基质金属蛋白酶-9反义寡核苷酸对肺腺癌细胞靶向治疗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,肺癌已居人类肿瘤致死的第一名,全世界泛围内,科学家们一直积极采用各种方法来治疗肺癌,但治疗效果不能令人满意,肺癌总的治愈率仍不足14%。随着分子生物学的不断发展,人类对肺癌的发生发展转移的分子机制有了更深的认识。基因治疗已成为一种极具前景的新方法。反义脱氧寡核苷酸(antisense digodeoxynucleotides;ASODN)是一段与mRNA或DNA特异性结合,并阻断其表达的人工合成分子。ASODN可封闭或抑制肿瘤细胞关键编码基因,从而特异性抑制肿瘤细胞的增殖。
     反义药物是以反义核酸技术为基础开发的,以治疗为目的,安全有效的新型药物。近年来,随着对反义寡核苷酸及其结构衍生物如硫代磷酸寡聚脱氧核苷酸反义机理的阐明,大量以病毒,癌基因,细胞活性因子及其它疾病相关蛋白为靶点的反义药物相继进入临床试验阶段,使反义药物的研究再次进入蓬勃发展时期。
     基质金属蛋白酶家族(matrix metalloproteinases,MMPs)是一组重要的含锌离子的细胞外基质(extracellular matrix,ECM)降解酶。目前已鉴定出约20多种MMPs,基质金属蛋白酶-9是其中重要的一组酶,可在许多肿瘤组织中表达。还在肿瘤的凋亡,侵袭和转移中起着关键性作用。
     本研究采用人肺腺癌A549细胞株,运用脂质体介导的MMP-9ASODN转染该细胞,通过MTT法检测MMP-9ASODN转染对A549细胞生长的影响;RT-PCR观察MMP-9mRNA蛋白的表达;Western blot检测MMP-9蛋白的改变;流式细胞术检测MMP-9ASODN对A549细胞增殖和凋亡比率;MTT比色法和划痕迁移试验观察MMP-9ASODN对A549细胞体外粘附以及迁移的能力;最后观察MMP-9ASODN的体内抑瘤效果,进而为肺癌的基因治疗提供一种新方法。
     肺癌靶向治疗药物的研究已进入开发阶段,目前有众多的反义药物已进入临床实验阶段。本研究旨在证明反义寡核苷酸MMP-9转染A549细胞后,可抑制肿瘤细胞生长,并诱导其凋亡,从而为肺癌的反义基因治疗提供了可靠的实验依据。
     方法
     1.脂质体介导的寡核苷酸转染A549细胞
     人肺腺癌A549细胞在1640完全培养基中常规培养,进入对数生长期后接种于96孔板,分四组进行实验,即MMP-9ASODN,MMP-9SODN,脂质体组和空白对照组,转染后24h以荧光倒置显微镜观察,随机选取5个高倍镜视野,计数全部细胞数和发绿色荧光细胞数,计算转染率。
     2.MTT法检测MMP-9ASODN转染对A549细胞生长的影响
     ASODN转染组加设不同浓度组即200nmol/L,400nmol/L,600nmol/L和800nmol/L的ASODN转染。每组设3个复孔,分别于转染0h,4h,8h,12h,24h,48h,60h后行MTT实验。酶标仪上测定波长为570nm,计算A549细胞的存活率。
     3.流式细胞术检测细胞增殖和凋亡比率
     收集经处理后的各组细胞于离心管内,离心,洗涤,固定,染色,置流式细胞仪上,在激发波长为488nm处进行检测,计算细胞凋亡比率。
     4.RT-PCR法检测MMP-9mRNA的表达
     转染后收集各组细胞,进行RNA提取,定量后以其为模板逆转录合成cDNA链,然后用引物进行PCR扩增,产物用琼脂糖凝胶电泳进行检测。
     5.Western blot检测MMP-9蛋白的改变
     收集转染24h细胞提取细胞中总蛋白,测定出样品的蛋白质含量,然后将蛋白质在不连续聚丙烯酰胺凝胶电泳,染色,转膜观察结果。
     6.MMP-9ASODN转染对A549细胞体外粘附及体外迁移的影响检测
     包被及水化基底膜,接种及培养细胞,然后MTT比色法检测,计算细胞粘附率。同样包被及水化基底膜,制备培养单层细胞,用人工划痕法,在相差显微镜下随机选择5个100×视野内计算迁移到划痕空隙中的细胞总数。
     7.裸鼠模型抑瘤率观察
     构建移植瘤裸鼠模型后,MMP-9ASODN直接移植瘤内注射,观察其抗移植瘤生长效应,包括一般状况,局部实体瘤生长抑制率的测定以及病理组织学检测。
     结果
     1.MM-9ASODN组,MMP-9SODN组和Lip组转染效率分别为(65.85±9.61)%,(56.38±9.82)%,(53.62±6.08)%。
     2.MMP-9 ASODN对A549细胞存活率抑制呈浓度和时间依赖性(反义寡核苷酸浓度为600nmol/L作用48 h时抑制作用最明显)。
     3.600nmol/L MMP-9ASODN作用48h,经RT-PCR扩后,MMP-9mRNA的相对表达量为0.573±0.071,明显低于其他三组0.924±0.044,0.863±0.054,0.765±0.072。
     4.600nmol/L MMP-9ASODN作用48h,经Western检测后,MMP-9蛋白表达水平0.53±0.068,明显低于其他三组0.76±0.052,0.79±0.075,0.81±0.126。
     5.MMP-9ASODN转染A549细胞后,G1期细胞数明显增多,S期细胞数相对减少,G2期细胞数则无明显变化,提示MMP-9ASODN可能延缓肿瘤细胞由G1期向S期的过渡。MMP-9ASODN转染A549细胞后,A549细胞凋亡百分比明显高于其他三组。
     6.粘附实验表明MMP-9ASODN转染A549细胞后显著降低其粘附力,粘附率为(15.21±0.81)%,低于其他三组(38.92±1.23)%,(36.55±2.32)%及(32.61±1.41)%,差异有显著性。(p<0.01)。
     7.划痕法迁延实验表明MMP-9ASODN转染A549细胞后其迁延力显著降低,迁延细胞数为74.09±4.48个,显著低于其他三组124.18±9.77个,120.14±8.50个及112.82±9.87个(p<0.05)。
     8.MMP-9ASODN组肿瘤生长指数为3.20±0.14,明显低于其它三组5.93±0.20,5.87±0.02及6.40±0.33(P<0.01)。MMP-9ASODN组的肿瘤重量为1.25±0.03,明显低于其它三组2.15±0.07,2.31±0.04及2.43±0.04(P<0.01),MMP-9ASODN组的抑瘤率为(33.41±1.18)%,而且心肝肾组织观察,结构均基本正常,未见有明显的组织损伤改变。
     结论
     1.MMP-9ASODN能够有效地抑制肺癌A549细胞的体外增殖,作用方式呈时间及浓度依赖性。
     2.MMP-9ASODN能够下调MMP-9mRNA和MMP-9蛋白的表达。
     3.MMP-9ASODN通过影响肺癌A549细胞增殖周期的分布及促进A549细胞凋亡,从而抑制A549细胞增殖。
     4.MMP-9ASODN在体外能够降低A549细胞粘附及迁移能力
     5.MMP-9ASODN瘤体注射可以显著抑制裸鼠移植瘤的生长,且安全,无不良反应。
Recently, the mortality of lung cancer is the first in human cancers. All of the world, the scientists have been trying kinds of methods to treat lung cancer, but the effect is not satisfactory. The total cure rate is less than 14%. With the development of molecular biology, people have known more about the molecular mechanisms of tumorigenesis, progression and metastasis. Gene therapy becomes a new prospective therapy. ASODN is a paragraph of artificial synthesis molecules which specifically bind to mRNA or DNA and suppress their expression. ASODN may specifically suppress the proliferation of tumor cells by blocking or suppressing the key coding gene in tumor cell.
     Antisense drug is a new type of safe effective drug which based on the antisensenucleic acids techniques and is on the purpose of treatment. Recent years,with the elucidation of antisense mechanism of the antisense oligonucleotides and its constructive ramifications like phosphorothioic acid oligodeoxynucleotide, many antisense drugs which target for the proteins of viruses , oncogene, cytoactive factors and other disease association proteins successively enter clinical trial, which make the research on the antisense drugs reenter rising development period.
