氮杂环硝胺类高能量密度材料(HEDM)的分子设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用当代理论和计算化学方法,主要是量子力学(QM)和分子动力学(MD)方法,对多系列氮杂环硝胺类高能衍生物的结构和性能,进行了较为系统的计算和模拟。从气相分子、固态晶体至复合材料(高聚物粘结炸药),完成了寻求高能量密度化合物(HEDC)和高能量密度材料(HEDM)的全过程研究。通篇包括三部分内容:
     第一部分是HEDC的“气相”分子设计。基于量子化学计算,建议和运用判别HEDC的定量标准(密度ρ≈1.9g/cm~3,爆速D≈9.0km/s和爆压P≈40.0 GPa),并兼顾其稳定性要求(热解引发键离解能BDE>84 kJ/mol),从上述多系列标题物中推荐了几十种HEDC。
     建议并证明了一种基于量子化学计算、较方便准确地预测高能化合物晶体密度的新方法。选择已有实验晶体密度的45种硝胺类爆炸物为研究对象,运用量子化学多种方法和多种基组的计算,求得它们分子的(按0.001 e/Bohr~3等电子密度面包围体积所定义的)理论密度(ρ_(cal)),通过与实验晶体密度(ρ_(exp))相比较,发现第一性原理DFT-B3LYP方法结合6-31G~(**)水基组水平的结果(ρ_(cal))与ρ_(exp)良好相符。将理论计算所得密度(ρ_(cal))和生成热,代入Kamlet-Jacobs方程求得爆速(D)和爆压(P),形成了定量评估HEDC的有效手段。
     在DFT-B3LYP/6-31G~(**)水平下求得多硝基氮杂环己烷和多硝基氮杂环戊烷两类单环硝胺的全优化构型、红外光谱和200~800 K温度范围的热力学性质;预测它们的理论晶体密度(ρ_(cal))、爆速(D)和爆压(P)。以UB3LYP/6-31G~(**)方法求得四种可能热解引发步骤的BDE,确定热解引发机理为N-NO_2键均裂并以此判别相对稳定性。发现1,2,4-三硝基三氮杂环己烷、1,3,5-三硝基三氮杂环己烷(即RDX)和1,2,4,5-四硝基四氮杂环己烷符合前述HEDC的能量和稳定性标准。
     对双环-HMX同系物和TNAD同分异构体作如上类似的结构-性能关系研究。根据判别HEDC的定量标准兼顾稳定性要求,发现双环-HMX及其衍生物中Ⅱ-3~Ⅱ-5、Ⅳ~Ⅶ和Ⅹ值得予以推荐;TNAD及其同分异构体尽管爆轰性能稍逊,但当N-NO_2基处于对位和间位时稳定性超过RDX,可作为高能钝感炸药推荐。
     对系列三环硝胺衍生物结构和性能的研究为新型HEDC分子设计增添了信息和规律。在双环-HMX两个稠合五元环中插入环丁烷爆轰性能下降,而在双环-HMX或TNAD等双环硝胺中增加环杂硝胺稠合数目则使爆轰性能提高;把三环硝胺转变为相应环脲硝胺其氧平衡和爆轰性能得以改善。HHTD(六硝基六氮杂三环十二烷)和HHTDD(六硝基六氮杂三环十二烷二酮)的椅式和船式构象能量特性很高,但稳定性稍差。
     报导了系列螺环硝胺化合物的B3LYP/6-31G~(**)全优化分子几何,基于电子结构参数预测了热力学稳定性;求得红外光谱和200~800 K温度范围的热力学性质;估算了理论晶体密度、生成热、爆热、爆速和爆压:通过比较四种可能的热解引发键(C-C、C-N、N-N和N-NO_2)的离解能和热解反应活化能,揭示其热解引发机理。将分子稳定性或感度与静态和动态电子结构参数相关联。按HEDC的定量标准和稳定性要求,推荐TNSHe(四硝基四氮杂螺己烷)、TNSH(四硝基四氮杂螺庚烷)和TNSO(四硝基四氮杂螺辛烷)作为具较高开发和应用价值的HEDC目标物。
     对系列呋咱和氧化呋咱稠环硝胺衍生物结构和性能的类似计算研究表明,后者的密度、爆热、爆速和爆压均比相应的前者高。当分子中仅含一个对二硝基哌嗪和两个呋咱环时,即能满足HEDC的定量要求;随分子中呋咱环变为氧化呋咱环或对二硝基哌嗪稠合数目增多,密度和爆炸性能均逐渐增大,远超过HEDC的定量标准:但环上N-O键较弱,导致稳定性下降,使开发应用受到限制。
     第二部分选择双环-HMX和TNAD为研究对象,首次对它们的晶体能带结构和性能进行周期性量子化学(QM)计算和分子动力学(MD)模拟研究,探讨了压强和温度的影响。
     运用CASTEP程序包中固体密度泛函方法计算能带结构。证明了LDA/CA-PZ方法较GGA/PBE和GGA/PW91方法对双环硝胺分子型晶体更为适用。首次报导了双环-HMX和TNAD的晶体结构、分子结构、电荷分布、前沿能带、带隙和态密度及其与导电性和感度等性能的关联;分析Fermi能级附近导带和价带的组成,预示热解引发键为N-NO_2键,与由实验或气相分子热解机理计算导出的结论相一致。双环-HMX的带隙比TNAD的大,预示前者稳定性大于后者,与气相分子热解引发反应活化能和热解引发键离解能计算所导致的结论相一致,也符合“最易跃迁原理”。加之双环-HMX的能量特性较好,故而建议特别关注和加强双环-HMX的应用开发研究。报导了压强(P)对双环-HMX和TNAD晶体结构和性能的影响:P<10 GPa时二者的能带和电子结构参数变化较小;P=10~400 GPa时,这些参数变化较大;当P>400GPa时,二者的带隙接近为零,DOS成连续曲线,显现了金属属性。
     运用Material Studio程序包中DISCOVER模块,对双环-HMX和TNAD晶体的广义结构和性能进行了5~400 K温度范围的NPT-MD模拟研究。证明了COMPASS力场的适用性。观察到晶体结构、热膨胀性能和力学性能随温度而递变的规律:二者的晶胞参数和体积均随温度升高而线性递增;线膨胀系数和体膨胀系数均随温度升高略有减少;弹性系数和模量随温度升高而下降,表明刚性减弱,延展性下降。双环-HMX的泊松比大于TNAD,表明前者的塑性大于后者。前者的晶格能约为后者的2倍,表明前者比后者稳定。晶体研究表明,双环-HMX更具研究开发价值。
     第三部分运用MD方法模拟研究了双环-HMX和TNAD基高聚物粘结炸药(PBX)的结构和性能。考察了粘结剂种类和含量及其沿基炸药不同晶面添加等因素对PBX力学性能、结合能和爆轰性能的影响,为高能复合材料亦即为HEDM的实际配方设计提供信息、奠定基础。
     采用Material Studio程序包中“切割分面”方法,将双环-HMX和TNAD超晶胞沿(001)、(010)和(100)三个不同晶面方向切割,并将四种典型氟聚物粘结剂:聚偏二氟乙烯(PVDF)、聚三氟氯乙烯(PCTFE)、氟橡胶(F_(2311))和氟树脂(F_(2314))分别置于双环-HMX和TNAD三种晶面上,然后依次对所得12种PBX模型进行COMPASS力场下的MD模拟,求得它们的广义结构和性能。首次报导了双环-HMX和TNAD基PBX的力学性能、结合能和爆轰性能及其随氟聚物粘结剂种类和含量以及晶面不同而递变的规律:少量氟聚物粘结剂的加入明显改善基炸药的力学性能,对双环-HMX不同晶面力学性能的改善效果为(010)>(001)≈(100),对TNAD为(001)>(010)>(100);以双环-HMX(010)/F_(2314)和TNAD(001)/PVDF的综合力学性能相对较好。各氟聚物与双环-HMX和TNAD(010)晶面之间的相互作用均较(100)和(001)晶面强;相同百分含量的氟聚物与双环-HMX和TNAD各晶面之间的相互作用均为PVDF>F_(2311)>F_(2314)>PCTFE。少量氟聚物虽使双环-HMX和TNAD的爆炸性能有所下降,但仍较常用炸药TNT高得多,故所得PBXs仍不失为具较高开发和应用价值的高能复合材料。
     总之,本文基于量子化学发展了一套计算高能物质密度(ρ)、爆速(D)和爆压(P)以及热解引发键离解能(BDE)的简易方法,建议了判别HEDC的能量和稳定性相结合的定量标准,在多系列氮杂环硝胺类高能衍生物结构-性能系统计算研究的基础上,找到了几十种潜在的HEDC目标物,并特别推荐开发高能钝感双环-HMX。首次运用固体密度泛函理论和分子动力学(MD)方法,计算和模拟研究了以双环-HMX和TNAD为典型的晶体结构-性能及其随压强和温度而递变的规律;对双环-HMX和TNAD为基的多种高聚物粘结炸药(PBX)的结构和性能首次进行MD模拟,为优选粘结剂和HEDM配方设计提供了示例和丰富信息。这些工作在HEDC/HEDM多学科交叉前沿研究领域中,具有开拓性和原始创新性,较好地完成了国家“973”和国家自然科学基金等项目赋予的各项应用基础科研任务。
The present dissertation is devoted to systematic research on the structures andproperties of multi-series of the cyclic nitramine energetic compotmds by using moderntheoretical and computational chemistry methods, mainly including quantum mechanics(QM) and molecular dynamics (MD). From the gas molecules, the crystals, and to thecomposite materials (such as polymer-bonded explosives), the whole study process ofsearching for high energy density compounds (HEDCs) and high energy density materials(HEDMs) has been completed. The whole work can be divided into three parts:
     The first part concentrates on "gas" molecular design for HEDC. Based on the QMcalculations, the quantitative criteria of detonation performance as a HEDC (densityρ≈1.9 g/cm~3, detonation velocity D≈9.0 km/s, and detonation pressure P≈40.0 GPa) andthe stability requirement (bond dissociation energy of the initial step in thermolysis BDE>84 kJ/mol) are employed to recommend several decades of potential HEDC objectivesfrom the title compounds.
