不锈钢基不溶性催化电极的制备及其对难降解有机废水的电催化降解作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电极材料是电化学的基础,现代电化学技术和电化学工业发展的技术先导。钛基形稳阳极的开发促进和实现了氯碱工业的革命,使高性能电极材料的研究成为电化学的前沿课题。本工作针对钛基形稳阳极对其它应用领域催化活性不够高,制备成本尚嫌昂贵等问题,进行钛基形稳阳极的改性研究,不锈钢基不溶性催化阳极研究,具有催化活性的阴极材料的研究,进而研究了所制备的电极材料对难降解有机废水的催化活性及其催化作用机理。
     采用高温热分解方法制备了Ti/IrO_2-RuO_2-CeO_2阳极,试验结果表明,电极制备的优化条件为:涂装次数10~12次,烘干温度80℃,热氧化气氛为氧气,温度450℃,时间10min。经扫描电镜表征,所制得的电极催化层为多孔的蜂窝状结构,无龟裂。在0.5 mol/L H_2SO_4溶液中,电极的析氧电位为1.3V。电极的催化活性优于形稳阳极,制备工艺的复杂性和制备成本与形稳阳极相当。
     针对钛基形稳阳极对处理难降解废水催化活性不够高,制备成本尚嫌昂贵等问题,提出不锈钢基不溶性催化电极的构想和设计方法,制备了不锈钢基CeO_2-PbO_2阳极。试验结果表明,由于易发生表面氧化等问题,采用制备钛基不溶性阳极常用的热分解法无法在不锈钢基体上制备催化层,本研究采用电沉积法解决了这一难题,得出了电极制备的优化条件:电流密度5~15mA/cm~2,温度60℃。电极催化层结构呈多孔状,粒子结构呈四面体型。试验发现,掺杂CeO_2可明显起到细化晶粒的作用。在0.5 mol/L H_2SO_4溶液中,电极的析氧电位为2.1V。在3 mol/L H_2SO_4溶液,电流密度1A/cm~2,温度35℃条件下,电极的使用寿命为1100 h。该阳极对染料废水有良好的催化活性,并具有析氧电位高、使用寿命长、制备成本低等优点,尚存在着阳极脆性较大等不足。
     采用复合电沉积法制备了不锈钢基CNT(碳纳米管)-PbO_2阳极。电极制备的优化条件为:电流密度5~15 mA/cm~2,温度60℃。电极催化层粒子结构呈四面体型,碳纳米管晶粒的加入改变了电极催化层微观形貌,生成大量圆柱状小孔,使得电极的比表面积增加。在0.5mol/L H_2SO_4溶液中,电极的析氧电位为1.8 V。该阳极具有良好的催化活性,较高的析氧电位,制备工艺简单等优点。
     采用脉冲电沉积法,制备了以不锈钢为基体,以非晶态Ni-W-P为载体,掺杂SiC和稀土元素的阴极材料。当电流密度10 A/dm~2、pH值4.5,温度65℃,占空比1:3~5时,频率在300~800 Hz范围内,可得到晶粒细小、周边平滑致密、硬度较高的镀层,800 Hz时效果最好。电极镀层结构致密而多孔,具有高的比表面积,因而与氧气接触面积大,对氧气生成H_2O_2具有良好的催化作用。
     以不锈钢基CeO_2-PbO_2为阳极,不锈钢片为阴极,设计了电催化反应器。反应器结构采用模块化设计思想,每个单元反应室内的电极和曝气设备可以单独进行安装和调换。电极最佳结构和工作参数为:电极间距8 mm,粒子电极粒径4 mm,粒子填充量60%,槽电压15V。在该参数下,电催化反应器对抗生素难降解废水具有良好的处理效果。
     采用动电位极化法和伏安曲线法等电化学方法,研究了所制备的不溶性电极对有机物的电催化降解机理及其动力学过程,发现在电催化过程中存在着一个特征电位,该特征电位与羟基自由基的产生密切相关,特征电位出现的位置与有机物浓度无关,电流峰值大小随有机物浓度的升高而增大。随有机物溶液温度的上升,电极上出现的特征电位负移,温度与特征电位呈某种直线关系,符合一级反应方程。在电催化过程中,有机物的降解过程符合一级反应规律。
Electrode material is the basis for the electrochemistry, which is technology pilot of industrial development of modern electrochemical techniques. The invention of dimensionally stable anodes (DSA) on titanium is realization of the chlor-alkali industry revolution. The research of high performance electrode has become the forefront of electrochemical topics. The electro-catalytic activity of dimensionally stable anode on titanium is not high enough for other applications, and the preparation cost is expensive. The dimensionally stable anodes for the modification on titanium and insoluble anode on stainless steel and catalytic activity of the cathode material were studied. Then we study the catalytic activity of prepared electrode and catalytic mechanism in refractory organic wastewater treatment.
     The IrO-RuO-CeO on titanium was prepared by high temperature thermal decomposition. The experimental results show that electrodes was prepared under optimum conditions : drying temperature is 80℃, thermal decomposition temperature is 450℃, brushing times is 10-12, the oxidation time is 10 minutes. The surface of the porous electrode is the honeycomb pattern without signs of cracking. The oxygen electrode potential is 1.3 V in 0.5 M HSO solution. The catalytic performance of electrode is superior to conventional dimensionally stable anode. But the electrode preparation is complex and the cost of electrode preparation is high.
     The CeO-PbO on stainless steel was prepared by electrodeposition. The experimental results show that the optimum conditions for electrode preparation is that current density is 5~15 mA/cm, temperature is 60℃. The electrode structure is tetrahedral and porous with doped Ceria. The crystals of electrode have been refined and the electro-catalytic performance has been increased with the addition of rare earth element. The oxygen evolution over-potential is 2.1 V in 0.5 M HSO solution. The service life of electrode is 1,100 hours on the condition of 3 M sulfuric acid solution, the current density of 1 A/cm, and the temperature is 35℃. The anode has a higher oxygen evolution potential, long service life, low-cost advantages of preparation, particularly good catalytic activity in dyes wastewater treatment, but anode is brittleness.