     MMPs is a group of important ECM catabolic enzymes containing zinc ion. There have been more than 20 kinds of MMPs identified. MMP-9 is a important group within the MMPs and expressed in many tumor tissues.It has the key effects on the apoptosis, invasion and metastasis of tumor.
     Using human lung adenocarcinoma A549 line which has been transfected by MMP-9ASODN with liposome, this study is to detect the effect of MMP-9ASODN transfection on the A549 cell growth by MTT, observe the expression of MMP-9mRNA proteins by RT-PCR, detect the changes of MMP-9 proteins by Westem blot, detect the effect of MMP-9ASODN on the rate of cell proliferation/apoptosis;observe the effect of MMP-9ASODN on the adhesive and migratory ability of cell in vitro, observe the inhibition effect of MMP-9ASODN on the tumor in vivo, which supply a new method for the gene therapy for the lung cancer.
     The research on the targeted therapy drugs for the lung cancer have entered the exploitated phase. Resently, there have been many types of antisense drugs which have enter clinic trial period. This study demonstrated that antisense oligonucleotides MMP-9 may inhibit the tumor cell growth and induce apoptosis by transinfecting the A549 cell, which supply reliable experimental evidence for the antisense gene therapy for the lung cancer.
     Methods
     1. Liposome mediate the oligonucleotide transfeetion of A549 cell.
     Human lung adenocarcinoma A549 cell is conventional cultured in 1640 complete medium, and logarithmic-phase growth cells were inoculated to 96 well plates. The cells were divided into 4 groups: MMP-9ASODN, MMP-9SODN, liposome and control. And they were observed by fluorescence microscope after transfection 24hrs, select 5 high power fields randomly, count all cell population and green fluorescence cell population, and calculate transfection efficiency.
     2. Detect the effect of MMP-9ASODN transfection on the A549 cell growth by MTT
     ASODN transfection group is divided into different concentration groups: 200nmol/L, 400nmol/L, 600nmol/L and 800nmol/L. There are 3 holes in each group. Detect the effect 0h,4h,8h,12h,24h,48h,60h after transinfection by MMT, respectively.the wavelength detected by ELIASA is 570nm, calculate the survival rate ofA549 cell.
     3. Detect the cell proliferation/apoptosis rate by flow cytometry
     Collect the cells treated in every group into the centrifuge tube, centrifuge, wash, fix, stain, be laid on the flow cytometer, detect in the excitation wavelength of 488nm, and calculate the cell apoptosis rate
     4. Detect the expression of MMP-9mRNA by RT-PCR.
     Collect the cells in each group after transinfection, extract the RNA, synthetize the cDNA by reverse transcription with the template after quantitation, then amplification by PCR with primer, detect the products by agarose gel electrophoresis.
     5. Detect the changes of MMP-9 protein by Western blot
     Collect the cells after 24h transinfection and extract the total proteins within the cells, detect the protein content in the sample, then detect the proteins by discontinuation PGE, stain, trarsmembrane and observe the result.
     6. Dectet the effect of MMP-9ASODN transinfection on the adhesive and migratory ability of A549 cell in vitro
     Coat and hydrate the basal membrane, inoculate and culture cell, then detect by MMT chromatometry, calculate the adhesive rate of cell. Likewise, coat and hydrate the basal membrane, prepare culture cell monolayer, select 5 field of vision of 100×randomly in contrast phase microscope by artificial scratch method and calculate the total cellular score migrating into the scratch space.
     7. Observe the inhibition rate of tumor by athymic mouse model
     Constuct the transplantation tumor athymic mouse model, then inject the MMP-9ASODN into the transplantation tumor, observe the growth effect of anti-transplantation tumor including general state, the detection of growth inhibiting rate of regional solid tumor and pathohistology.
     Results
     1. The transinfection rate of MMP-9ASDN, MMP-9SODN and Lip group is respectively (65.85±9.61) %, (56.38±9.82) %, (53.62±6.08) %。
     2. Among certain range, the inhibiton of A549 cell survival rate by MMP-9ASODN is concentration and time dependent (inhibitory effect is most obvious when the antisense oligonucleotides concentration is 600nmol/L and the action time is 48h.)
     3. When the antisense oligonucleotides concentration is 600nmol/L and the action time is 48h, by RT-PCR amplification, the relative expression level of MMP-9mRNA is 0.573±0.071 which is obviously less than other 3 groups(0.924±0.044, 0.863±0.054, 0.765±0.072)
     4. When the antisense oligonucleotides concentration is 600nmol/L and the action time is 48h, by Westem detection, the expression level of MMP-9 protein is 0.53±0.068 which is obviously less than other 3 groups(0.76±0.052, 0.79±0.075, 0.81±0.126).
     5. After the A549 cell have been transinfected by MMP-9ASODN, the cell scores in G1 phase obviously increase, the cell scores in S phase obviously decrease, there is no obvious changes of cell scores in G2 phase., which suggested that MMP-9ASODN may delay the G1-S transition of tumor cell. after the A549 cell have been transinfected by MMP-9ASODN, the apoptosis percentage of A549 cell is much more than other 3 groups.
     6. Adhesive experiment suggested that MMP-9ASODN transinfection may decrease the adhesive abilitiy of A549 cell, the adhesive rate is (15.21±0.81)% which is less than other 3 groups (38.92±1.23) %, (36.55±2.32) % and (32.61±1.41 ) %,the difference have significance(p<0.01).Protraction experiment by scratch method
     7. Suggested that MMP-9ASODN transinfection may decrease the migratory ability of A549 cell, the migratory cell scores is 74.09±4.48 which is less than other 3 groups124.18±9.77, 120.14±8.50 and 112.82±9.87(p<0.05).
     8. Tumor growth index in MMP-9ASODN group is 3.20±0.14 which is less than other 3 groups 5.93±0.20, 5.87±0.02 and 6.40±0.33 (P<0.01).The tumor weight in MMP-9ASODN group is 1.25±0.03 which is less than other 3 groups 2.15±0.07, 2.31±0.04 and 2.43±0.04 (P<0.01).The inhibition rate of tumor in MMP-9ASODN group is (33.41±1.18)% ,and the heart , liver and kidney's tissue and construct are normal on the whole, there are no obvious tissue damage changes.
     Conclusions
     1. MMP-9ASODN may effectively inhibit the lung cancer A549 cell proliferation,the mode of action is concentration and time dependent.
     2. MMP-9ASODN may down regulate the expression of MMP-9mRNA and MMP-9 proteins3
     3. MMP-9ASODN may inhibit the A549 cell proliferation by influencing lung cancer A549 cell generation cycle distribution and promoting the A549 cell apoptosis.
     4. MMP-9ASODN may depress the adhesive and migratory ability of A549 cell.
     5. MMP-9ASODN may obviously inhibit athymic mouse transplantation tumor growth, which is save and no adverse effect.
引文
[1] Abidoge O, Ferguson MK, Salgia R. Lung carcinoma in African Americans. Nat Clin Pract Oncol.2007 Feb;4(2): 118-29
    [2] Greenlee RT,Murray T,Bolden S,et al. Cancer Staistics [J].CA Cancer J Clin,2000,50(1):7-33
    [3] Hofmann HS, Battling B. How will lung cancer be treated in the future? Future Oncol.2005 Aug;1(4):551-9
    [4] Wu W,OnnA, IsobeI et al. Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor receptor signaling blockade. Mol Cancer Ther.2007 Feb;6(2):471-83
    [5] Tortora G,Daniele G. New Frontiers in cancer treatment.Recenti Prog Med.2006 Dec;97(12)781-6
    [6] Toloza EM. Morse MA, Lyedy HK. Gene therapy of lung cancer.J Cell Biochem.2006 Sep Ⅰ;99(1):1-22
    [7] Collins I,Workman P.New approaches to molecular cancer therapeutics.Nat Chem Biol.2006 Dec;2(12):689-700
    [8] Chon HS, Hu W, Kavanagh JJ. Targeted therapies in gynecologic cancers.Curr Cancer Drug Targets.2006 Jun;6(4):333-63
    [9] Motzer RJ,Bukowski RM. Targeted therapy for metastatic renal cell carcinoma. J Clin Oncol.2006 Dec10;24(35):5601-8
    [10] Crooke ST. Progress in antisense technology:the end of the beginning.Methods Enzymol.2000;313:3-45
    [11] Crooke ST. An overview of progress in antisense therapeutics.Antisense Nucleic Acid Drug Dev,1998,8(2):115-122
    [12] Zamecnik PC, Stephenson ML.Inhibition of Rous Sarcoma virus replication and cell transformation by a specific oligodeoxy-nucleotide.Proc Natl Acad Sci USA. 1978,(1):2840-44
    [13] Rudin CM, Kozloff M, Hoffman PC, et al. Phase Ⅰ study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small cell lung cancer[J]. J Clin Oncol, 2004,22(6) :1110 -17
    [14] Jones MB , Michener CM, Blanchette JO, et al. The granulin-epithelin precursor/ PC-cell-derived growth factor is a growth factor for epithelial ovarian cancer [J]. Clin Cancer Res, 2003 ,9(1) :44 - 51
    [15] Michel T, Martinand-Mari C. Cationic phosphoramidate alpha oligonucleotides efficiently target single-stranded DNA and RNA and inhibit hepatitis C virus IRES2 mediated translation[J]. Nucleic Acids Res, 2003 ,31(18) :5282-90
    [16]Halberstadt A, Halon A, Pajak J,et al. The role of matrix metalloproteinases in tumor invasion and metastasis Ginekol Pol. 2006 Jan;77(1):63-71.