     Based on the QM computations, a novel method for conveniently and exactlypredicting the crystalline densities of energetic compounds is proposed and testified. 45energetic nitramines with experimental crystalline densities are selected for research, andtheir molecular densities (ρ_(cal), defined as inside a contour of 0.001 e/Bohr~3 density) wereobtained from the calculations of different QM methods and basis sets. In comparison withthe experimental densities (ρ_(exp)), it is found that the results (ρ_(cal) calculated by the hybriddensity functional theory (DFT) B3LYP method with the 6-31G~(**) basis set agree wellwith the experiments. Based on the predicted densities (ρ_(cal) and heats of formation, thedetonation velocity (D) and detonation pressure (P) of the energetic compounds areestimated by the Kamlet-Jacobs formula, which establishes a novel way to quantitativelyevaluate the HEDC.
     The fully optimized structures, infrared (IR) spectra, and thermodynamic properties(C°_(p,m), S°_m and H°_m) in the temperature range 200~800 K of two types of monocyclicnitramines polynitroazacyclohexane and polynitroazacyclopentane are obtained at theDFT-B3LYP/6-31G~(**) level. Theoretical crystal density (ρ), detonation velocity (D), anddetonation pressure (P) of each compound are predicted. Bond dissociation energies (BDE)of four possible trigger bonds in their thermolyses are computed by the B3LYP/6-31G~(**)method under the unrestricted Hartree-Fock model, and their pyrolysis mechanisms areascertained to be the homolysis of N-NO_2 bond. Relative stabilities of these monocyclic nitramines are also judged from the BDE. It is found that 1,2,4-trinitrotriazacyclohexane,1,3,5-trinitrotriazacyclohexane i.e. RDX, and 1,2,4,5-tetranitrotetraazacyclohexane agreewith the forementioned quantitative criteria of a HEDC and stability requirement.
     Similar studies are performed on the bicyclo-HMX derivatives and TNAD isomers.According to the quantitative criteria of a HEDC and stability requirement, it is found thatbicyclo-HMX and its derivatives (Ⅱ-3~Ⅱ-5,Ⅳ~Ⅶ, andⅩ) are worth recommendation aspotential candidates of HEDCs. Although the detonation properties of TNAD and itsisomers are not large enough, the isomers with N-NO_2 groups at the meta- andpara-positions have better stabilities than RDX. Thus, they can be recommended asenergetic insensitive explosives.
     The studies on the structures and properties of some tricyclic nitramines provide basicinformation and discipline for the molecular design of novel HEDCs. The results show thatadding a cyclobutane between two cyclic nitramines of bicyclo-HMX results in detonationproperties decreasing much in comparison with bicyclo-HMX, while increasing thenumber of combined cyclic nitramines in bicyclo-HMX and TNAD will improve theirdetonation performances markedly. When changing the tricyclic nitramines into thecorresponding glycoluril derivatives, the oxygen balance and detonation performanceimprove remarkably. The chair and boat conformations of hexanitrohexaazatricyclododecane (HHTD) and hexanitrohexaazatricyclododecanedione (HHTDD) have excellentexplosive performance, but their stabilities are less satisfied.
     The fully optimized structures of a series of spiro nitramines are reported, and theirthermodynamic stabilities are evaluated according to the electronic structures. The IRspectra and thermodynamic properties (C°_(p,m), S°_m, and H°_m) in the temperature range200~800 K are computed. Their crystalline densities, heats of formation, detonationvelocities, and detonation pressures are predicted. Pyrolysis mechanisms of the spironitramines are investigated and ascertained by comparing the BDE of four possible triggerbonds (C-C, C-N, N-N and N-NO_2) and the activation energies (Ea) in the thermolysis.The molecular stability or sensitivity of spiro nitramines is correlated well with their staticand dynamic electronic structures. According to the quantitative criteria of HEDCs andstability demand, TNSHe (tetranitrotetraazaspirohexane), TNSH (tetranitrotetraazaspiroheptane), and TNSO (tetranitrotetraazaspirooctane) are recommended as HEDCcandidates with superior exploitation and application values.
     Similar calculations have also been performed on a series of furazan andfuroxan-fused cyclic nitramines to study their structures and properties. The results indicate that all of the furoxan-fused cyclic nitramines have largerρ, Q, D, and P than thecorresponding furazan-fused cyclic nitramines. When the molecule only contains onep-dinitropiperazine and two furazan rings, it has met the quantitative demand of a HEDC.With changing the furazan into the furoxan or the number of fused p-dinitropiperazineincreasing, density and detonation properties all increase and exceed the HEDC'squantitative criteria much. However, the N-O bond in the furazan or furoxan ring is weakerin comparison with other energetic compounds, which leads the Stabilities of furazan andfuroxan-fused cyclic nitramines to decrease and hence restricts their exploitations andapplications.