     The CNT(carbon nanotubes)-PbO on stainless steel was prepared by composite electrodeposition. The experimental results show that the optimum conditions for electrode preparations are that current density is 5~15 mA/cm, temperature is 20℃. The electrode structure is tetrahedral and cylindrical holes were made on the electrode surface with adding carbon nanotubes grains and that changes the electrode surface. The oxygen evolution over-potential is 1.8 V in 0.5 M HSO solution. The preparation of the anode with an excellent catalyst activity and higher oxygen evolution potential is simple.
     A new cathode material for wastewater treatment was studied in this paper. The cathode was prepared by impulse electrodeposition on stainless steel substrate, with amorphous ingredients Ni-W-P as a carrier, doped SiC and the rare earth element. The experimental results show that the optimum conditions for electrode preparation is that current density is 10 A/dm, PH is 4.5, temperature is 65℃, duty ratio is 1:3~5, frequency range is 300~800 Hz. The cathode has high catalytic performance, surface area, effectively improving HO reaction rate on the cathode surface. The cathode has the advantage of high hardness and wear resistance.
     A catalytic reactor was designed and the CeO-PbO on stainless steel used as anode and stainless steel used as cathode. The results show that each module aeration chamber and the electrodes can be individually installed by modular design. The optimal parameters are that the cell voltage is 15 V, particle electrode size is 4 mm, electrode spacing is 8 mm, filler particles is 60%. The antibiotic refractory wastewater is good treated in the electro-catalytic reactor.
     The electro-catalytic degradation mechanism of organic matter and dynamics process were studied by electrochemical method, such as potentiodynamic polarization technique and cyclic voltammetry method. There is a characteristic potential in the electro-catalytic process. The characteristics potential has to do with hydroxyl radical and has nothing to do with organic matter concentration. The current peak increased with a rise of concentration of organic matter. The potential of electrode decreased with the increase in wastewater solution temperature. The linear relationship between temperature and potential features accords with the first order reaction principle. The electro-catalytic degradation process of organic matter was a first order reaction.
引文
[1] Marco P, Cristina B, Giacomo C. Electrochemical treatment of wastewater containing polyaromatic organic pollutants[J]. Wat. Res., 2000, 34:2601-2605
    [2] Rajkumar D, Palanivelu K. Electrochemical treatment of industrial wastewater[J]. J. Hazard. Mater., 2004, Bl13:123-129
    [3] Amit S, Rupali G. Developments in wastewater treatment methods[J]. Desalination. 2004.167:55-63
    [4] 马凯.“十一五”规划战略研究[M].北京:北京科学技术出版社.2005
    [5] 金兆丰.21世纪的水处理[M].北京:化学工业出版社.2003.3
    [6] Kummerer K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources-a review[J], Chemosphere, 2001,45:957-969
    [7] Heberer T. Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: a review of recent research data[J], Toxicol.Lett., 2002,131:5-17
    [8] 杨军,陆正禹,胡纪萃等.抗生素工业废水生物处理技术的现状与展望[J].环境科学.1997,18(3):83-85
    [9] Shinwoo Y, Kenneth C. Routine monitoring of antibiotics in water and wastewater with a radioimmunoassay technique[J]. Wat. Res., 2004,38:3155-3166
    [10] Isil A B, Merih O.Treatment of pharmaceutical wastewater containing antibiotics by O_3 and O_3/H_2O_2 processes[J]. Chemosphere, 2003,50:85-95
    [11] Addano J, Elvira K, Alfredo C A, etc.Removal of pharmaceuticals and fragrances in biological wastewater treatment[J]. Wat. Res., 2005,39:3139-3152
    [12] Patrick J. Cyra, Rominder P.S. Suria, Edward D. H. A pilot scale evaluation of removal of mercury from pharmaceutical wastewater usingg ranular activated carbon[J]. Wat. Res.,2002, 36:4725-4734
    [13] K. Kosutic, D. Dolar, D. Asperger, B. Kunst. Removal of antibiotics from a model wastewater by RO/NF membranes[J]. Sep. Purif. Technol., 2007,53:244-249
    [14] 纪树兰,任海燕,崔成武,刘志鹏.改进序批式生物膜法处理青霉素废水的初探[J].环境科学.2004,25:74-77
    [15] Tapas N Y. Kaul S N. Anaerobic pre-treatment of herbal-based pharmaceutical wastewater using fixed-film reactor with recourse to energy recovery[J]. Wat. Res., 2001, 35(2): 351-362
    [16] Timothy M L, Cindy H N, Lisa M P, James E A. Aerobic biological treatment of a pharmaceutical wastewater: effect of temperature on COD removal and bacterial community development[J]. Wat. Res.. 2001.35(18): 4417-4425
    [17] 李斌,王璐.厌氧-好氧法在制药废水处理中的应用[J].工业水处理,2002,22(12):47-48
    [18] Ajay K G, Sunil K, Sabumon P.C. Preliminary study of physico-chemical treatment options for hospital wastewater[J]. J. Environ. Manage.,2007,83:298-306
    [19] Huseyin T, Okan B, Selale S. Ataberk, Tolga H. Balta,etc.Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater[J]. J. Hazard. Mater., 2006,B136:258-265
    [20] 魏有权,王化军,张强,帖春英.气浮法预处理土霉素废水的试验研究[J].过滤与分离,2003,13(1):19-22
    [21] 马量.涡凹气浮在炼油污水处理中的应用[J].石化技术,2005,12(4):23-27
    [22] Lu Y J, Zhu X H. A mathematical model of solvent sublation of some surfactants[J].Talanta,2002,57(5):891-898
    [23] Lu Y J, Li J Z, Wei B, Tang J. sep. sci. Technol. 2005, 40(5):1115-1127
    [24] Yusuf Y. EC and EF processes for the treatment of alcohol distillery wastewater[J].Sep.Purif. Technol., 2007,53:135-140
    [25] Sahset I, Yalcin S Y, Vahdettin T.Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes[J].Sep.Purif.Technol., 2006,52:394-401
    [26] 潘志彦,陈朝霞.制药业水污染防治技术研究进展[J].水处理技术,2004,30(2):67-71
    [27] 夏文林,李武.煤灰吸附-两级好氧生物工艺处理制药废水[J].环境工程,1999,17(2):3-15
    [28] 郝存江,陈静.沉淀-吸附处理双氯灭痛高浓度有机废水的工艺研究[J].环境污染与防治,2000,22(3):24-26.