    [17]Aihara R, Mochiki E, Nakabayashi T, et al.Clinical significance of mucin phenotype , beta-catenin and matrix metalloproteinase 7 in early undifferentiated gastric carcinoma.Br J Surg 2005,92(4):454-462
    [18]Adachi Y,Yamamoto H, Itoh F, et al.Clinicopathologic and prognostic significance of matrilysin expression at the invasive front in human colorectal cancer.Int J Cancer, 2001, 95(5): 290-294
    [19]Yamamoto H, Iku S, Adachi Y, et al.Association of trypsin expression with tumour progression and matrilysin expression in human colorectal cancer. J Pathol, 2003,199(2):176-184
    [20] Shankavaram UT ,Lai WC ,Netzel Arnett S ,et al. Monocyte membrane type 1 matrix metalloproteinase. Prostagland independent regulation and role in metal- loprotein 2 activation. J Biol Chem ,2001,276(22): 19027-32
    [21]Stetle Stevenson WG, Hewitt R,Cororan M.Matrix metalloproteinases and tumor invision: from correlation and causality to the clinic.Semin Cancer Biol, 1996, 7(3) : 147-154
    [22]Roeb E, Matem S.Matrix metalloproteinases and colorectal cancer.Med Klin . 2003 Dec 15;98(12):763-70.
    [23] Parsons SL, Watson SA, Brown PD,etal.Matrix metalloproteinases.Br J Surg, 1997,84(2): 160-166
    [24]Pilcher B,Dumin JA,Sudbeck BD,et al. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix.J Cell Biol,1997;137 (6) .1445-57
    [25] 明树红,孙铁英,肖伟等.基质金属蛋白酶2,9及其抑制剂1在肺癌侵袭转移中的作用.[J]中国呼吸与危重监护杂志,2005;4(3):198-202
    [26] Itoh T,Tanioka M,Yoshida H,et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice.Cancer Res,1998;58(5): 1048-51
    [27] Kodate M,Kasai T,Hashimoto H, et al. Expression of matrix metalloproteinase (gelatinase)in T1 adeocarcinoma of the lung. Pathol Int,1997; 47(7):461-469
    [28] Garbisa S,Scacgliotti G,Masiem L,et al.Correlation of serum metalloproteinase levels with lung cancer metastasis and response to therapy. Cancer Res, 1992; 52(16): 4548-49
    [29] Lizasz,Fujisawa T,Suzuki M,et al.Elevated levels of circulating plasma matrix metalloproteinases 9 in non-small cell lung cancer patients.Clinical Cancer Res, 1999; 5(1):149-153
    [30] Zucker S,Lysik RM,Zarrabi MH,et al.Mr 92000 type Ⅳ collagenase is increased in plasma of patients with colon cancer and breast cancer.Cancer Res,1993; 53(1):140-146
    [31] Hrabec E,Strek M,Nowak D,et al.Elevated level of circulation matrixmetalloproteinase-9 in patients with lung cancer. Respir Med,2001,95(1):14
    [32] Yamamoto H,Itoh F,Iku S,et al.Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: clinicopathologic and prognostic significance of matrilysin expression.J Clin Oncol. 2001,19(4):1118-27
    [33] Jones LE, Humphreys MJ,Campbell F.et al.Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer:increased expression of matrix metalloproteinase-7 predicts poor survival.Clin Cancer Res, 2004,10(8):2832-45
    [34] Tan X, Egami H,Ishikawa S,et al.Involvement of matrix metalloproteinase-7 in invasion metastasis through induction of cell dissociation in pancreatic cancer.Int J Oncol 2005,26(5):1283-9
    [35] Lee S,Jilani SM, Nikolova GV, et al.Processing of VEGF- A by matrix metallopro- teinases regulates bioavailability and vascular patterning in tumors. J cell Biol, 2005, 169(4):681-691
    [36] 曹立明,杨红忠,胡成平,MMP-2和MMP-9在非小细胞肺癌中的表达及临床意义,中国肺癌杂志,2003,6(6):484-487
    [37] Meyer E,Vollmer JY, Bovey R Stamenkovic I. Matrimetalloproteinases9 and 10 inhibit protein kinase C-potentiated, p53-mediated apoptosis.Cancer Res.2005 May 15;65(10):4261-72
    [38] Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science 2001; 294(5548): 1945-48
    [39] Valllant C, Meissirel C, Mutin M, Belin F, Lund LR, Thomasset N. MMP-9 deficiency affects axonal outgrowth, migration, and apoptosis in the developing cerebellum. Mol Cell Neurosci 2003;24(2): 395-408
    [40] 张梅春,胡成平,陈琼等.重组人肿瘤坏死因子相关凋亡诱导配体蛋白(rhTRAIL)逆转人肺腺癌细胞A549/CDDP耐顺铂效应的初步研究,肿瘤防治研究2005,7(32):398-401
    [41] 张梅春,胡成平,陈琼等.Survivin反义寡核苷酸提高人肺腺癌细胞A549耐药细胞系对顺铂敏感性的实验研究,中华肿瘤杂志,2006,6(6):408-712
    [42] 张梅春,胡成平,陈琼等.小剂量顺铂诱导人肺腺癌细胞存活素基因的表达研究,中国肺癌杂志 2006,2(4):203-206
    [43] Stellet H.Mechanisms and genes of cellular[J].science, 1995,267(52 03):1448-49
    [44] Konttinen YT,Ainola M, Vallea H,et al. Analysis of 16 different matrix metalloproteinases (MMP-1 TO mmp-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis. Ann Rheum Dis,1999;58 (11):691-697
    [45] Galboiz Y, Shapiro S,Lahat N,et al.Matrix metalloproteinases and their tissue inhibitors as markers of disease subtype and response to interferon-beta therapy in relapsing and secondary-progressive multiple sclerosis patients.Ann Neurol. 2001 Oct;50(4):443-51.