     The second part focuses on theoretical studies of bicyclo-HMX and TNAD. Periodicquantum mechanics (QM) calculations and molecular dynamics (MD) simulations are firstcarried out to study their crystalband structures and properties. The influences of pressureand temperature on the structures and properties have also been investigated.
     The density functional theory (DFT) methods in the CASTEP program package areused to compute the crystal band structures. The results demonstrate that LDA/CA-PZ ismore proper and satisfactory than GGA/PBE and GGA/PW91 for studying the bicyclicnitramine molecular crystals. Crystal structure, molecular structure, charge distribution,frontier band structure, band gap, and density of states (DOS) of bicyclo-HMX and TNADare first reported. The correlations between various parameters and their conductivity,sensitivity are discussed in detail. An analysis of the valence and conduction bands showsthat the N-NO_2 bond is the trigger bond during their thermolyses, which are consistentwith the conclusions drawn from the experiments and theoretical studies on the thermolysismechanism of molecules in the gas phase. Bicyclo-HMX with larger band gap is morestable than TNAD, which is consistent with the conclusions drawn from the activationenergies (Ea) and BDE, and also accord with "the principle of the easiest electrontransition" (PET). Considering the superior detonation performances of bicyclo-HMX, wesuggest that much more attention should be particularly paid to the bicyclo-HMX, andexploitation and application researches about it should be intensified. Moreover, theinfluence of pressure on the crystal structures and properties of bicyclo-HMX and TNADhas also reported. Their band structures and electronic structures change scarcely as thepressure less than 10 GPa, while in the pressure range of 10~400 GPa these parameterschange largely. When the pressure is larger than 400 GPa, the band gaps of both them areclose to zero and the DOS almost becomes a continuum curve, showing a metalliccharacter.
     Applying the DISCOVER module of Materials Studio (MS) 3.0.1 software package,periodic NPT-MD simulations in the temperature range of 5~400 K are performed onbicyclo-HMX and TNAD to study their general crystal structures and properties.Applicability Of the COMPASS force field is demonstrated. The effects of temperature onthe crystal structures, thermal expansion, and mechanical properties of bicyclo-HMX andTNAD are observed. Their lattice parameters and cell volume all increase linearly with theincreasing temperature, while the linear and volume expansion coefficients decreaseslightly as the temperature increases. Elastic constants and mechanical moduli all decreasewith the increasing temperature, indicating that the system's rigidity weakens andductibility decreases. Bicyclo-HMX has the larger Poisson ratio than TNAD, showing thatthe former has lager plasticity than the latter. The lattice energy of bicyclo-HMX is nearlytwice as much as that of TNAD, implying the former is more stable than the latter. Thecrystalline studies indicate that bicyclo-HMX has more exploitation and application values.
     The third part centers on the MD simulations of the structures and properties ofbicyclo-HMX and TNAD-based polymer bonded explosives (PBXs). The effects of thetype and content of polymer binders and its orientation along different crystalline surfaceson the PBXs' mechanical properties, binding energies, and detonation performances areinvestigated. These provide information and establish the basis for the practicalformulation design of energetic composite materials, namely HEDM.
     The "cutting surface" method as implemented in the MS program package is chosento cleave the bicyclo-HMX and TNAD supercells along three different crystalline surfaces(001), (010), and (100). Four types of typical fluorine polymer binders PVDF, PCTFE,F_(2311), and F_(2314) are then put on above three crystalline surfaces of bicyclo-HMX and TNAD,respectively, and a dozen of bicyclo-HMX and TNAD-based PBX models are obtained,respectively. MD simulations are carried out on them with the COMPASS force field toget their general structures and properties. Mechanical properties, binding energies,detonation performances, and the discipline of them changing with the type and content ofpolymer binders and different crystalline surfaces are first reported for the bicyclo-HMXand TNAD-based PBXs. The results show that the mechanical properties of the basalexplosives can be effectively improved by adding small amounts of fluorine polymers. Theeffects of improvement on different crystalline surfaces of bicyclo-HMX are in the order of(010)>(001)≈(100), and those of TNAD are in the sequence of (001)>(010)>(100).Considered various aspects comprehensively, the mechanical properties of the PBXsbicyclo-HMX(010)/F_(2314) and TNAD(001)/PVDF are better. The interactions between each fluorine polymer and different crystalline surfaces of bicyclo-HMX and TNAD alldecrease in the order of (010)>(100)>(001), and those of the polymers with the samecontent decrease in the sequence of PVDF>F_(2311)>F_(2314)>PCTFE. Detonation propertiesdecrease slightly compared with the pure crystal by the additions of small amounts offluorine polymers, but they are still superior to the commonly used explosive TNT andhence can be used as good energetic materials with high exploitation and applicationvalues.
     In a word, a set of convenient methods are developed in this thesis based on thequantum chemistry to compute the density (ρ), detonation velocity (D), detonation pressure(P), and bond dissociation energy (BDE) of energetic compounds. According toquantitative criteria of energy and stability demand for a HEDC, a series of potentialHEDC targets are recommended among various series of cyclic nitramine derivativesbased on the systematic theoretical studies on their structures and properties, and theinsensitive energetic compound bicyclo-HMX is especially recommended to exploit. Theperiodic DFT and classical MD methods are first employed to calculate and simulate thecrystal structures and properties of typical bicyclic nitramines: bicyclo-HMX and TNAD.The disciplines of the changing of structures and properties with the pressure andtemperature are investigated. MD method is also used to simulate the structures andproperties of bicyclo-HMX and TNAD-based PBX with various polymer binders ondifferent crystal surfaces, which provide a demonstration and plentiful information forchoosing optimal polymer binders and formulation design of HEDM. These studies areprecursory and originally innovative in front of multi-subject crossing research fields ofHEDC/HEDM, and successfully complete the scientific research tasks of basicapplications assigned by the national "973" projects and National Natural ScienceFoundations.