    [29] 张满生,章劲松.物理吸附法处理制药废水[J].青海环境,1999,9(3):106-107.
    [30] Ewa N, Malgorzata K, Joanna, Ewa O. Effect of sonication on combined treatment of landfill leachate and domestic sewage in SBR reactor[J]. Desalination. 2007,204: 227-233
    [31] 刘石生,丘泰球.超声在废水处理中的应用[J].应用声学,2001,20(2):43-46
    [32] Cataldo, F. Ultrasound-induced cracking and pyrolysis of some aromatic and naphthentic hydrocarbons[J]. Ultrason. Sonochem., 2000,7(1):3 543.
    [33] 卞华松,张大年,赵一先等.功率超声场作用下水溶液中甲苯的降解机理[J].环境科学,2001,22(3):84-87.
    [34] Z Laughrey, Zachary, Bear.et al. Aqueous sonolytic decomposition of polycyclic aromatic hydrocarbons in the presence of additional dissolved species[J].Ultrason. Sonochem., 2001,8(4):353-357.
    [35] Rassokhin, Dmitrii N, Bugaenko, et al.The sonolysis of methanol in diluted aqueous solutions: product yields[J].Radiat. Phys. Chem., 1995,45(2):251-255.
    [36] Davydov, Lev, Reddy, et al.Sonophotocatalytic destruction of contaminants in aqueous systems on TiO_2 powders[J].Appl. Catal. B-Environ., 2001,32 (1-2):95-105
    [37] Mizukoshi, Yoshiteru, Nakamura, et al.Sonolysis of organic liquid: effect of vapour pressure and evaporation rate[J].Ultrason. Sonochem., 1999,6(4):203-209.
    [38] Goskonda, Sridevi, James Catallo, etal.Sonochemical degradation of aromatic organic pollutants[J].Waste Manage., 2002,2 2(3):351-356
    [39] Keller J, Subramaniam K, Gosswien J, Nutrient removal from industrial wastewater using single tank sequencing batch reactor[J]. Wat. Sci. Technol., 1997,35 (6):137-144.
    [40] Laughlin D K, Edwards F G, Egeman E, Nirmalakhandan N. SBR treatment of high COD effluent from bottling plant[J]. J.Environ. Eng., 1999,3:285-289.
    [41] Fa-gen Z, Jun-xin L, Jun S. Sludge concentration dynamic distribution and its impact on the performance of UNITANK[J]. J.Environ. Sci., 2007,19(2):141-147
    [42] 孙春玲,崔兆杰,侯薇,张敏.气浮-厌氧滤池—CASS工艺处理植物油废水[J].中国给水排水,2006,22(18):52-54
    [43] Rosen M, Welander T, Lofqvist A, Holmgren J. Development of a new process for treatment of a pharmaceutical wastewater[J]. Wat. Sci. Tech. 1998,37(9):251-258
    [44] Rosen M., Welander T., Lofqvist A., et al. Development of A New Process For Treatment of A Pharmaceutical Wastewater[J], Wat. Res. 1998,37(9):251-258
    [45] Fdey I, Libert P G. Antibiotic Resistance of Biofilms[J] , Biofouling, 1996,10 (4): 331-346.
    [46] Freitas dos Santos L M, Lo Biundo G. Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor[J].Environ.Progr. 1999,18(1):34-39
    [47] Bernard S, Gray N F. Aerobic digestion of pharmaceutical and domestic wastewater sludges at ambient temperature[J]. Wat. Res., 2000, 34(3): 725-734
    [48] Anne-Marie E, Sharon M, Gavin C, Vincent O'F.Low-temperature anaerobic biological treatment of solventcontaining pharmaceuticalwastewater[J]. Wat. Res., 2005, 39:4587-4596
    [49] 李欣,祁佩时.厌氧复合床反应器处理制药废水启动研究[J].哈尔滨商业大学学报(自然科学版),2004,20(6):82-85
    [50] 左剑恶,王妍春,陈浩.膨胀颗粒污泥床(EGSB)反应器的研究进展[J].中国沼气,2000,18(4):3-8
    [51] Wataru N, Fahmi, Tsukasa M, Mitsumasa O. DOC removal by multi-stage ozonation-biological treatment[J].Wat. Res., 2003,37:150-154
    [52] Pena M, Coca M, Gonz_alez G, Rioja R, Garcia M T.Chemical oxidation of wastewater from molasses fermentation with ozone[J]. Chemosphere, 2003,51:893-900
    [53] Garcia J, Gomes H T, Serp P, Kalck P, Figueiredo J L, Faria J L. Carbon nanotube supported ruthenium catalysts for the treatment of high strength wastewater with aniline using wet air oxidation[J]. Carbon, 2006,44:2384-2391
    [54] M. Eugenia S, Frank S, Agusti F. Catalytic wet air oxidation of substituted phenols using activated carbon as catalyst[J].Appl. Catal. B-Environ., 2005,58:105-114
    [55] Hyeok C, Elias S, Dionysios D. D. Photocatalytic TiO_2 films and membranes for the development of efficient wastewater treatment and reuse systems[J]. Desalination,2007,202:199 -206
    [56] Rafael van G, Jose A, Maria-Jose L, Javier M. Photocatalytic degradation of iron-cyanocomplexes by TiO_2 based catalysts[J]. Appl. Catal. B-Environ., 2005,55:201-211
    [57] C. Carlesi Jara, D. Fino, V. Specchia, G. Saracco, P. Spinelli.Electrochemical removal of antibiotics from wastewaters[J].Appl. Catal. B-Environ., 2007,70:479-487
    [58] C. Bock, B. Mac D.The electrochemical oxidation of organics using tungsten oxide based Electrodes[J].Electrochim. Acta. 2002,47:3361-3373