    [46] Farias E,Ranuncolo S,Cresta C,et al.Plasma metalloproteinase activity is enhanced in the euglobulin fraction of breast and lung cancer patients. Int J Cancer.2000;89(4):389-394
    [47] Sun HB, Nalim R, Yokota H. Expression and activities of matrix metalloproteinases under oscillatory shear in IL-1 stimulated synovial cells[J]. Connect Tissue Res,2003,44(1):42-9
    [48] 韩溟,许丽艳.恶性肿瘤中MMP-9表达调控机制研究进展.国外医学分子生物学 分册,2003,25(1):24-26
    [49] Maatta M,Soini Y,Liakka A,et al.Differential expression 1 Df matrix metalloproteinase MMP-2,MMP-9,and membrane type1 -MMP in hepatocellular and pancreatic adenocarcinomas-m iPCNALI% cations for tumor progression and clinical prognoss[J].Clin Cancer Res, 2000, 6(7);2726-34
    [50] Chamber AF,Matrisian LM.Changing views of the role of matfixmetaloproteinases in metastasis[J] Nat Cancer Inst, 1997,89(17); 1260-70
    [51] Riedel F,Gote K,Schwalb J,et al.Expression of 92 -kD a type Ⅳ collagenase neck scorrelates with angiogenic markers and poor survival in head and quamous cell carcinoma[J].Int J Ontol,2000,17(6):1099—1105
    [52] Golateau-Salle FB,Luna RE,Horiba K,et al. MMPs and TIMP in bronchial squamous preinvasive lesions [J].Hum Pathol, 2000,31(3): 296-305
    [53] Thomas P,Khokha R, Shepherd FA,et al. Differential expression of matrix metalloproteinases and the irinhibitors in non-small cell lung cancer.[J] Pathol 2000, 190(2): 150-156
    [54] Gonzalez-Avila Glturria C,Vadillo F,et al. 72,kD(MMP-2) and 92-kD(MMP-9) type Ⅳ collagenase production and activity in different histologic types of lung cancer cells.Pathobiology, 1998,66(1):5-16
    [55] F.Mannello F, Luchetti E,Falcieri,et al.Multiple roles of matrix metalloproteinases during apoptosis.Apoptosis 2005; 10(1):19-24
    [56] Chintala SK, Zhang X, Austin JS, Fini ME. Deficiency in matrix metalloproteinase B (MMP-9) protects against retinal ganglion cell death after optic nerve ligation. J Biol Chem 2002;277(49): 47461-8
    [57] Schonbeck U, Math F, Libby P. Generation of biologically active IL-1β by matrix metalloproteinases: A novel caspase-1 independent pathway of IL-1β processing. J Immunol 1998;161(7): 3340-6
    [58] Bellon G, Martiny L, Robinet A. Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol 2004;49(3): 203-220
    [59] Wang X, Lee SR, Arai K, et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 2003; 9(10): 1313-17
    [60] Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998; 93(3): 411-422
    [61]Gazzanelli G,Luchetti F,Burattini S,et al. Matrix metalloproteinases expression in HL-60 promyelocytic leukaemia cell during apoptosis .Apoptosis 2000;5 (1) : 165-172
    [62]Tamura F, Nakagawa R, Akuta T,et al. Proapoptotic effect of proteolytic activation of matrix metalloproteinases by streptococcus pyogenes tyiol protei- nase (Streptococcus pyrogenic exotoxin B) .Infect Immun 2004; 72:4836-47
    [63] Bergers G, Brekken R, McMahon G, et al. Matrix etalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2(10): 737-744
    [64]Basu A,Miura A.Differential regulation of extrinsic and intrinsic cell death pathways by protein kinase C. Int J Med 2002;10(5):541-545
    [65] Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 2003;200(4):448-64
    [66]Egelblad M,Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2(3):161-74
    [67]McCawley LJ, Matrisian LM. Matrix metalloproteinases :they're not just for matrix anymore !Curr Opin Cell Biol 2001;13(5):534-40
    [68]Bohula EA,Salisbury AJ,SohailM , et al. The efficacy of small interfering RNA stargeted to the type 1 insulin-like growth factor receptor(IGFIR) is influenced by secondary structure in the IGFIR transcript. J Biol Chem,2003,278(18): 15991-97
    [69]Nelson AR,Fingleton B,Rothenberg ML,et al.Matrix metalloproteinases:biologic activity and clinical implication.J Clin Oncol,2000,18(5): 1135-49
    [70] Johnson N ,Ahonen M,,Kahari VM,et al.Matrix metalloproteinases in tumor invasion.CMLS.Cell Mol Life Sci,2000,57(1):5-15
    [71] Stetle-stevenson WG,Liotta LA,Kleiner De Jr.Extracellular matrix :role of matrix metalloproteinases in tumor in vasion and metastasis.FASEB J, 1993; 7:1434 -41
    [72]Deryugina EI,Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25(1):9-34.
    [73] Fang J, shing Y,Wiederschain D,et al. Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model.Proc Aatl Acad Sci USA,2000;97(8):3884-89
    [74] HuXX,LiL,Li DR et al.Inhibitory effects of antisense MMP-9 oligodexynucleotides on invasiveness and adherence of ovarian.Zhonghua ZhongLiu Za Zhi.2006 Sep;28(9):662-5
    [75] Nawrochi B,Polette M,Marchand V,et al.Expression of matrix metalloproteinases and their inhibitors in human bronchopulmonary carcinomas quantificative and morphological analyses.Int J Cancer,1997;72(4):556-564
    [76] 李红梅,方伟岗,时峥,等.TIMP-2基因转染对高转移性人肺巨细胞癌系生物学行为的影响.中华医学杂志,1997;77(9):652-656
    [77] Kodate M,Kasai T,Hashimoto H, et al. Expression of matrix metalloproteinase (gelatinase)in T1 adenoearcinoma of the lung. Pathol Int,1997; 47(7):461-469
    [78] Kaya A, Gulbay BE,Curkan DU,et al. Elevated levels of circulating matrix metalloproteinase-9 in non-small cell lung cancer patients. Tuberk Toraks. 2003;51(4):380-4.
    [79] Chamber AF,Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis.J Natl Cancer Last, 1997,89(1): 1260-70
    [80] Davies B, Miles DW, Happerfield LC, et al. Activity of type Ⅳ collagenases in benighand malignant breast disease. Br J Surg, 1993,67(5): 1126-31
    [81] Lampert K, Machein U, Machein MR, et al. Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors.Am J Pathol, 2003,153(2):429-37
    [82] Kanayama H, Yokota K, Kurokawa Y, et al. Prognostic values of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression in bladder cancer. Cancer, 1998,82(7):1359-66
    [83] Folk man J.Role of angiogenesis in tumor growth and metastasis.Semin Oncol, 2002 Dec;29(6 Suppl 16):15-8.
    [84] McCawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today. 2000 Apr;6(4):149-56.
    [85] Lakka SS,Gondi CS,Yanamandra N,et al.Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis.Oncogene,2004,23(27):4681-89
    [86] 吴明富,廖国宁,贾平等.MT-1-MMP-9反义核酸抑制高转移人卵巢癌SW626细胞的侵袭.癌症,2004,23(11):1263-66
    [87] 陈江华.基质金属蛋白酶及其抑制物与肿瘤侵袭的关系:国外医学肿瘤学分册,2001,28(1):23-26
    [88] Momiyama N,Koshikawa N,Ishikawa T,et al.1 Inhibitory effect of matrilysin antisenseoligo nucleotides on human colon Cancer cell invasion invirto[J].Mol Carcinog,1998,22(1): 57-63
    [89] Senota A,Itch F,Yamanoto H,et al.Relation of matrilysin Messenger RNA expression with invasiveactivity in human gastric cancer[J].Clin Exp Metastasis, 1998, 16(4):313-321
    [90] Hasegawa S,Koshikowa N,Momiyama N, et al.Matrilysin specific antisenseoligonucleotide inhibit sliver metastasis of human colon cancer cells in a nude mouse model[J].Int J Cancer,1998,76(6):812-816
    [91] 张梅春,胡成平,陈琼等.Survivin反义寡核苷酸治疗耐顺铂人肺腺癌细胞裸鼠移植瘤的实验研究[J]中南大学学报(医学版),2006,31(5):717-722
    [92] 任正刚,金由辛,薛琼,等.血管内皮生长因子反义寡核苷酸抑制裸鼠人肝癌模型的作用观察[J] 中华医学杂志,1999,79(1):65-66
    [93] Crooke ST.An overview of progress in antisense therapeutics. Antisense Nucleic Acid Drag Dev,1998,8(2): 115-122
    [94] Cohen JS,Hogan ME.The new genetic medicines.Sci Am,1994,271(6):76-82.
    [95] 宏伟,周毅,彭淑玲,等.硫修饰和质脂体包裹对反义寡核苷酸抑制KST1复制的影响[J]眼科,2002,11(2):173-175
    [1] Egeblad M,Werb Z.New functions for the matrix metallopro-Teinases in cancer progression.NatRevCancer2002;2:163-176.
    [2] Vu TH,Werb Z. Matrix metalloproteinases: Effectors of development and normal physiology.Genes Dev 2000;14:2123-2133.
    [3] Vu TH. Don't mess with the matrix.Nat Genet 2001;28:202-203.
    [4] Visse R,Nagase H.Matrix metalloproteinases and tissueinhibitors of metalloproteinases: Structure, functionand biochemistry.Circ Res 2003;92: 827-839.