引文
1 Gilbert P S, Jack A. Research towards novel energetic materials. J. Energ. Mater. 1986, 45:5-28
    2 Iyer S, Damavarapu R, Strauss B, Bracuit A, Alster J, Stec D. Ⅲ. New high density materials for propellant application. J. Ballistics. 1992, 11:72-79
    3 施明达.高能量密度材料合成的研究进展.火炸药学报.1992,1:19-25
    4 Agrawal P J. Recent trends in high-energy materials. Prog. Energy Combust. Sci. 1998, 24:1-30
    5 肖鹤鸣.高能化合物的结构和性质.北京:国防工业出版社,2004
    6 欧育湘,陈进全.高能量密度化合物.北京:国防工业出版社,2005
    7 Bell J A, Dunstan I. Chemistry of nitramines. Part Ⅲ. Cyclic nitramines derived from trimethylenedinitramine. J. Chem. Soc. C 1966, 870-872
    8 Stine J R. Molecular structure and performance of high explosives. Mater. Res. Soc. Symp. Proc. 1993, 296:33-37
    9 Nielsen A T, Chafin A P, Christian S L, Moore D W, Nadler M P, Nissan R A, Vanderah D J, Gilardi R D, George C F, Flippen-Anderson J L. Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron. 1998, 54:11793-11812
    10 张教强,朱春华,马兰.1,3,3-三硝基氮杂环丁烷的合成.火炸药学报,1998,3:25-26
    11 谭国洪.1,3,3-三硝基氮杂环丁烷合成研究的现状与进展.化学通报,1998,6:16-21
    12 Jalovy Z, Zeman S, Sucesks M..1, 3, 3-trinitroazetidine (TNAZ) Part I: Synthesis and properties. J. Energ. Mater. 2001, 19:219-239
    13 鲁鸣久.一种新颖的高能炸药:六硝基六氮杂三环十二烷二酮.火炸药学报,2000,1:23-24
    14 Fried L E, Manaa M R, Pagoria P F, Simpson R L. Design and synthesis of energetic materials. Annu. Rev. Mater. Res. 2001, 31:291-321
    15 Marchand A P. Synthesis of new high energy/high density monomers and polymers, synthesis of D3-hexa-nitro-tris-homocubane, in: Proceedings of the Naval Workshop on Energetic Crystalline Materials. Maryland: Publication Office of Naval Research, 1986
    16 Marchand A P. Synthesis and chemistry of novel polynitropolycyclic cage molecules, Tetrahedron. 1988, 44:2377-2395
    17 Sitzmann M E, Gilligan W H, Ornellas D L, Thracher J S. Polynitroaliphatic explosives containing the pentafluorosulphenyl group (SF_5). The selection and the study of the model compound. J. Energ. Matals. 1990, 8(4): 352-374
    18 Nissan R A, Wilson S W. High Nitrogen explosives Part Ⅰ: 2, 6-dinitropyridine and dibenzo-1, 3a, 4, 6a-tetraazapentalenes. Tech. Report, China Lake. 1994, 3-32
    19 Nissan R A, Wilson S W. 2, 6-Diamino-3, 5-dinitropyridine-1-oxide a new explosives. Naval Air Warfare Centre, Weapon Division TR CA 93555-6001, 1995
    20 Leininger M L, VanHuis T J, Schaefer H E Protonated high energy density materials: N4 tetrahedron and N8octahedron. J. Phys. Chem. A 1997, 101 (24): 4460-4464
    21 Christe, K.O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. N_5~+: A novel HOMO. N_5~+: A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material. Angew. Chem. Int. Ed. 1999, 38:2004-2009
    22 Zhang M X, Eaton P E, Gilardi R L. Hepta-and octanitrocubanes. Angew. Chem. Int. Ed. 2000, 3: 401-404
    23 Gibbs T R, Popolato A. LASL High explosive property data. University of California press, 1980
    24 孙国祥.高分子混合炸药.北京:国防工业出版社,1984
    25 董海山,周芬芬.高能炸药及相关物性能.北京:科学出版社,1989
    26 孙业斌,惠君明,曹欣茂.军用混合炸药.北京:兵器工业出版社,1995
    27 Hoffman D M, Caley L E. Polymer blends as high explosive binders. Polymer Engineering and Science. 1986, 26:1489-1499
    28 耿俊峰,劳允亮.对高分子塑性耐热炸药的界面化学研究.北京理工大学学报.1991,11:87-93
    29 Bailway A, Bellerby J M, Kiwloch S A. The identification of bonding agents for TATB/HTPB polymer bonded explosives. Phil. Trans. R. Soc. Lond. A 1992, 339:321-333
    30 徐庆兰.高聚物粘结炸药包覆过程及粘结机理的初步探讨.含能材料.1993,1:1-5
    31 Tompa A S, Boswell R F. Thermal stability of a plastic bonded explosive. Thermochimica Acta, 2000, 357-358:169-175
    32 Singh G, Felix S P, Soni E Studies on energetic compounds part 28: thermolysis of HMX and its plastic bonded explosives containing Estane. Thermochim Acta. 2003, 399:153-165
    33 高大元,韦力元,郑培森,沈永兴.HMX/TATB高聚物粘结炸药的热性能研究.含能材料.2000,8(3):111-113
    34 陈鹏万,丁雁生.高聚物粘结炸药的力学行为及变形破坏机理.含能材料.2000,8(4):161-164
    35 宋华杰,董海山,郝莹,李敬明.TATB基高聚物粘结炸药及其粘结剂的玻璃化温度与DMA测量频率关系的研究.含能材料.2001,9(1):10-14
    36 李玉斌,沈明,李敬明.TATB颗粒填充高聚物材料的热膨胀特性.含能材料.2003,11(3):24-28
    37 Zhang J, Xiao H M. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanism of octanitrocubane. J. Chem. Phys. 2002, 116(24): 10674-10683
    38 Zhang J, Xiao H M, Gong X D. Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP methods and semiempirical MO methods. J. Phys. Org. Chem. 2001, 14:583-588
    39 Xiao H M, Zhang J. Theoretical prediction on heats of formation for polyisocyanocubanes—Looking for typical high energetic density material (HEDM). Science In China B. 2002, 45(1): 21-29
    40 Zhang J, Xiao J J, Xiao H M. Theoretical studies on heats of formation for cubylnitrates using density functional theory B3LYP method and semiempirical MO methods. Inter. J. Quantum Chem. 2002, 86(3): 305-312
    41 Xu X J, Xiao H M, Gong X D, Ju X H, Chen Z X. Theoretical Studies on the Vibrational Spectra, Thermodynamic Properties, Detonation Properties and Pyrolysis Mechanisms for Polynitroadamantanes. J. Phys. Chem. A 2005, 109:11268-11274
    42 Xu X J, Xiao H M, Ju X H, Gong X D, Zhu W H. Computational Studies on Polynitrohexaazaadmantanes as Potential High Energy Density Materials (HEDMs). J. Phys.Chem. A 2006, 110:5929-5933
    43 Xu X J, Xiao H M, Ma X F, Ju X H. Looking for High Energy Density Compounds among Hexaazaadamantane Derivatives with -CN, -NC, and-ONO_2 Groups. Inter. I. Quantum. Chem. 2006, 106(7): 1561-1568
    44 Xu X J, Xiao J J, Zhu W, Xiao H M, Huang H, Li J S. Molecular Dynamics Simulations for Pure ε-CL-20 and ε-CL-20-Based PBXs. J. Phys. Chem. B 2006, 110:7203-7207
    45 郑剑.美国高能量密度物质研究综述.固体火箭技术.1991,4:55
    46 Eck, Genevieve; Piteau, Marc. Preparation of 2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo [3.3.0]octane. Brit. UK Pat. Appl. GB 2303849 A1, 5 Mar 1997, 9 pp [Chem. Abstr. 1997, 126, 330615]
    47 Wilier R L. Synthesis of a new explosive compound, trans-1,4,5,8-tetranitro-1,4,5,8- tetraazadecalin. AD-A 116666, 16 pp, 1982