    [59] Idil A A, Isil A B, Detlef W B. Advanced oxidation of a reactive dyebath effluent:comparison of O_3, H_2o_2/UV-C and TiO_2/UV-A processes[J]. Wat. Res., 2002,36:1143-1154
    [60] Roberto A, Marisa C, Raffaele M, Nicklas P. Antibiotic removal from wastewaters: The ozonation of amoxicillin[J]. J. Hazard. Mater., 2005,122:243-250
    [61] 肖哗远,史云鹏.湿式氧化处理污水的应用现状及展望[J].工业用水与废水,2001,32(6):5-7
    [62] Pantelis A. Pekakis, Nikolaos P. Xekoukoulotakis, Dionissios Mantzavinos.Treatment of textile dyehouse wastewater by TiO_2 photocatalysis[J]. Wa.r Res., 2006, 40:1276-1286
    [63] 魏刚.北京科技年鉴.北京:北京科学技术出版社.2002.182
    [64] 魏刚,周庆,熊蓉春,雷晓东.水处理中的绿色化学与绿色技术[J].现代化工,2002,22(12):43-45
    [65] Zucheng W, Minghua Z. Partial Degradation of Phenol by Advanced Electrochemical Oxidation Process[J]. Environ. Sci. Technol., 2001,35 (13):2698-2703
    [66] Yanqing C, Zucheng W. Electrocatalytic Generation of Radical Intermediates over Lead Dioxide Electrode Doped with Fluoride[J]. J. Phys. Chem. C, 2007, 111(8):3442-3446
    [67] Pierre D, Andre C, Francois L, et al. Electrocatalytic Dehydrochlorination of Pentachlorophenol to Phenol or Cyclohexanol[J]. Environ. Sci. Technol., 2000,34(7): 1265-1268
    [68] 冯玉杰,李晓岩等.电化学技术在环境工程中的应用[M].化学工业出版社.2002
    [69] 熊蓉春,贾成功,魏刚.二维和三维电极法催化降解染料废水[J].北京化工大学学报,2002,29(5):34-37
    [70] 贾成功.·OH的发生及其在水处理中的应用.北京化工大学研究生论文.2002
    [71] 张素娟,曲久辉,刘会娟,姜桂兰.电絮凝-催化氧化法去除染料工业废水COD的研究 [J].环境污染治理技术与设备,2002,3(3):74-76
    [72] A.G. Vlyssides, M. Loizidou. et al.Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode[J].J Hazard. Mater., 1999,B70:41-52
    [73] A.G. Vlyssides, D. Papaioarmou. et al. Testing an electrochemical method for treatment of textile dye wastewater[J], Waste Manag., 2000,20:569-574
    [74] A.G. Vlyssides. P.K. Karlis, et al. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes[J], J.Hazard.Mater., 2002,B95:215-226
    [75] C. Barrera-Diaz., F. Urena-Nunez. et al. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater[J]. Radiat. Phys. Chem., 2003,67:657-663
    [76] 时文中,李灵芝,余国忠.电化学氧化含酚废水及其动力学的研究[J].水处理技术,2003,29(6):341-344
    [77] 李志美,李霞,李风亭.电催化氧化法处理难降解有机废水[J].郑州大学学报(工学版),2004,25(3):42-45
    [78] 陈繁中.电催化氧化法降解水中有机物的研究进展[J],中国给水排水,1999,15(13):24-26
    [79] Li-Choung C. Electrochemical oxidation pretreatment of refractory organic pollutants[J],Wat. Sci. Technol.,1997,34(2-3):123-130
    [80] 闫鹤,于秀娟等.Ti/RuO_2 电极电催化脱除罗丹明B色度的研究[J].环境保护科学, 2004,30(3):13-16
    [81] 赵国华,胡惠康,李楹,高廷耀.氧化物修饰电极降解有机污染物的电催化特性[J],中国环境科学,2003,23(4):385-389
    [82] Sangyong K, Tak-Hyun K, et al. Electrochemical oxidation of polyvinyl alcohol using a RuO_2/Ti anode[J]. Desalination, 2003,155:49-57
    [83] Comninellis C. Nerini A. Anodic oxidation of phenol in the presence of NaCI for wastewater treatment[J]. J.Appl. Electrochem,1995,25:23-29
    [84] 李宣东,刘惠玲,姜艳丽.TiO_/Ti薄膜电极制备和光电催化降解罗丹明B的研究[J].环境保护科学,2003,29(115):9-12
    [85] 褚道葆,沈广霞.Ti表面修饰纳米TiO_2膜电极的电催化活性[J].高等学校化学学报,2002,23(4):678-681
    [86] Duverneuil P, Maury F.Chemical vapor deposition of SnO_2 coatings on Ti plates for the preparation of electrocatalytic anodes[J].Surf. Coat. Technol.,2002:9-13
    [87] 周明华,吴祖成.难生化降解芳香化合物废水的电催化处理[J].环境科学,2003,24(2):121-124
    [88] Drogui P, Elmaleh S, Rumeau M. Hybrid process microfiltration-electroper oxidation for water treatment[J]. J. Memb. Sci.. 2001.186(1):123-132
    [89] 吴越.催化化学[M].北京:科学出版社.2000.1297-1298
    [90] Grimm J. H, Simon U, Sanderson R. D. et al. Characterization of doped tin dioxide anodes prepared by a sol-gel technique and their application in an SPE-reactor[J]. J. Appl. Electrochem., 2000,30(3):293-302
    [91] 梁镇海,孙彦平.Ti/SnP_2+Sb_2O_3+MnO_2/PbO_2阳极的性能研究[J].无机材料学报,2001,16(1):184-188
    [92] Do J. S.,Yeh W. C. In situ. degradation of formaldehydewith electrogenerated hypochloritlon[J]. J. Appl. Electrochem.,1994,25:483-489
    [93] 胡吉明,孟惠民.Ti基lrO_2+Ta_2O_5涂层阳极的析氧电催化活性[J].金属学报,2001,37(6):628-632
    [94] Vicent F, Morallon E, Quijada C, et al. Characterization and stability of doped SnO_2 anodes[J]. J. Appl. Electrochem.,1998,28 (6):607-612
    [95] 纪红,周德瑞,周育红.Ti基RuO_2-CeO_2-SnO_2涂层阳极的电催化性能[J].中国有色金属学报,2003,13(6):1550-1553
    [96] Comninellis C. Preparation of SnO_2-Sb_2O_5 films by the spray surpluses technique[J]. J. Appl. Electrochem.,1996,26:83-89