    [5] Green DR,Evan GI. Amatter of life and death.Cancer Cell 2002;1:19-30.
    [6] Cryns V, Yuan J. Proteases to die for.Genes Develop 1998;12:1551-1570.
    [7] Luchetti F,Mariani AR,Columbaro M,Di Baldassarre A,Cinti C,FalcieriE. Apoptotic pathways depend on the target enzymatic activity and not on the triggering agent.Scanning1999;21:29-35.
    [8] Abraham MC,Shaham S.Death without caspases,caspases Without death.Trends Cell Biol 2004;14:184-193.
    [9] Meier P,Silke J.Programmed cell death: Supermanmeets Dr Death. Nat Cell Biol 2003;5:1035-1038.
    [10]Lockshin RA,Zakeri Z. Caspase-independent cell death? Onco Gene 2004; 23:2766-2773.
    
    [11]Mannello F,Gazzanelli GTissue inhibitors of metalloproTeinases and programmed cell death:Conundrums, controversies and potential implications. Apoptosis 2001;6:479-482.
    [12] Lynch CC,Matrisian LM. Matrix metalloproteinases in tumourHost cell communication.Differentiation2002;70:561-573.
    [13]Brinckerhoff CE,Matrisian LM.Matrix metalloproteinases:A tail of a frog that became a prince. Nat Rev Mol Cell Biol2002;3:207-214.
    [14]Online link to revised bioactive MMP substrates at: http://www.clip. ubc.ca/mmp.shtm
    [15] Lee R,Kermani P,Teng KK,Hempstead BL.Regulation of Cell survival by secreted proneurotrophins. Science 2001;294:1945-1948.
    
    [16]Vaillant C,Meissirel C,Mutin M,Belin F,Lund LR,Thomasset N.MMP-9 deficiency affects axonal outgrowth, migration,and Apoptosis in the developing cerebellum. Mol Cell Neurosci 2003;24:395-408.
    [17]Chintala SK,Zhang X,Austin JS,Fini ME.Deficiency in maTrix metallopro- teinaseB(MMP-9)protects against retinal ganGlion cell death after optic nerve ligation. J Biol Chem 2002;277:47461-47468.
    [18] Lee SR,Lo EH.Induction of caspase-mediated cell death by Metalloproteinases incerebral endothelial cells after hypoxiareoxygeneration. J Cereb Blood FlowMetab 2004;24:720-727.
    [19] Wee Yong V, Power C,Forsyth P,Edwards DR. Metalloproteinases in biology and pathology of the nervous system.Nat Rev Neurosci 2001;2:502—511.
    [20] Zhang K,McQuibban GA,Silva C,et al.HIV-induced metalLoproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegenera- tion.NatNeurosci2003;6:1009-1011.
    [21]Schonbeck U,Mach F,Libby P.Generation of biologicallyac-tiveIL-1β by matrix metalloproteinases: A novel caspase-1 independent pathway of IL-1β processing. J Immunol1998;161:3340-3346.
    [22]Dinarello CA.Interleukin-1,interleukin-1 receptors and interleukin-1 receptor antagonist.Int Rev Immunol 1998; 16:457-499.
    [23]Maquart FX,Pasco S,Ramont L,Hornebeck W,Monboisse JC. An introduction to matrikines:Extracellular matrix-derived Peptides which regulate cell activity. Implication in tumor invasion.Crit Rev Oncol Hematol 2004;49:199-202.
    [24]Bellon G, Martiny L,Robinet A.Matrix metalloproteinases and matrikines in angiogenesis.Crit Rev Oncol Hematol 2003;49:203-220.
    [25] Wang X,Lee SR,Arai K,et al.Lipoprotein receptor-mediated Induction of matrix metalloproteinase by tissue plasminogen activator.Nat Med 2003;9:1313—1317.
    [26]Makarova A,Mikhailenko I,Bugge TH,List K,Lawrence DA,Strickland DK.The low density lipoprotein receptor- Related protein modulates protease activity in the brain by meDiating the cellular internalization of both neuroserpin andneuroserpin-tissue-type plasminogen activator complexes. J Biol Chem 2003;278:50250-50258.
    [27] Stricker TP,Dumin JA,Dickeson SK,et al.Structural analysis of the α2-integrin I domain/procollagenase-1 (matrix metalloproteinase-1) interaction. J Biol Chem 2001;276:29375-29381.
    [28]Conant K,St. Hillaire C,Nagase H,et al.Matrix metalloproteinase-1 interacts with neuronal integrins and stimulates dephosphorylation of Akt. J Biol Chem 2004 279:8056-8062.
    [29]Meerovitch K,Bergeron F,Leblond L,et al.A novel RGD Antagonist that targets both αvβ3 and α5β1 induces apoptosis of Angiogenic endothelial cells on type I collagen. Vascul Pharmacol 2003;40:77-89.
    [30]Vos CM,Sjulson L,Nath A,et al.Cytotoxicity by matrix metalloproteinase-1 in organotypic spinal cord dissociated neuronal cultures.Exp Neurol 2000; 163: 324-330.
    [31]Cossins JA,Clements JM,Ford J,et al.Enhance dexpression of MMP-7 and MMP-9 in demyelinating multiple sclerosis lesions.Acta Neuropathol 1997;94: 590-598.
    [32] Gu Z,Kaul M,Yan B,et al.S-nitrosylation of matrix metalloproteinases:Signalling pathway to neuronal cell death.Science 2002;297:1186-1190.
    [33] Stemlicht MD,Werb Z. How matrix metalloproteinases reguLate cell behaviour. Annu Rev Cell Dev Biol 2001;17:463-516.
    [34] Strand S,Vollmer P, vande Abeelen L,et al. Cleavage of CD95 By matrix metalloproteinase-7 induces apoptosis resistance in Tumor cells.Oncogene 2004; 23:3732-3736.
    [35] Wetzel M,Tibbitts J,Rosenberg GA, Cunningham LA.Vulnerability of mouse cortical neurons to doxorubicin-induced apoptosis is strain-dependent and is correlated with mRNAs encoding Fas,Fas-Ligand,and metalloproteinases. Apoptosis, 2004;9:649-656.
    [36] Ethell DW, Kinloch R, Green DR. Metalloproteinase shedding of Fas ligand regulatesβ-amyloid neurotoxicity.Curr Biol. 2002;12:1595-1600.
    [37] Powell WC,Fingleton B,Wilson CL,Boothby M,Matrisian LM.The metalloproteinase Matrilysin(MMP-7)proteolytiCally generates active soluble Fas ligand and potentiateseplthelial cell apoptosis.Curr Biol 1999;9:1441-1447.
    [38] Mitsiades N,Yu WH,Poulaki V, Tsokos M,Starnenkovic I. Matrix metalloproteinase-7-mediated cleavage of Fas ligand Protects tumour cells from chemotherapeutic drug cytotoxicity. Cancer Res 2001;61:577-581.
    [39] Fingleton B,VargoT, Crawford HC,Matrisian LM. Matrilysin (MMP-7) expression selects for cells with reduced sensitivity To apoptosis.Neoplasia 2001;3:459-468.
    [40] Yu WH,Woessner JF Jr, McNeish JD,StamenkovicI. CD44 Anchors the assembly of matrilysin/MMP-7 with heparinBindingepidermal growth factor precursor and ErbB4 and regUlates female reproductive organ remodelling.Genes Dev 2002; 16:307-323.
    [41] Zahir N,Weaver VM.Death in the third dimension:Apoptosis Regulation and tissue architecture. Curr Opin Genet Dev 2004; 14:71-80.
    [42] Frisch SM,Screaton RA.Anoikis mechanisms.Curr Opin Cell Biol 2001; 13: 555-562.
    [43] Zhan M,Zhao H,Han ZC.Signalling mechanism of anoikis. Histol Histopathol 2004; 19:973-983.
    [44]Herren B,Levkau B,Rianes EW,Ross R. Cleavage of β-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis :Evidence for a role for caspases and metalloproteinases.Mol Biol Cell 1998;9:1589-1601.
    [45]Steinhusen U,Weiske J,Badock V,Tauber R,Bommert K,Huber O. Cleavage and shedding of E-cadherin after induction Of apoptosis. J Biol Chem 2001;276: 4972-4980.