    48 Willer R L. Synthesis and characterization of high-energy compounds. I. Trans-1,4,5,8- tetranitro-1,4,5,8-tetraazadecalin (TNAD). Propellants, Explos. Pyrotech. 1983, 8(3): 65-69
    49 Willer R L. Synthesis of cis- and trans-1,3,5,7-tetranitro-1,3,5,7-tetraazadecalin. J. Org. Chem. 1984, 49(26): 5150-5154
    50 Brill T B, Oyumi Y. Thermal Decomposition of Energetic Materials. 9. A Relationship of Molecular Structure and Vibrations to Decomposition: Polynitro-3,3,7,7-tetrakis (trifluoromethyl)-2,4,6,8-tetraazabicyclo[3.3.0]octanes. J. Phys. Chem. 1986, 90: 2679-2682
    51 Koppes W M, Chaykovsky M, Adolph H G, Gilardi R, George C. Synthesis and structure of some peri-substituted 2,4,6,8-tetraazabicyclo[3.3.0]octanes. J. Org. Chem. 1987, 52:1113-1119
    52 Nielsen A T, Nissan R A, Chafin A P, Gilardi R D, George C F. Polyazapolycyclics by condensation of aldehydes with amines. 3. formation of 2,4,6,8-tetrabenzyl-2,4,6,8- tetraazabicyclo[3.3.0]octanes from formaldehyde, glyoxal, and benzylamines. J. Org. Chem. 1992, 57:6756-6759
    53 Brill T B, Oyumi Y. Thermal decomposition of energetic materials. 18. Relationship of molecular composition to nitrous acid formation: bicyclo and spiro tetranitramines. J. Phys. Chem. 1986, 90(26): 6848-6853
    54 Oyumi Y, Brill T B. Thermal decomposition of energetic materials. 22. The contrasting effects of pressure on the high-rate thermolysis of 34 energetic compounds. Combust. Flame. 1987, 68(2): 209-216
    55 Pagoria P F; Mitchell A R, Schrnidt R D, Coon C L, Jessop E S. New nitration and nitrolysis procedures in the synthesis of energetic materials. ACS Symp. Ser., 1996, 623(Nitration): 151-164
    56 Skate, D. Tendencies in development of new explosives. Heterocyclic, benzenoid-aromatic and alicyclic compounds. Kern. ind. 1999, 48(3), 97-102
    57 Gilardi R, Fli:ppen-Anderson J L, Evans R. cis-2,4,6,8-Tetranitro-1H,5H-2,4,6,8- tetraazabicyclo[3.3.0]octane, the energetic compound 'bicyclo-HMX'. Acta Crystal. E 2002, 58(9): 972-974
    58 Sinditskii V P, Egorshev V Y, Berezin M V. Combustion of high-energy cyclic nitramines. Khimicheskaya Fizika. 2003, 22(4): 56-63
    59 肖鹤鸣.硝基化合物的分子轨道理论.北京:国防工业出版社,1993
    60 肖鹤鸣,李永富.金属叠氮物的能带和电子结构-感度和导电性.北京:科学出版社,1996
    61 肖鹤鸣,陈兆旭.四唑化学的现代理论.北京:科学出版社,2000
    62 肖鹤呜,居学海.高能体系中的分子间相互作用.北京:科学出版社,2003
    63 肖继军,姬广富,杨栋,肖鹤鸣.环三甲撑三硝胺(RDX)结构和性质的DFT研究.结构化学.2002,21(4):437-441
    64 肖继军,张骥,杨栋,肖鹤鸣.环四甲撑四硝胺(HMX)结构和性质的DFT研究.化学物理学报.2002,15(1):41-45
    65 肖继军,贡雪东,肖鹤呜.环五甲撑五硝胺(CRX)结构和性质的DFT预示.化学物理学报.2002,15(6):433-437
    66 肖继军,张骥,杨栋,肖鹤鸣.环杂硝胺结构和性能的DFT比较研究.化学学报.2002,60(12):2110-2114
    67 姬广富,肖鹤鸣,董海山.β-HMX晶体结构及其性质的高水平计算研究.化学学报.2002,60(2):194-199
    68 曲红,李前树,朱鹤孙.氮笼N12分子的量子化学研究.科学通报.1997,42(2):160-163
    69 Li Q S, Wang L J, Xu W G. Structures and stability of N_9, N_9~- and N_9~+ clusters. Theor. Chem. Acc. 2000, 104:67-77
    70 Douglas L S. Cage Isomers of N_(14) and N_(16): Nitrogen Molecules That Are Not a Multiple of Six.J. Phys. Chem. A 2004, 108:10911-10916
    71 Gimarc B M, Zhao M. Strain Energies in Homoatomic Nitrogen Clusters N_4, N_6, and N_8. Inorg. Chem. 1996, 35:3289-3297
    72 Strout D L. Isomer Stability of N_(24), N30, and N36 Cages: Cylindrical versus Spherical Structure. J. Phys. Chem. A 2004, 108:2555-2558
    73 Jursic B S. Structures and properties of nitrogen derivatives of tetrahedrane. J. Mol. Struct. (Theochem) 2001, 536:143-154
    74 居学海,肖继军,李酽,肖鹤鸣.六硝基六氮杂三环十二烷二酮的密度泛函理论研究.结构化学.2003,22(2):223-227
    75 Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Theoretical Studies on the Structures, Thermodynamic Properties, Detonation Properties, and Pyrolysis Mechanisms of Spiro Nitramines. J. Phys. Chem. A 2006, 110:3797-3807
    76 Qiu L, Xiao H M, Zhu W H, Ju X H, Gong X D. Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan. Chin. J. Chem. 2006, 24:1538-1546
    77 Qiu L, Xiao H M, Ju X H, Gong X D. Theoretical Study on the Structures and Properties of Cyclic Nitramines: Tetranitrotetraazadecalin (TNAD) and its Isomers. Int. J. Quant. Chem. 2005,105:48-56
    78 邱玲,肖鹤鸣,居学海,贡雪东.六硝基六氮杂三环十二烷的结构和性能——HEDM分子设计.化学物理学报.2005,18:541-546
    79 邱玲,肖鹤呜,居学海,贡雪东.双环HMX结构和性质的理论研究.化学学报.2005,63(5):377-384
    80 Qiu Ling, Xiao He-Ming, Zhu Wei-hua, Xiao Ji-Jun, and Zhu Wei. Ab Initio and Molecular Dynamics Studies of Crystalline TNAD (trans-l,4,5,8-Tetranitro-1,4,5,8-tetraazadecalin). J. Phys. Chem. B 2006, 110, 10651-10661
    81 Qiu L, Zhu W H, Xiao J J, Zhu W, Xiao H M, Huang H, Li J S. Molecular Dynamics Simulations of TNAD (trans-l,4,5,8-Tetranitro-l,4,5,8-tetraazadecalin)-Based PBXs, J. Phys. Chem. B 2007, 111:1559-1566
    82 Simpson R L, Urtuew P A, Omellas D L. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propell. Explos. Pyrotech. 1997, 22:249-255
    83 Bircher H R, M鋎er P, Mathieu J. Properties of CL-20 based high explosives. 29th Int. Annu. Conf. ICT. Karlsruke, Germany. 1998, 94:1-14
    84 周明川,曹一林.CL-20在固体推进剂中应用的探索.高能推进剂及进材料研讨会论文集.1998.15-19
    85 Van Oss C J, Chaudhury M K, Good R J. Interfacial Lifshitz-van der Waals and polar interaction in macroscopic systems. Chem. Rev. 1988, 88:927-941
    86 Copp J L, Napier S E, Nash T, Powell W J, Skelly H, Ubbelohde A R, Woodward R Philos. Trans. R. Soc. London. A 1948, 241:197-202
    87 Linder P W. Trans. Faraday Soc. 1961, 57:1024-1030
    88 李金山,肖鹤鸣,董海山.TATB与二氟甲烷以及聚偏氟乙烯的分子问相互作用.化学学报.2001,59(5):653-658
    89 Xiao H M, Li J S, Dong H S. A quantum-chemical study of PBX: intermolecular interactions of TATB with CH_2F_2 and with linear fluorine-containing polymers. J. Phys. Org. Chem. 2001, 14: 644-649
    90 Ju X H, Xiao H M, Xia Q Y. A density functional theory investigation of 1,1 -diamino-2,2-dinitroethylene dimers and crystal. J. Chem. Phys. 2003, 119(19): 10247-10255
    91 Xiao H M, Ju X H, Xu L N, Fang G Y. A density-functional theory investigation of 3-nitro-1,2,4-triazole-5-one-dimers and crystal: J. Chem. Phys. 2004, 121: 12523-12531