    [97] Chuanping F, Norio S. et al. Development of a high performance electrochemical wastewater treatment system[J]. J. Hazard. Mater., 2003,B103:65-78
    [98] Feng J,Houk L L, Johnson D C. Electrocatalysis of anodic oxygen-transfer reaction:The electrochemical incineration of benzoquinone[Jl.Electrochem. Soc.,1995,142:26-36
    [99] 纪红,周德瑞,周育红.钛基Ru-La-Ti涂层阳极的电催化性能[J].材料保护,2003,36(7):10-12
    [100] Lidia S, Georey H K. Performance of electrochemical reactor for treatment of tannery wastewaters[J].Chem.Engin. Sci., 2001, (56):1579-1586
    [101] 余逸男.添加剂对铁基PbO_2电极制备影响的研究[J].东北大学学报,2001,27(1):66-69
    [102] Feng J, Johnson C. Electrocatalysis of anodic oxygen-transfer reaction: alpha-lead dioxide electrodeposited on stainless steel substrates[J]. J.Appl. Electrochem., 1990,(20): 116-124
    [103] 王桂清,刘敏娜.塑料基体上化学镀二氧化铅[J].电镀与环保,1995,15(3):20-21
    [104] Carlos A. Martinez-Huitle, Marco A Q. Electrochemical incineration of chloranilic acid using Ti/IrO_2, Pb/PbO_2 and Si/BDD electrodes[J]. Electrochim. Acta 2004,50:949-956
    [105] 曹建春,郭忠诚.新型不锈钢基PbO_2/PbO_2-CeO_2复合电极材料的研制[J].昆明理工大学学报(理工版),2004,29(5):38-41
    [106] 郭孝孝.废水资源化用催化电极材料研究.北京化工大学毕业论文.2005
    [107] Tezuka M, Jwasaki M. Proceedings of the 3rd Asia-Pacific Conference Plasma Science Technology, Japan Society for the Promotion of Science[J], Local Organizing Committee of APCPST', Tokyo, Japan, 1996:423-427
    [108] 陈武,杨昌柱,梅平,董玲玲,袁谷.三维电极电化学方法处理印染废水实验研究[J].工 业水处理,2004,8(24):43-45
    [109] 崔艳萍,杨昌柱.复极性三维电极处理含酚废水的研究[J].能源环境保护,2004,1(8):23-26
    [110] 郭玉凤,崔建升.三维电极电解法处理生活污水的研究[J].河北科技工业大学学报,2003,2(24):27-30
    [111] 张薇.废水资源化用粒子催化电极材料研究.北京化工大学毕业论文.2005
    [112] 李国清,陈楷翰,王恭伟.活性碳载SnO_2电解催化氧化偶氮染料的研究[J].泉州师范学院学报(自然科学),2004,22(6):65-68
    [113] 许连河.操作参数对三维电极电催化反应器电流效率的影响.北京化工大学毕业论文.2005
    [114] 刘占孟,桑义敏,杨润昌.纳米二氧化钛电催化氧化工艺参数的研究[J].工业用水与废水,2004,2(35):54-56
    [115] Maurizio D F, Paola C. On the design of electrochemical reactors for the treatment of polluted water[J]. J. Clean Prod., 2004, 12:159-163
    [116] Karuppan M, P Shunmuga S, Anantharaman N, et al. Treatment of textile dye wastewater by using an electrochemical bipolar disc stack reactor[J]. J. Chem.Technol. Biotechnol, 2004, 79:1135-1141
    [117] Jingshan D. Insist oxidation degradation of form aldehyde with electrogenerated hydrogenperoxide[J]. J. Electrochem.1 soc.,1993,140 (6): 1632-1637
    [118] Gallone P. Achievements and tasks of electrochemical engineering [J]. Electrochem. Acta. 1977,(22): 913-920
    [119] 周抗寒,周定,复极性固定床电解槽内电极电位的分布[J],环境化学,1994,13(4):318-322
    [120] Xu WL.The behavior of packed bed electrode reactor [J].Chem. Engin. Sci..1992.47(9-11):2307-2312
    [121] 许文林.固定床电化学反应器基础研究[J].自然科学进展,1992,(5):465-468
    [122] Kreysa G.. Cylindrical three-dmensional electrodes under limiting current conditions [J], J.Appl.Electrochem.,1993,23(7):707-714
    [123] Kreysa G.. Cylindrical three-dmensional electrodes under limiting current conditions [J], J.Appl.Electrochem.,1982,24(1) :241-251
    [124] Sun Y P, et al. Efficient method fox solving the model equations of a two dimensional packed bed electrode[J], J.Appl.Electrochem.,1995,25(8):65-82
    [125] Pletcher D, Walsh F C. Industrial Electrochemistry, London: Chapman&Hall. 1990, 331-383
    [126] Walsh F C. A review of some recent electrolytic cell designs [J]. Surf. Technol., 1985, 24:45-77
    [127] Ya X, Strunlc P. J. et al. Treatment of dye wastewater containing acid orange Ⅱ using a cell with three-phase three-dimensional electrode [J]. Wat. Res., 2001, 35(17): 4226-4230
    [128] Ya X, Karlssonb H T. An experimental investigation of chemical oxygen demand removal from the wastewater containing oxalic acid using three-phase three-dimensional electrode reactor[J]. Advances in Environmental Research. 2002, 7:139-145
    [129] Ya X. et al. Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol[J]. Chemosphere, 2003, 50:131-136
    [130] Ya X. et al. Removal of formic acid from wastewater using three-phase three-dimensional electrode reactor[J]. Water, Air and Soil Pollution. 2003, 144:67-79
    [131] 何春,安太成,熊亚等.三维电极电化反应器对有机废水研究[J].2002,8(3):99-109
    [132] Alberto A G, Derek P. The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents[J]. Electrochem. Acta. 1999, 44:2483-2492
    [133] Paidar M, Bouzek K, Bergmannb H. Influence of cell construction on the electrochemical reduction of nitrate[J]. J.Chem. Eng., 2002, 85:99-109