    [46]Levkau B,Kenagy RD,Karsan A,et al. Activation of metalloproteinases and their association with integrins:An auxiliary apoptotic pathway in human endothelial cells.Cell Death Differ 2002;9:1360-1367.
    [47]Luchetti F,Mannello F,Canonico B,et al.Integrin and cytoskeleton behaviour in human neuroblastoma cells during hyperthermia-related apoptosis.Apoptosis 2004; 9:1-14.
    [48] Wu E,Mari BP,Wang F,Anderson IC,Sunday ME,Shipp MA. Stromelysin-3 suppresses tumour cell apoptosis in a murine model.J Cell Biochem 2001; 82:549-555.
    [49]Boulay A,Masson R,Chenard MP,et al.High cancer cell death in syngeneic tumours developed in host mice deficient for the stromelysin-3 matrix metallo- proteinase.Cancer Res 2001;61:2189-2193.
    [50]Baserga R.The contradictions of the insulin-like growth factor 1 receptor. Oncogene 2000; 19:5574-5581.
    [51]Ishizuya-Oka A,LiQ,Amano T,Damjanovski S,Ueda S,Shi YB.Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in xenopus laevis.J Cell Biol 2000; 150:1177-1188.
    [52] Sympson CJ,Talhouk RS,Alexander CM,et al.Targeted expression of stromelysin- lin mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression.J Cell Biol 1994;125:681-693.
    [53] Witty JP,Lempka T,Coffey RJ Jr, Matrisian LM. Decreased tumour for mation in7, 12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis.Cancer Res1995; 55: 1401-1406.
    [54] Vu TH,Shipley JM,Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plateangiogenesis and apoptosis of hypertrophic chondrocytes.Cell 1998;93: 411-422.
    [55]Bergers G, Brekken R,McMahon G,et al.Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis.Nat Cell Biol 2000;2:737-744.
    [56]Gazzanelli G, Luchetti F, Burattini S, Mannello F, Falcieri E, Papa S. Matrix metalloproteinases expression in HL-60 promyelocytic leukaemia cell during apoptosis. Apoptosis 2000; 5:165-172.
    [57]McQuibban GA,Gong JH, Tam EM,McCulloch CA,ClarkLewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 2000;289:1202-1206.
    [58]Sheu BC, Hsu SM, Ho HN, Lien HC, Huang SC, Lin RH. A novel role of metalloproteinase in cancer-mediated immunosuppression.Cancer Res 2001;61: 237-242.
    [59]Tamura F,Nakagawa R, Akuta T,et al.Proapoptotic effect of proteolytic activation of matrix metalloproteinases by streptococcus pyogenes thiol proteinase (Streptococcus pyrogenic exotoxin B).Infect Immun 2004;72:4836-4847.
    [60]Melino GThe meaning of death.Cell Death Differ 2002;9:347-348.
    [61]Schreader BA,Nambu JR. A fine balance for life and death decisions. Nat Struct Mol Biol 2004;l 1:386-388.
    [62]Kwan JA,Schulze CJ,Wang W,et al.Matrix metalloproteinase-2(MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase(PARP)in vitro.FASEB J 2004; 18:690-692.
    [63]McCawley LJ,Matrisian LM. Matrix metalloproteinases:They're not just for matrix anymore!Curr Opin Cell Biol 2001;13:534-540.
    [64]Scovassi I,Diederich M. Modulation of ploy (ADP-ribosylation) in apoptotic cells.Biochem Pharmacol 2004;68:1041-1047.
    [65]Martelli AM,Falcieri E,Zweyer M,et al.The controversial nuclear matrix: Abalanced point of view.Histol Histopathol 2002;17:1193-1205.
    [66]Ritter LM,Garfield SH,Thorgeirsson UP. Tissue inhibitor of metalloproteinase-1 (TIMP-1) binds to the cell surface and translocates to the nucleus of human MCF-7 breast carcinoma cells. Biochem Biophys Res Commun1999; 257: 494-499.
    [67]Si-Yayeb K,Monvoisin A,Mazzocco C,Lepreux S,Rosenbaum J. Unexpected localization of the matrix metalloproteinase-3 (MMP3) with in the cell nucleus in liver cancer cells.J Hepathol2003;38:353.
    [68]Soldani C,Scovassi AI. Poly(ADP-ribose)polymerase-l cleavage during apoptosis: Anupdate. Apoptosis 2002;7:321-328.
    [69] Brown PD. Ongoing trials with matrix metalloproteinaseinhibitors.Expert Opin Investig Drugs 2000;9:2167-2177.
    [70]Mitsiades N,Poulaki V,Mitsiades CS,Anderson KC. Induction of tumour cell apoptosis by matrix metalloproteinases inhibitors: New tricks from a (notso)old drug. Expert Opin Investig Drugs 2001;10:1075-1084.
    [1] Llano E, Pendas AM, Freije JP, et al. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase A overexpressed in brain tumours.Cancer Res 1999, 59, 2570-2576
    [2] Velasaco G, Pendas AM, Feuyo. A, et al. Cloning and characterization of human MMP-23,a new matrix metalloproteinase predominantly expressed inreproductive tissues and lacking conserved domains in other family members. J Biol Chem 1999, 274, 4570-4576
    [3] Murray GI, Duncan ME, O'Neil P, et al. Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J Pathol 1998, 185, 256-261
    [4] Sier CFM, Kubben FJGM, Ganesh S, et al. Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Br J Cancer 1996, 74, 413-417
    [5] Murray GI, Duncan ME, Arbuckle E, et al. Matrix metalloproteinases and their inhibitors in gastric cancer. Gut 1998, 43, 791-797
    [6] Murray GI, Duncan ME, O'Neil P, et al.Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nature Med 1996, 2, 461-462
    [7] Liabakk NB, Talbot I, Smith RA, et al.Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9(MMP-9) type Ⅳ collagenases in colorectal cancer. Cancer Res 1996, 56, 190-196
    [8] Ahmad A, Hanby A, Dublin E, et al. Stromelysin-3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am J Pathol 1998, 152, 721-728
    [9] Murashige M, Miyahara M, Shiraishi N, et al. Enhanced expression of tissue inhibitors of metalloproteinases in human colorectal tumors. Jap J Clin Oncol 1996, 26, 303-309
    [10] Talvensaari-Mattila A, Paakko P, Hoyhtya M, et al. Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer 1998, 83, 1153-1162
    [11] Ree AH, Florenes VA, Berg JP, et al..High levels of messenger RNAs for tissue inhibitors of metalloproteinase (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin Cancer Res 1997, 3, 1623-1628
    [12] Fong KM, Kida Y, Zimmerman PV, et al. TIMP-1 and adverse prognosis in non-small cell lung cancer. Clin Cancer Res 1996, 2, 1369-1372
    [13] Tipton KF. Agavain: a metalloproteinase. Biochem Biophys Acta, 1965, 110 (2): 414-422
    [14] Hauser P, Vaes G. Degradation of cartilage proteoglycans by a neutral proteinase secreted by rabbit bone-marrow macrophages in culture. BiochemJ, 1978, 172 (2):275-284
    [15] Johnson N, Ahonen M, Kahari VM, et al. Matrix metalloproteinases in tumor invasion. CMLS Cell Mol Life Sci,2000,57(1): 5-15
    [16] Mitchell PG, Magna HA, Reeves LM, et al. Cloning, expression, andtype Ⅱ collagenolytic activity of matrix metalloproteinase-13 from human osteoarthfitic cartilage. J Clin Invest,1996,97(3): 761-768
    [17] Johansson N, Airola K, Grenaman R, et al. Expression of collagenase-3(matrix metalloproteinase-13) in squamous cell carcinoma of the head and neck. AmJ Pathol,1997,151(2): 499-508
    [18] Sato H, Takino T, Okada Y, et al. A matrix metalloproteinase expressed on the surface of invasive tumor cell. Nature (London),1994,370(6484): 61-65
    [19] Massova I, Kotra LP, Rafael F, et al. Matrix metalloproteinases: structure, evolution, and diversification. FASEB J,1998,12(12): 1075-1095
    [20] Parsons SL, Watson SA, Brown PD, et al. Matrix metalloproteinases. Br J Sur,1999,84(2): 160-166