    92 Xiao J J, Fang G Y, Ji G F, Xiao H M. Simulation investigation in the binding energy and mechanical properties of HMX-based polymer-bonded explosives. Chinese Science Bulletin. 2005, 50:21-26
    93 肖继军,谷成刚,方国勇,朱伟,肖鹤鸣.TATB基PBX结合能和力学性能的理论研冗.化学学报.2005,63:439-444
    94 马秀芳,肖继军,殷开梁,肖鹤呜.TATB/聚三氟氯乙烯复合材料力学性能的MD模拟.化学物理学报.2005,18:55-58
    95 马秀芳,肖继军,黄辉,朱伟,李金山,肖鹤鸣.分子动力学模拟浓度和温度对TATB/PCTFE PBX力学性能的影响.化学学报.2005,63:2037-2041
    96 Xiao J J, Huang Y C, Hu Y J, Xiao H M. Molecular dynamics simulation of mechanical properties of TATB/Flourine-polymer PBXs along different surfaces. Science in China. B 2005, 48:504-510
    97 黄玉成,胡应杰,肖继军,殷开梁,肖鹤鸣.TATB基PBX结合能的分子动力学模拟.物理化学学报.2005,21(4):425-429
    98 Ma X F, Xiao J J, Huang H, Ju X H, Li J S, Xiao H M. Simulative Calculation on Mechanical Property, Binding Energy and Detonation Property of TATB/Fluorine-polymer PBX. Chin. J. Chem. 2006, 24:473-477
    99 Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim T. Decomposition of HMX at Extreme Conditions: A Molecular Dynamics Simulation. J. Phys. Chem. A 2002, 106:9024-9029
    100 Sewell T D, Menikoff R, Bedrov D, Smith G S. A molecular dynamics simulation study of elastic properties ofHMX. J. Chem. Phys. 2003, 119:7417-7426
    101 Sewell T D, Thompson D L. Classical dynamics study of the unimolecular dissociation of Hexahydro- 1,3,5-trinitro- 1,3,5-triazine. J. Phys. Chem. 1991, 95:6228-6242
    102 Chambers C C, Thompson D L. Further studies of the classical dynamics of the unimolecular dissociation of RDX. J. Phys. Chem. 1995, 99:15881-15889
    103 Kohno Y, Ueda K, Imamura A. Molecular dynamics simulations of initial decomposition processes on the unique N-N bond in nitramines in the crystalline state. J. Phys. Chem. 1996, 100: 4701-4712
    104 Shalashilin D V, Thompson D L. Monte Carlo variational transition state theory of the unimolecular dissociation ofRDX. J. Phys. Chem. A 1997, 101:961-966
    105 Sorescu D C, Rice B M, Thompson D L. Intermolecular packing for the Hexahydro-l,3,5-trinitro-1,3,5-s-triazine crystal (RDX): A crystal packing, Monte Carlo and molecular dynamics study. J. Phys. Chem. B 1997, 101:798-808
    106 Sorescu D C, Rice B M, Thompson D L. Isothermal-isobaric molecular dynamics simulations of 1,3,5,7-Tetranitro- 1,3,5,7-tetraazacyclooctane (HMX) crystals. Ibid. 1998, 1: 6692-6695
    107 唐敖庆等.量子化学.北京:科学出版社,1982
    108 徐光宪,黎乐民,王德民.量子化学一基本原理和从头算法.北京:科学出版社,1985
    109 Hartree D R. Wave mechanics of an atom with a non-coulomb central field. I. Theory and methods. II. Some results and discussion. III. Term values and intensities in series in optical spectra. Prog. Camb. Phil. Soc. 1928, 24: 89-110; 426-437
    110 Fock V Z. The initial degrees of freedoms of the electron. Phys. 1931, 68: 522-534
    111 Roothan C C J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 1951, 23: 69-89
    112 Miller C, Plesset M S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934,46:618-622
    113 Hohenberg P, Kohn W. Inhomogenous electron gas. Phys. Rev. 1964, B136: 864-871
    114 Kohn W, Sham L. Self-consistent equations including exchange and correction effects. J. Phys. Rev.A 1965,140:1133-1138
    115 Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98:5648-5652
    116 Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37: 785-789
    117 Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33: 8822-8824
    118 Perdew J P, Burke K, Wang Y. Generalized gradient approximation for exchange- correlation hole of a many-electron system. Phys. Rev. B 1996,54: 16533-16539
    119 Slater J C. Atomic Shielding Constants. Phys. Rev. 1930, 36: 57-64
    120 Hariharan P C, Pople J A. Self-consistent-field molecular orbital methods. XII. Further extension of Gaussian-type basis sets. Theor. Chim. Acta. 1973, 28: 213-222
    121 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision C.02. Wallingford CT: Gaussian, Inc., 2004
    122 Pople J A, Segal G A. Approximate Self-Consistent Molecular Orbital Theory. III. CNDO Results for AB_2 and AB_3 Systems. J. Chem. Phys. 1966, 44: 3289-3296
    123 Pople J A, Beveridge D L, Dobosh P A. Approximate Self-Consistent Molecular-Orbital Theory. V. Intermediate Neglect of Differential Overlap. J. Chem. Phys. 1967, 47: 2026-2033
    124 Pople J A, Santry D P. Approximate self-consistent molecular orbital theory. I. Invariant procedures. J. Chem. Phys. 1965, 43:129-135
    125 Bingham R C, Dewar M J S, Lo D H. Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method. J. Am. Chem. Soc. 1975, 97:1285-1293
    126 Dewar M J S, Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 1977, 99:4899-4907
    127 Dewar M J S, Zoebisch E G, Healy E F, Stewart J J R AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107:3902-3909
    128 Stewart J J P. Optimization of parameters for semiempirical methods I. J. Comput. Chem. 1989, 10:209-220
    129 陈凯先,蒋华良,嵇汝运.计算机辅助药物设计—原理、方法及应用.上海:上海科学技术出版社,2000
    130 杨小震.分子模拟与高分子材料.北京:科学出版社,2002
    131 汪文川译.分子模拟—从算法到应用.北京:化学工业出版社,2002
    132 Materials Studio 3.0.1; Accelrys Inc.: San Diego, CA, 2004
    133 Sun H, Rigby D. Polysiloxanes: ab initio force and structural, conformational and thennophysical properties. Spectrochimica Acta A. 1997, 153:1301-1323
    134 Sun H, Ren P, Fried J R. The COMPASS Force Field: Parameterization and Validation for Phosphazenes. Comput. Theor. Polym. Sci. 1998, 8:229-246
    135 Sun H. Compass: An ab initio force-field optimized for condense-phase applications-overview with details on alkanes and benzene compounds. J. Phys. Chem. B 1998, 102:7338-7364
    136 Bunte S W, Sun H. Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field. J. Phys. Chem. B 2000, 104: 2477-2489
    137 克莱兰B J著,龚少明译.统计热力学.上海科技出版社,1980
    138 Hill T L. An Intrduction to Statistical Thermodynamics. New York: Addision-Wesley Publishing Company INC, 1964
    139 傅献彩,沈文霞,姚天扬编.物理化学.第四版.高等教育出版社,1990
    140 张熙和,云主惠编.爆炸化学.北京:国防工业出版社,1989.