    [134] Cornninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochimica Acta.1994, 39(11-12): 1857-1862
    [135] Chiang L C, Chang J E, Wen T C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate[J]. Wat. Res., 1995, 29(2): 671-678
    [136] Kirk D W. Anodic oxidation of aniline for wastewater treatment. Journal of Applied[J]. Electrochemistry, 1985,15: 285-292
    [137] Dabo D. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol[J]. Environ. Sci. Technol., 2000,34(7): 1265-1268
    [138] Franklin T C. Destruction of halogenated hydrocarbons accompanied by generation of electricity[J]. J. Electrochem. Soc.,1992,139: 2192-2195
    [139] Polearo A M. On the performance of Ti/SnO2and Ti/PbO2anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment[J]. J.Appl. Electrochem., 1999,29:147151
    [140] Tomat R. Electrochemical oxidation of toluene promoted by OH radicals[J]. J. Appl. Electrochem., 1984,14:1-8
    [141] Yang C H. Hypochlorite genration on Ru-Pt binary oxide for treatment of dye wastewater[J]. J.Appl. Electrochem., 2000, 30:1043-1051
    [142] Ribordy P. Electrochemical versus photochemical pretreatment of industrial wastewaters.Wat. Sci.Technol., 1997,35(4): 293-302
    [1] Shen P. K, A. C, Tseung C, Anodic Oxidation of Mathanol on Pt/WO_3 in Acidic Media[J]. J. Electrochem. Soc. 1999,141:3082-3089
    
    [2] Schiimann U, Grttndler P, Electrochemical Degradation of Organic Substances at PbO2 Anodes: Monitoring by Continuous CO_2 Measurements[J]. Wat. Res. 1998, 32(9):2835-2842
    
    [3] Beer, H. B. U.S. Patent 3,632,498. 1972.
    [4] Hine, F. Yasuda, M. Noda, T. Yoshida, T. Okuda. Electrochemical behavior the oxide-coated metal anodes[J]. J.Electrochem. Soc.,19791,26:1439-1445.
    [5] Duverneuil P, Maury F, Pebere N, Senocq F, Vergnes H. Chemical vapor deposition of SnO_2 coatings on Ti plates for the preparation of electrocatalytic anodes[J]. Sur.Coat. Technol., 2002,151-152: 9-13
    [6] Xu L. K, Scantlebury J. D. A study on the deactivation of an IrO_2-Ta_2O_5 coated titanium anode[J]. Corr. Sci., 2003,45:2729-2740
    [7] Yusairie M, Derek P. The fabrication of lead dioxide layers on a titanium substrate[J]. Electrochim. Acta. 2006,52:786-793
    [8] Hu J.M, Meng H.M, Zhang J.Q. Degradation mechanism of long service life Ti/IrO_2-Ta_2O_5 oxide anodes in sulphuric acid[J]. Corrosion Science. 2002,44:1655-1668
    [9] Qu J P, Zhang X G, Wang Y G, Xie C X. Electrochemical reduction of CO_2 on RuO_2/TiO_2 nanotubes composite modified Pt electrode[J]. Electrochim. Acta. 2005,50:3576-3580
    [10] Panizza M, Ouattara L, Baranova E, Comninellis C.DSA-type anode based on conductive porous p-silicon substrate[J]. Electrochem. Commun., 2003,5:365-368
    
    [11] Terezo A.J, Pereira E.C. Fractional factorial design applied to investigate properties of Ti/IrO_2-Nb_2O_5 electrodes[J]. Electrochim Acta. 2000,45:4351-4358
    
    [12] Chuanping F, Norio S, Satoru S,Takaaki M. Development of a high performance electrochemical wastewater treatment system[J]. J.Hazard. Mater., 2003,B103:65-78
    [13] Fernandez J.L, Gennero De Chialvo M.R, Chialvo A.C. Preparation and electrochemical characterization of Ti/Ru_xMn_(1-x)O_2 electrodes[J]. J.Appl.Electrochem., 2002,32:513-520
    [14] Kolovos K, Tsivilis S, Kakali G. SEM examination of clinkers containing foreign elements[J]. Cement Concrete Comp., 2005,27:163-170
    [15] Ai S Y, Gao M G, Zhang W, Wang Q J, Xie Y F, Jin L T. Preparation of Ce-PbO_2 modified electrode and its application in detection of anilines[J]. Talanta. 2004,62:445-450
    [16] Mondal K, Mandich N.V, Lalvani S.B. Regeneration of hexavalent chromium using a Bi-doped PbO_2 anode[J]. J. Appl. Electrochem., 2001,31:165-173
    [17] A.B. Velichenko, R. Amadelli, G.L. Zucchini, D.V. Girenko, F.I.Danilov. Electrosynthesis and physicochemical properties of Fe-doped lead dioxide electrocatalysts[J]. Electrochim. Acta. 2000,45:4341-4350
    [18] Ai S Y, Gao M G, Zhang W, Wang Q J, Xie Y F, Jin L T. Preparation of Ce-PbO_2 modified electrode and its application in detection of anilines[J]. Talanta. 2004,62:445-450
    [19] J. Ge, D.C. Johnson. Electrocatalysis of anodic oxygen-transfer reactions aliphatic amines at mixed silver-lead oxide-film electrodes[J]. J. Electrochem. Soc, 1995,142: 1525-1533.