    [21] Hewitt RE, Leach IH, Powe DG, et al. Distribution of collagenase and tissue inhibitor of metalloproteinases (TIMP) in colorectal tumours. Int J Cancer, 1991, 49 (5): 666-672
    [22] Jukka W, Veli-Matti K. Regulation of matrix metalloproteinases expression in tumor invasion. FASEB J, 1999, 13(8): 781-792
    [23] Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem,1999,274 (31):21491-21494
    [24] Riikonen T, Westermarck J, Koivisto L, et al. Integrin alpha2beta-1 is apositive regulator of collagenase (MMP-1) and collagen alpha 1[ I] gene expression. J Biol Chem,1995,270(22): 13548-13552
    [25] Llorens A, Rodrigo I, Lopez-Barcons L, et al. Down-regulation of E-cadhefin in mouse skin carcinoma cells enhances a migratory and invasive phenotype linked to matrix metalloproteinase-9 gelatinase expression. Lab Invest, 1998, 78(9):1131-1142
    [26] Knauper V, Will H, Lopez-Otin C, et al. Cellular mechanisms for human procollagenase-3 (MMP- 13) activation: evidence that MT 1-MMP(MMP-14)and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem, 1996, 271(29)17124-31
    [27] Gomez DE, Alonso DF, Yoshiji H, et al.Tissue inhibitor of metalloproteinases: structure,regulation and biological functions. Eur J Cell Biol,1997, 74(1): 111-122
    [28] Denhardt DT, Feng B, Edwards DR, et al. Tissue inhibitor of metalloproteinases (TIMP, aka EPA): structure, control of expression and biological functions. Pharmacol Ther, 1993, 59(3): 329-341
    [29] Vincenti MP, White LA, Schroen DJ, et al. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity,transcription, and mRNA stability. Crit Rev Eukaryot Gene Express 1996, 6, 391-411
    [30] Benbow U, Brinckerho. CE. The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol 1997, 15, 519-526
    [31] Crawford HC, Matrisian LM. Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells. Enzyme Protein 1996, 49, 20-37
    [32] Gutman A, Wasylyk B. Nuclear targets for transcription regulation by oncogenes. Trends Genet 1991,7,49-54
    [33] Bachman KE, Herman JG, Corn PG, et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain and other human cancers. Cancer Res 1999,59,798-802
    [34] Rutter JL, Mitchell TI, Buttice GA, et al. Single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res 1998, 58, 5321-25
    [35] Kanamori Y, Matsushima M, Minaguchi T, et al. Correlation between expression of the matrix metalloproteinase-1 gene in ovarian cancers and an insertion/ deletion polymorphism in its promoter region. Cancer Res 1999, 59, 4225-27
    [36] Bian J, Sun Y. Transcriptional activation by p53 of the human type Ⅳ collagenase (gelatinase A or matrix metalloproteinase 2) promoter. Mol Cell Biol 1997,17, 6330-38
    [37] Sun Y, Wenger L, Rutter JL, et al.P53 down-regulates human matrix metalloproteinase-1 (collagenase-1) gene expression. J Biol Chem 1999, 264, 11535-40
    [38] Schroen DJ, Brinckerho. CE. Nuclear hormone receptors inhibit matrix metalloproteinase (MMP) gene expression through diverse mechanisms. Gene Express 1996,6,197-207
    [39] Maquoi E, Noel A, Frankenne F, et al. Inhibition of matrix metalloproteinase maturation and HT1080 invasiveness by a synthetic furin inhibitor. FEBS Lett 1998, 424,262-266
    [40] Pei D,Weiss SJ. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 1995, 375,244-247
    [41] Okumura Y, Sato H, Seiki M, et al. Proteolytic activation of the precursor of membrane type 1 matrix metalloproteinase by human plasmin. A possible cell surface activator. FEBS Lett 1997, 102, 181-184
    [42] Chen WT, Wang JY. Specialised surface protrusions of invasive cells, invadopodia and lamellipodia, have di.erential MT1-MMP, MMP-2, and TIMP-2 localization. Ann NY Acad Sci 1999, 878, 361-371
    [43] Hahn-Dantona E, Ramos-DeSimone N, Sipley J, et al. Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Ann NY Acad Sci 1999,878,372-387
    [44] Nguyen M, Arkell J, Jackson CJ. Thrombin rapidly and efficiently activates gelatinase A in human microvascular endothelial cells via a mechanism independent of activated MTR1 matrix metallopmteinase. Lab Invest 1999, 79, 467-475
    [45] Ramos-DeSimone N, Hahn-Dantona E, Sipley J, et al. Activation of matrix metallopmteinase-9(MMP-9) via a converging Plasmin/Stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 1999, 274, 13066-76
    [46] Giannelli G, Falk-Marzillier J, Schiraldi O, et al. Induction of cell migration by matrix metallo-proteinase-2 cleavage of laminin-5. Science 1997, 277, 225-228
    [47] Brabletz T, Jung A, Dag S, et al. Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 1999, 155, 1033-38
    [48] Clevers H, van de Wetering M. TCF/LEF factor earn their wings. Trend Genet 1997, 13,485-489
    [49] Crawford HC, Fingleton BM, Rudolph-Owen LA, et al. The metalloproteinase matrilysin is a target of beta-eatenin transactivation in intestinal tumours. Oncogene 1999, 18, 2883-2891
    [50] Berx G, Nollet F, van Roy F. Dysregulation of the E-cadherin/catenin complex by irreversible mutations in human carcinomas.Cell Adhes Commun 1998, 6, 171-184
    [51] Cheresh DA. Structure, function and biological properties of integrin alpha v beta 3 on human melanoma cells. Cancer Metast Rev 1991, 10, 3-10
    [52] Brooks PC, Stromblad S, Sanders LC, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 1996, 85, 683-693
    [53] Jones JL, Walker RA. Control of matrix metalloproteinase activity in cancer. J Pathol 1997, 183, 377-379
    [54] Maecker HT, Todd SC, Levy S. The tetraspanin superfamily:molecular facilitators. FASEB J 1997, 11,428-442
    [55] Berditchevski F, Odintsova E. Characterization of integrintetraspanin adhesion complexes: role of tetraspanins in integrin signalling. J Cell Biol 1999, 146, 477-492
    [56] Sugiura T, Berditchevski F. Function of alpha3 betal±tetraspanin protein complexes in tumour cell invasion. Evidence for the role of complexes in production of metalloproteinase 2 (MMP-2). J Cell Biol 1999, 146, 1375-89
    [57] Niu J, Gu X, Turton J, et al. Integrin-mediated signalling of gelatinase B secretion in colon cancer cells. Biochem Biophys Res Commun 1998, 249, 287-291
    [58] Agrez M, Gu X, Turton J, et al. The alpha v beta 6 integrin induces gelatinase B secretion in colon cancer cells. Int J Cancer 1999, 81, 90-97
    [59] Yu Q, Stamenkovie I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 1999, 13, 35-48
    [60] Yu Q, Stamenkovic Ⅰ. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000, 14, 163-176
    [61] Borghaei RC, Rawlings PL Jr, Mochan E. Interleukin-4 suppression of interleukin-1-induced transcription of collagenase MP-1) and stromelysin 1 (MMP-3) in human synovial fibroblasts. Arthritis Rheum 1998, 41, 1398-1406
    [62] Kossakowska AE, Edwards DR, Prusinkiewicz C, et al. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 andMMP-9) and tissue inhibitor of metalloproteinase (TIMP-1)expression in malignant non-Hodgkin's lymphomas. Blood 1999,94, 2080-89
    [63] Stearns ME, Rhim J, Wang M. Intedeukin 10 (IL-10) inhibition of primary human prostate cell-induced angiogenesis: IL-10 stimulation of tissue inhibitor of metalloproteinase-1 and inhibition of matrix metalloproteinase (MMP)-2/MMP-9 secretion. Clin Cancer Res 1999, 5,189-196
    [64] Bar-Eli M. Role of intedeukin-8 in tumour growth and metastasis of human melanoma. Pathobiology 1999, 67, 12-18