    141 惠君明,陈天云.炸药爆炸理论.南京:江苏科学技术出版社,1995
    142 周霖编.爆炸化学基础.北京:北京理工大学出版社,2005
    143 Kamlet M J, Jacobs S J. Chemistry of detonations. I. Simple method for calculating detonation properties of C-H-N-O explosives. J. Chem. Phys. 1968, 48:23-35
    144 Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater. 2007, 141:280-288
    145 Wu X. Simple method for calculating detonation parameters of explosives. J. Energ. Mater. 1985, 3(4): 263-277
    146 吴家龙.弹性力学.上海:同济大学出版社,1993.
    147 Weiner J H. Statistical Mechanics of Elasticity. New York: John Wiley, 1983
    148 Swenson R J. Comments for virial systems for bounded systems. Am. J. Phys. 1983, 51: 940-942
    149 Ray J R, Rahman A. Statistical ensembles and molecular dynamics studies of anistropic solids. J. Chem. Phys. 1984, 80:4423-4428
    150 Watt J P, Davies G F, O'Connell R J. Review of Geophysics and space Physics. 1976, 14: 541-563
    151 (a)Tarver C M. Density Estimations for Explosives and Related Compounds Using the Group Additivity Approach. J. Chem. Eng. Data. 1979, 24: 136-145; (b)Stine J R. Prediction of crystal densities of organic explosives by group additivity. Los Alamos National Laboratory's Report, New Mexico, 1981; (c)Ammon H L, Mitchell S. A New Atom/Functional Group Volume Additivity Data Base for the Calculation of the Crystal Densities of C, H, N, O and F-Containing Compounds. Propellants, Explosives, Pyrotechnics. 1998, 23: 260-265; (d)Ammon H L. New Atom/Functional Group Volume Additivity Data Bases for the Calculation of the Crystal Densities of C-, H-, N-, O-, F-, S-, P-, Cl-, and Br-Containing Compounds. Struct. Chem. 2001, 12:205-212
    152 (a)周发歧.炸药密度计算列表.火炸药技术.1973,1;(b)云主惠.炸药密度与结构关系的初步探讨.火炸药技术.1973,3;(c)张厚生.炸药密度计算方法的探讨.火炸药技术.1974,4
    153 Karfunkel H R, Gdanitz R J. Ab initio prediction of possible crystal structures for general organic molecules. J. Comput. Chem. 1992, 13:1171-1183
    154 Holden J R, Du Z, Ammon H L. Prediction of possible crystal structures for C, H, N, O, and F containing organic compounds. J. Comput. Chem. 1993, 14:422-437
    155 (a)Pivina T S, Shcherbukhin V V, Molchanova M S, Zefirov N S. Computer Generation of Caged Frameworks which can be used as synthons for creating high-energetic materials. Propellants, Explosives, Pyrotechnics. 1994, 19: 286-289; (b)Pivina T S, Shcherbukhin V V, Molchanova M S, Zefirov N S. Computer-assisted prediction of novel target high-energy compounds. Propellants, Explosives, Pyrotechnics. 1995, 20: 144-146; (c)Dzyabchenko AV, Pivina T S, Arnautova E A. Prediction of structure and density for organic nitramines. J. Mol. Struct. 1996, 378:67-82
    156 Klap鰐ke T M, Ang H G. Estimation of the crystalline density of nitramine (N-NO_2 based) high energy density materials (HEDM). Propellants, Explosives, Pyrotechnics. 2001, 26:221-224
    157 邱玲,居学海,肖鹤鸣.高能化合物生成热的半经验分子轨道研究.含能材料.2004,12(2):69-73
    158 Rice B M, Pai S V, Hare J. Predicting Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations. Combust. Flame. 1999, 118:445-458
    159 Sikder A K, Maddala G, Agrawal J P, Singh H. Important aspects of behavior of organic energetic compounds: a review. J. Hazard. Mater. A 2001, 84:1-26
    160 Dorsett H, White A. Aeronautical and Maritime Research Laboratory, Defence Science & Technology Organization (DSTO). DSTO, Technical Report DSTO-GD-0253, Australia, 2000
    161 Scott A P, Radom L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, M(?)ler-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100: 16502-16513
    162 Lide D R. Ed. CRC Handbook of Chemistry and Physics. Florida: CRC Press LLC: Boca Raton, 2002
    163 Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions. I J. Chem. Phys. 1955,23: 1833-1840
    164 Oxley J C, Kooh A B, Szekeres R, Zheng W. Mechanisms of nitramine thermolysis. J. Phys. Chem. 1994, 98: 7004-7008
    165 Hrovat D A, Borden W T, Eaton P E, Kahr B. A computational study of the interactions among the nitro groups in octanitrocubane. J. Am. Chem. Soc. 2001, 123: 1289-1293
    166 (a) Bates L R. The potential of tetrazoles in initiating explosives systems. Proc. Symp. Explos. Protech. 13~(th). 1986, III: 1-10; (b) Bates L R, Jenkins J M. Search for new detonants. Proceedings of the international conference on research in primary explosives. 1975, 2: 12
    167 Haskins P J. Electronic structure of some explosives and its relationship to sensitivity. Proceedings of the international conference on research in primary explosives. 1975, 2: 14
    168 Peiris M S, Mowrey R C, Thompson C A, Russell T P. Computational and experimental infrared spectra of 1,4-dinitropiperazine and vibrational mode assignment. J. Phys. Chem. A 2000, 104: 8898-8907
    169 Karpowicz R J, Brrill T B. Comparison of the molecular structure of hexahydro-1,3,5-trinitro-s-triazine in the vapor, solution, and solid phases. J. Phys. Chem. 1984, 88: 348-352
    170 Kamlet M J, Adolph H G. The relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic explosives. Prop. Explos. Pyrotech. 1979,4(2): 30-34
    171 Curtiss L A, Carpenter J E, Raghavachari K, Pople J A. Gaussian-2 theory for molecular energies of first- and second-row compounds. J. Chem. Phys. 1991, 94: 7221-7230
    172 Politzer P, Lane P. Comparison of density functional calculations of C-NO_2, N-NO_2 and C-NF_2 dissociation energies. J. Mol. Struct. (Theochem) 1996, 388: 51-55
    173 Harris N J, Lammertsma K. Ab Initio Density Functional Computations of Conformations and Bond Dissociation Energies for Hexahydro-1,3,5-trinitro-1,3,5-triazine. J. Am. Chem. Soc. 1997, 119:6583-6589
    174 Chung G, Schmidt M W, Gordon M S. An Ab Initio Study of Potential Energy Surfaces for N_8 Isomers J. Phys. Chem. A 2000, 104: 5647-5650
    175 Xiao H M, Fan J F, Gong X. .D. Theoretical study on pyrolysis and sensitivity of energetic compounds. Part 1: Simple model molecules containing NO_2 group. Prop. Explos. Pyrotech. 1997,22:360-364
    176 Fan J F, Xiao H M. Theoretical study on pyrolysis and sensitivity of energetic compounds. (2) Nitro derivatives of benzene. J. Mol. Struct. (THEOCHEM) 1996, 365: 225-229
    177 Xiao H M, Fan J F, Gu Z M, Dong H S. Theoretical study on pyrolysis and sensitivity of energetic compounds (3) Nitro derivatives of aminobenzenes. Chem. Phys. 1998, 226:15-24
    178 Fan J F, Gu Z M, Xiao H M, Dong H S. Theoretical study on pyrolysis and sensitivities of energetic compounds Part 4 Nitro derivatives of phenols. J. Phys. Org. Chem. 1998, 11(3): 177-184
    179 Stewart J J P J. Comput-Aided Mol. Des. 4.1 (Mopac6.0), 1990
    180 冯增国.重新唤起人们兴趣的二氟氨基及其化合物.化学进展.2000,12(2):171-178
    181 (a)Lowe-Ma C K. Structure of 2,4,8,10-tetranitro-2,4,8,10-tetraazaspiro[5.5]undecane (TNSU), and energetic spiro bicyclic nitramine. Acta Crystallogr. C 1990, 46: 1029-1033; (b)Lowe-Ma C K, Wilier R L. Private Communication. 1990
    182 Politzer P, Murray J S, Lane P, Sjoberg P, Adolph H G. Shock-sensitivity relationships for nitramines and nitroaliphatics. Chem. Phys. Lett. 1991, 181(1): 7882
    183 Prabhakaran K V, Bhide N M, Kurian E M. Spectroscopic and thermal studies on 1,4,5,8-tetranitrotetraazadecalin (TNAD). Thermochim. Acta 1995,249:249-258
    184 Zeman S, Dimun M, Truchlik S. The relationship between kinetic data of the low-temperature thermolysis and the heats of explosion of organic polynitro compounds. Thermochim. Acta 1984, 78:181-209
    185 Zeman S. Thermogravimetric analysis of some nitramines, nitrosamines and nitroesters. Thermochim. Acta. 1993, 230:191-206
    186 Prabhakaran K V, Bhide N M, Kurian E M. XRD, spectroscopic and thermal analysis studies on trans-1,4,5,8-tetranitrosotetraazadecalin (TNSTAD). Thermochim. Acta 1993,220:169-183
    187 Zeman S. Kinetic compensation effect and thermolysis mechanisms of organic polynitroso and polynitro compounds. Thermochim. Acta. 1997, 290:199-217
    188 Zeman V, Koci J, Zeman S. Electric spark sensitivity of polynitro compounds: part Ⅱ. A correlation with detonation velocities of some nitramines. Energ. Mater. 1999, 7(4): 172-175