    [20] Sandro C, Isabelle F, Paolo G, Marco M. Electrodeposition of PbO_2+CoO_x composites by simultaneous oxidation of Pb~(2+) and Co~(2+) and their use as anodes for O_2 evolution[J]. Electrochim. Acta. 2000,45:2279-2288
    [21] Chen H.Y, Wu L, Ren C, Luo Q.Z, Xie Z.H, Jiang X, Zhu S.P, Xia Y.K, Luo Y.R. The effect and mechanism of bismuth doped lead oxide on the performance of lead-acid batteries[J]. J. Power Sources. 2001,95:108-118
    [22] Johnson D.C, Feng J, Houk L.L. Direct electrochemical degradation of organic wastes in aqueous media[J]. Electrochim. Acta. 2000,46:323-330
    [23] R. Amadelli, L. Armelao, A.B. Velichenko, N.V. Nikolenko, D.V.Girenko, S.V. Kovalyov, F.I. Danilov. Oxygen and ozone evolution at fluoride modified lead dioxide electrodes[J]. Electrochim. Acta. 1999,45:713-720
    [24] Omura K. Oxidation of 4,4'-diphenoquinones giving p-benzoquinones[J]. Tetrahedron Lett. 2000,41:685-689
    [25] Velayutham D, Noel M. Preparation of a polypyrrole—lead dioxide composite electrode for electroanalytical applications[J]. Talanta, 1992,39:481-486
    [26] Minghua Z, Qizhou D, etc. Long life modified lead dioxide anode for organic wastewater treatment: electrochemical characteristics and degradation mechanism[J]. Environ. Sci. Technol., 2005, 39:363-370
    [27] Jaeyoung L, Hamilton V, Sunghyun U, Yongsug T. Electrodeposition of PbO_2 onto Au and Ti substrates[J]. Electrochem. Commun., 2000,2:646-652
    [28] A Aldykewicz Jr,Davenport A J, Isaacs H S. Studies of the formation of cerium-rich protective films using X-Ray absorption near-edge spectroscopy and rotating disk electrode methods[J].J. Electrochem. Soc., 1996,143:147-151
    [29] Chen G H, Chen X M, Po Lock Yue. Electrochemical Behavior of Novel Ti/IrO_x-Sh_2O_5-SnO_2 Anodes[J] J. Phys. Chem. B. 2002, 106:4364-4369
    [30] A.B. Velichenko, D.V. Oirenko, F.I. Danilov. Mechanism of lead dioxide electrodeposition[J]. J. Electroanal. Chem., 1996,405:127-132
    [31] Wang J Y, Hu X. Electrodeposition of PbO_2 on Ti by the Pulsed Current Technique[J]. The Chinese Journal of Process Engineering. 2003,3:540-543
    [1] 王辉,于秀娟,孙德智.阴阳极协同作用降解有机污染物的研究进展[J].环境保护科学,2006,32(2):4-7
    [2] J.S.Do,C.P.Chen.In Situ Oxidative Degradation of Formaldehyde with Hydrogen Peroxide Electrogenerated on the Modified Graphites[J]. Journal of Applied Electrochemistry, 1994,24:936-942.
    [3] G.V.Kornienko,N.V.Chaenko,I.S.Vasileva,etal.Indirect Electrooxidation of Organic. Substrates by Hydrogen Peroxide Generatedinan Oxygen Gas-Diffusion Electrode[J]. Russian Journal of Electrochemistry,2004,40(2):148-152
    [4] E.Brillas,B.Boye,I.Sires,etal. Electrochemical Destruction of Chlorophenoxy Herbicidesby Anodi cOxidation and Electro-Fenton Usinga Boron-Doped Diamond Electrode[J].Electrochimica Acta,2004,49:4487-4496
    [5] A.A.Gallegos,D.Pletcher.The Removal of Low Level Organics Via Hydrogen Peroxide Formedina Reticulated Vitreous Carbon Cathode Cell. Part2:The Removal of Phenols Related Compoundsfrom Aqueous Effluents[J]. Electrochimica Acta, 1999,44:2483-2492
    [6] E.Fockedey,A.V.Lierde.Coupling of Anodic and Cathodic Reactions for Phenol Electro-Oxidation Using Three-Dimensional Electrodes[J]. Water Research, 2002,36:4169-417
    [7] M.A.Oturan,N.Oturan,C.Lahitte,etal.Production of Hydroxyl Radicalsby Electrochemical Assisted Fenton's Reagent. Application to the Mineralization of an Organic Micropollutant, Pentacholorphenol[J]. Journal of Electroanalytical Chemistry, 2001,507:96-102
    [8] E.Kusvuran,O.Gulnaz,S.Irmak,etal. Comparison of Several Advanced Oxidation Processes for the Decolorization of Reactive Red 120 Azo Dye in Aqueous Solution[J]. Journal of Hazardous Materials B, 2004,109:85-93
    [9] A.Ventura,G.Jacquet,A.Bermond,etal. Electrochemical Generation of the Fenton's Reagent: Application to Atrazine Degradation[J].WaterResearch, 2002,36:3517-3522
    [10] MA Ke-yi, GUO Zhong-cheng, ZHU Xiao-yun, XU Rui-dong.Characteristics of electrodeposited RE-Ni-W-B-B4C-MoS2 composite coating[J]. Trans. Nonferrous Met. Soc. China. 2003, 13 (5):1220-1225
    [11] GUO Zhong-cheng, ZHU Xiao-yun, YANG Xian-wan. Corrosion resistance of electrodeposited RE-Ni-W-P-SiC composite coating[J]. Trans. Nonferrous Met. Soc. China.2001, 11(3):413-415
    [12] GUO Zhong-cheng, ZHU Xiao-yun, ZHU Xiao-yun. Studies on the wear resistance and the structure of electrodeposited RE-Ni-W-P-SiC-PTFE composite materials[J]. Surface & Coatings Technology. 2004,187:141-145
