,4749-4757.
    [12](a) Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. Spontaneous Assembly of a Self-complementary Oligopeptide to Form a Stable Macroscopic Membrane. Proc. Natl. Acad. Sci. USA 1993,90,3334-3338; (b) Maltzahn, G.; Vauthey, S.; Santoso, S.; Zhang, S. Positively Charged Surfactant-like Peptides Self-assemble into Nanostructures. Langmuir 2003,19, 4332-4337; (c) Zhao, X.; Zhang, S. Molecular Designer Self-assembling Peptides. Chem. Soc. Rev. 2006,35,1105-1110; (d) Yang, Y; Khoe, U.; Wang, X.; Horii, A.; Yokoi, H.; Zhang, S. Designer Self-assembling Peptide Nanomaterials. Nano Today 2009,4,193-210; (e) Zhang, S. Lipid-like Self-Assembling Peptides. Acc. Chem. Res.2012,45,2142-2150; (f) Luo, Z.; Zhang, S. Designer Nanomaterials using Chiral Self-assembling Peptide Systems and their Emerging Benefit for Society. Chem. Soc. Rev.2012,41,4736-4754.
    [13]Zhang, S.; Andreasen, M.; Nielsen, J. T.; Liu, L.; Nielsen, E. H.; Song, J.; Ji, G; Sun, F.; Skrydstrup, T.; Besenbacher, F.; Nielsen, N. C.; Otzen, D. E.; Dong, M. Coexistence of Ribbon and Helical Fibrils Originating from hIAPP20-29 Revealed by Quantitative Nanomechanical Atomic Force Microscopy. Proc. Natl. Acad. Sci. USA 2013,110,2798-2803.
    [14]Raigoza, A. F.; Webb, L.J. Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling Microscopy. J. Am. Chem. Soc.2012,134,19354-19357.
    [15](a) Mao, X.; Wang, C.; Wu, K.; Ma, X.; Liu, L.; Zhang, L.; Niu, L.; Guo, Y; Li, D.; Yang, Y; Wang, C. Beta Structure Motifs of Islet Amyloid Polypeptides Identified through Surface-mediated Assemblies. Proc. Natl. Acad. Sci. U.S.A.2011,108,19605-19610; (b) Wang, C.; Mao, X.; Yang, A.; Niu, L.; Wang, S.; Li, D; Guo, Y.; Wang, Y; Yang Y; Wang, C. Determination of Relative Binding Affinities of Labeling Molecules with Amino Acids by using Scanning Tunneling Microscopy. Chem. Commun.2011,47,10638-10640; (c) Mao, X.; Guo, Y.; Luo, Y; Niu, L.; Liu, L.; Ma, X.; Wang. H.; Yang, Y; Wei, G; Wang, C. Sequence Effects on Peptide Assembly Characteristics Observed by Using Scanning Tunneling Microscopy. J. Am. Chem. Soc. 2013,135,2181-2187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700