    189 Zeman S. New aspects of the impact reactivity of nitramines. Propellants, Explos. Pyrotech. 2000, 25: 66-74.
    190 Liu M H, Chen C, Hong Y S. Theoretical study on the detonation properties of energetic TNAD molecular derivatives. J. Mol. Struct. (THEOCHEM) 2004, 710:207-214
    191 Fischer J W, Hollins R A, Lowe-Ma C K, Nissan R A, Chapman R D. Synthesis and characterization of 1,2,3,4-cyclobutanetetranitramine derivatives. J. Org. Chem. 1996, 61: 9340-9343
    192 Afanas'ev G T, Pivina T S, Sukhachev D V. Comparative characteristics of some experimental and computational methods of estimating impact sensitivity parameters of explosives. Propellants, Explos. Pyrotech. 1993, 18(6): 309-316
    193 Wilier R L. Synthesis and characterization of a new insensitive high energy polynitramine compound, 2,4,8,10-tetranitro-2,4,8,10-tetraazaspiro[5.5]undecane (TNSU). NWC-TP-6353. Naval weapons center, China Lake, CA, USA, 1982
    194 Wilier R L, Atkins R L. An alternative synthesis of cyclic 1,3-dinitramines. J. Org. Chem. 1984, 49:5147-5150
    195 Lowe-Ma C K. X-ray crystal structures of four energetic isomeric cyclic nitramines. NWC-TP-6681. Research department, Naval weapons center, China Lake, CA, USA, 1987
    196 Sheremeteeev A B. Chemistry of furazans fused to five-membered rings. J. Heterocyclic Chem. 1995, 32:371-384
    197 Willer R L, Moore D W. Synthesis and Chemistry of Some Furazano- and Furoxano[3,4-b]piperazines. J. Org. Chem. 1985, 50:5123-5127
    198 李加荣.呋咱含能衍生物合成研究进展.火炸药学报.1998,3:56-60
    199 黄明,李洪珍,黄亦刚,董海山.呋咱类含能材料合成进展.含能材料.2005,12:73-78
    200 Pagoria P F. A review of energy materials synthesis. Thermochim. Acta. 2002, 384:187-204
    201 李战雄,唐松青,欧育湘,陈博仁.呋咱含能衍生物合成研究进展.含能材料.2002,10(2):59-65
    202 张德雄,张衍,王琦.呋咱系列高能量密度材料的发展.固体火箭技术.2004,27(1):32-36
    203 Chapman R D, Wilson W S. Prospects of fused polycyclic nitrazines as thermally insensitive energetic materials. Thermochim. Acta. 2002, 384(1-2): 229-243
    204 Oyumi Y, Rheingold A L, Brill T B. Thermal Decomposition of Energetic Materials. 16. Solid-phase structural analysis and the thermolysis of 1,4-dinitrofurazano[3,4-b]piperazine. J. Phys. Chem. 1986, 90:4686-4690
    205 鱼志钰,陈保华,鱼江泳,李文杰.六硝基六氮杂三环十四并双氧化呋咱的合成.含能材料.2004,12(1):34-35
    206 Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C J. First-principles simulation: ideas, illustrations and the CASTEP code. Physics: Condensed Mater. 2002, 14:2717-2743
    207 Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism Phys. Rev. B 1990, 41:7892-7895
    208 Fischer T H, Almlof J. General methods for geometry and wavefunction optimization. J. Phys. Chem. 1992, 96:9768-9774
    209 Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77:3865-3868
    210 Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy Phys. Rev. B 1992, 45:13244-13249
    211 Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46:6671-6687
    212 Ceperley D M, Alder B J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980, 45:566-569
    213 Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23:5048
    214 Kresse G, Furthm黮er J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54:11169-1186
    215 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13: 5188-5192
    216 Fiorentini V. Semiconductor band structures at zero pressure. Phys. Rev. B 1992, 46:2086-2091
    217 Sorescu D C, Rice B M, Thompson D L. A transferable intermolecular potential for nitramine crystals. J. Phys. Chem. A 1998, 102:8386-8392
    218 邱玲,肖鹤鸣,居学海,贡雪东.四硝基四氮杂双环辛烷气相热解引发机理.含能材料.2005,13(2):74-78
    219 黄昆.固体物理学.北京:高等教育出版社,1988
    220 Parrinello M, Rahman A. Strain Fluctuations and Elastic Constants. J. Chem. Phys. 1982, 76: 2662-2666
    221 Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72:2384
    222 孟勇.影响材料热膨胀系数的主要因素.计量测试与检定.2005,15(3):6-9
    223 卢荣胜,费业泰.材料线膨胀系数的科学定义及应用.应用科学学报.1996,14(3):253-258
    224 费业泰,赵静.材料热膨胀系数的发展与未来分析.中国计量学院学报.2002,13(4):259-263
    225 Anderson O L. Equation for Thermal Expansivity in Planetary Interiors. J. Geophys. Res.1967, 72:3661-3668
    226 Guillermet A F. The Pressure Dependence of the Expansivity and of the Anderson-Gr鰧eisen Parameter in the Murnaghan Approximation. J. Phys. Chem. Solids. 1986, 47:605-607
    227 严祖同,孙振华.Anderson-Gr鰧eisen参数、热膨胀系数与压强的普遍关系.物理学报.1989,38(10):1634-1641
    228 Pugh S F. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Mag. 1954, 45:823-843
    229 张双寅,刘济庆,于晓霞等.复合材料结构的力学性能.北京:北京理工大学出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700