    [13] CHEN Ling, GUO Zhong-cheng,YANG Xian-wan. Structure and characteristics of electrodeposited RE-Ni-W-P-B4C-PTFE composite coatings[J]. Trans. Nonferrous Met. Soc. China. 2001, 11(6):887-889
    [14] GUO Zhong-cheng, ZHU Xiao-yun, YANG Xian-wan. Thermodynamics of electrodeposited Ni-B-SiC composite coatings[J]. Trans. Nonferrous Met. Soc. China.2001, 11(5):800-802
    [15] SONG Yue-hai, GUO Zhong-cheng. A Study of the Properties of RE-Ni-W-P-SiC Composite Coatings Deposited by Impulse and Direct Current[J]. Electroplating & Pollution Control.2003, 13 (6):10-11
    [1] Maurizio D F, Paola C. On the design of electrochemical reactors for the treatment of polluted water [J]. J. Cleaner Production, 2004,12:159-163
    
    [2] Karuppan M, P Shunmuga S, Anantharaman N, et al. Treatment of textile dye wastewater by using an electrochemical bipolar disc stack reactor [J]. J. Chem.Technol. Biotechnol, 2004,79:1135-1141
    [3] Xu Wen-Lin,The behavior of packed bed electrode reactor [J],Chem. Engin. Sci.,1992,47(9-11):2307-2312
    [4] Kreysa G, et al. Cylindrical three-dmensional electrodes under limiting current conditions [J], J.Appl.Electrochem.,1993,23(7) :707-714
    [5] Sun Y P, et al . Efficient method fox solving the model equations of a two dimensional packed bed electrode[J], J.Appl.Electrochem.,1995,25(8) :65-82
    [6] Ya Xiong, P. J. Strunlc et al. Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode [J]. Wat. Res. 2001,35(17): 4226-4230
    [7] Ya Xiong, H. T Karlssonb. An experimental investigation of chemical oxygen demand removal from the wastewater containing oxalic acid using three-phase three-dimensional electrode reactor [J]. Advances in Environmental Research. 2002, 7: 139-145
    [8] Ya Xiong et al. Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol [J]. Chemosphere, 2003, 50: 131-136
    [9] Ya Xiong , et al. Removal of formic acid from wastewater using three-phase three-dimensional electrode reactor [J]. Water, Air and Soil Pollution. 2003,144: 67-79
    [10] D. Jingshan, et al. Insist oxidation degradation of form aldehyde with electrogenerated hydrogenperoxide [J]. J.Electrochem. soc.,1993,140 (6): 1632-1637
    
    [11] P. Gallone. Achievements and tasks of electrochemical engineering [J]. Electrochem. Acta. 1977,(22): 913-920
    [1] Shinwoo Y, Kenneth C. Routine monitoring of antibiotics in water and wastewater with a radioimmunoassay technique[J]. Wat. Res., 2004,38:3155-3166
    [2] Adriano J, Elvira K, Alfredo C A, etc.Removal of pharmaceuticals and fragrances in biological wastewater treatment[J]. Wa. Res., 2005,39:3139-3152
    [3] Patrick J. Cyra, Rominder P.S. Suria, Edward D. H. A pilot scale evaluation of removal of mercury from pharmaceutical wastewater usingg ranular activated carbon[J]. Wat. Res.,2002, 36:4725-4734
    [4] K. Kosutic, D. Dolar, D. Asperger, B. Kunst. Removal of antibiotics from a model wastewater by RO/NF membranes[J]. Sep.Purif. Technol., 2007,53:244-249
    [5] 纪树兰,任海燕,崔成武,刘志鹏.改进序批式生物膜法处理青霉素废水的初探[J].环境科学,2004,25:74-77
    [6] Tapas N Y. Kaul S N. Anaerobic pre-treatment of herbal-based pharmaceutical wastewater using fixed-film reactor with recourse to energy recovery[J]. Wat. Res. 2001, 35(2): 351-362
    [7] Timothy M L, Cindy H N, Lisa M P, James E A. Aerobic biological treatment of a pharmaceutical wastewater: effect of temperature on COD removal and bacterial community development[J]. Wat. Res. 2001, 35(18): 4417-4425
    [8] 李斌,王璐.厌氧-好氧法在制药废水处理中的应用[J].工业水处理.2002,22(12):47-48
    [9] 刘占孟,向速林,胡艳芳.活性炭-纳米二氧化钛电解染料废水基础研究[J].河北科技大学学报,2006,2(27):146-150
    [10] Marco P, Cristina B, Giacomo C. Electrochemical treatment of wastewater containing polyaromatic organic pollutants[J]. Wat. Res., 2000, 34(9): 2601-2605
    [11] J. Naumczyk, L. Szpyrkowicz, F. Zilio-Grandi. Electrochemical treatment of Textile Wastewater[J]. Wat. Sci. Tech.,1996, 34(11):17-24
    [12] Li-Choung Chiang, Juu-En Chang, Ten-Chin Wen. Indirect Oxidation Effect in Electrochemical Oxidation Treatment Of landfill leachate[J]. Wat. Res., 1995, 29(2): 617-678
    [13] Do J S,Yeh W C. Paired electrooxidative degradation of phenol with in situ electrogenerated hydrogen peroxide and hypochlorite[J]. J.Appl.Electrochem.,1996, 26:673-678
    [14] Lin S H, Shyu C T, Sun M C, Saline wastewater treatment by electrochemical method[J]. Wat.Res., 1998, 32(4):1059-1066
    [15] 张清俊,吴可.生物领域自由基检测技术的研究进展及其应用[J].航天医学与医学工程,2003,16(4):310-312
    [16] 文镜,张西,陈曦等.体内羟自由基的检测方法[J].食品科学,2004,10(25):351-357
    [17] 周明华,吴祖成.含酚废水的电催化降解[J].化工学报,2002,53(1):43-44
    [18] Weres, et al. U.S.P. 5439577

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700