    [65] Stephanie C, Graeme I. Matrix metalloproteinase expression in tumor invasion and metastasis. J Pathol,1999,189 (3): 300-308
    [66] KimJ, Yu W, Kovalski K, et al. Requirement of specific proteases in cancer cell intravasation as revealed by novel semiquantitative PCR-based assay. Cell, 1998, 94(3): 353-362
    [67] Pilcher B, Dumin J, Sudbeck B, et al. The activity of collagenase-1 is required for keratinocyte migration on a type Ⅰ collagen matrix. J Cell Biol ,1997, 137(6): 1445-57
    [68] Thomas P, Khokha R, Shepherd FA, et al. Differential expression of matrix metalloproteinases and their inhibitors in non-small cell lung cancer. J Pathol, 2000,190(2): 150-156
    [69] Michael M, Babic B, Khokha R, et al. Expression and prognostic signifycance of metalloproteinases and their tissue inhibitors in patients with small cell lung cancer. J Clin Oncol,1999,17(6): 1802-1808
    [70] Gonzalez AG, Iturrea C, Vadillo F, et al. 72kd (MMP-2) and 92kd (MMP-9) type Ⅳcollagenase production and activity in different histologic types of lung cancer. Pathobiology, 1998,66(1): 5-16
    [71] Itoh T, Tanioka M, Yoshida H , et al . Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res,1998,58 (5): 1048-51
    [72] Ylisirnio S, Hoyhtya M, Turpeenniemi HT, et al. Serum MMP-2, -9 and TIMP-1 , -2 in lung cancer -TIMP-1 as a prognostic marker. Anticancer Res, 2000,20(2B): 1311-16
    [73] Kodate M, Kasai T , Hashimoto H , et al .Expression of metalloproteinase (gelatinase) in T1 adenocarcinoma of the lung. Pathol Int , 1997 ,47(7): 461-469
    [74] 周可祥,吴秉铨,郑杰,等.TIMP21基因转染对人肺巨细胞癌系生物学行为的影响.中华医学杂志,1994,74(7):402-405
    [75] 李红梅,方伟岗,时峥,等.TIMP22基因转染对高转移性人肺巨细胞癌系生物学行为的影响.中华医学杂志,1997,77(9):652-656
    [76] Prontera C, Mariani B, Rossi C, et al. Inhibition of gelatinase A (MMP-2) by batimastat and captopril reduces tumor growth and lung metastasis in mice bearjng Lewis lung carcinoma. Int J Cancer,1999,81(5): 761-766
    [1] Rudin CM, Kozloff M, Hoffman PC, et al. Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer[J]. J Clin Oncol, 2004,22(6):1110-17
    [2] Taylor AH, al2Azzawi F, Pringle JH, et al. Inhibition of endometrial carcinoma cell growth using antisense estrogen receptor oligodeoxyribonucleo- tides [J]. Anticancer Res,2002,22(6C):3993-4003
    [3] Jones MB, Michener CM, Blanchette JO, et al. The granulin-epithelin precursor/ PC-cell-derived growth factor is a growth factor for epithelial ovarian cancer [J]. Clin Cancer Res, 2003,9(1) :44-51
    [4] Michel T, Martinand-Mari C. Cationic phosphoramidate alpha-oligonucleotides efficiently target single-stranded DNA and RNA and inhibit hepatitis C virus IRES2mediated translation[J]. Nucleic Acids Res, 2003,31(18):5282-90
    [5] Wasan EK, Waterhouse D, Sivak O, et al. Plasma protein binding, lipoprotein distribution and uptake of free and lipid-associated BCL-2 antisense oligodeoxynucleotides (G3139) in human melanoma cells [J]. Int J Pharm,2002,241(1): 57-64
    [6] Liu G, Zhang S, He J, et al. The influence of chain length and base sequence on the pharmacokinetic behavior of 99m Tc-morpholinos in mice [J]. Q J Nucl Med, 2002,46 (3):233-243
    [7] Henry SP. Evaluation of the toxicity of ISIS 2302, a phosphorothioate oligonucleotide, in a four-week study in cynomolgus monkeys[J]. Toxicology, 1997,120(2):145-155
    [8] White PJ, Gray AC, Fogarty RD, et al. C-5 propyne-modified oligonucleotides penetrate the epidermis in psoriatic and not normal human skin after topical application[J]. J Invest Dermatol, 2002,118(6):1003-1007
    [9] Burkhart CA, Cheng AJ, Madafiglio J , et al. Effects of MYCN antisense oligonucleotide administration on tumorigenesis in a murine model of neuroblastoma[J]. J Natl Cancer Inst, 2003,95(18) :1394-03
    [10] Stewart DJ, Donehower RC, Eisenhauer EA, et al.A phase I pharmacokinetic and pharmacodynamic study of the DNA methyltranferase 1 inhibitor MG98 administeredtwice weekly[J]. Ann Oncol, 2003,14(5):766-774
    [11] De Rosa G, Bochot A, Quaglia F, et al. A new delivery system for antisense therapy: PLGA microspheres encapsulating oligonucleotide/ polyethyleneimine solid complexes [J]. Int J Pharm, 2003,254(1):89-93
    [12] Geary RS, Khatsenko O, Bunker K, et al. Absolute bioavailability of 2'- O-(2-methoxyethyl)-modified antisense oligonucleotides following intraduodenal instillation in rats [J]. J Pharmacol Exp Ther, 2001,296(3):898-904
    [13] Yu RZ, Geary RS, Monteith DK. Tissue disposition of 2'-O-(2-methoxy) ethyl modified antisense oligonucleotides in monkeys[J]. J Pharm Sci, 2004, 93(1):48-59
    [14] Maksymowych WP, Blackburn WD Jr, Tami JA, et al. A randomized, placebo controlled trial of an antisense oligodeoxynucleotide to intercellular adhesion molecule-1 in the treatment of severe rheumatoid arthritis[J]. J Rheumatol, 2002,29(3):447-453
    [15] Geary RS, Yu RZ. Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2'- O-(2-methoxyethyl)-modified antisense oligonucleotide: comparison across species [J]. Drug Metab Dispos, 2003,31(11):1419-28
    [16] Sewell KL, Geary RS, Baker BF, et al. Phase I trial of ISIS 104838, a 2'- methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha [J]. J Pharmacol Exp Ther, 2002,303(3):1334-43
    [17] Bijsterbosch MK, Manoharan M, Dodand R, et al. bisCholesteryl-conjugated phosphorothioate oligodeoxynucleotides are highly selectively taken up by the liver[J]. J Pharmacol Exp Ther, 2002,302(2):619-626
    [18] Graham MJ, Crooke ST, Lemondis KM, et al. Hepatic distribution of a phosphomthioate oligodeoxynucleoside within rodents following intravenous administration [J]. Biochem Pharmacol, 2001,62(3):297-306
    [19] Inagawa T, Nakashima H. Inhibition of human immunodeficiency virus type 1 replication by P-stereodefined oligo (nucleoside phosphorothioates) in a long-term infection model [J]. FEBS Lett, 2002,528(1-3):48-50
    [20] Hoke GD, Draper K, Freier SM, et al. Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection[J]. Nucleic Acids Res, 1991,19 (20): 5743-48
    [21] Maltese JY, Sharma HW, Vassilev L, et al. Sequence context of antisense RelA/ NF-kappa B phosphorothioates determines specificity [J]. Nucleic Acids Res, 1995,23(7):1146-51
    [22] Zhao Q, Yu D, Agrawal S. Site of chemical modification in CpG containing phosphorothioate oligodeoxynucleotide modulates its immunostimulatory activity [J]. Bioorg Med Chem Lett, 1999,9(24):3453-58
    [23] Zhang R, Iyer RP, Yu D, et al. Pharmacokinetics and tissue disposition of a chimeric oligodeoxynucleoside phosphorothioate in rats after intravenous administration [J]. J Pharmacol Exp Ther, 1996,278(2):971-979
    [24] Nielsen PE, Egholm M, Berg RH, et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide [J]. Science, 1991, 254(5037) :1497-1500
    [25] Surgimoto N, Yamamoto K, Satoh N. Positional effect of single bulge nucleotide on PNA (peptide nucleic acid)/DNA hybrid stability[J]. Nucleic Acids Symp Ser, 1999(42):95-96
    [26] Egholm M, Buchardt O, Christensen L, et al. PNA hybridizes to complementtary oligonucletides obeying the Watson-Crick hydrogen-bonding rules [J] Nature, 1993,365(6446) :566-568
    [27] Larsen HJ, Bentin T, Nielsen PE. Antisense properties of peptide nucleic acid [J]. Biochim Biophys Acta, 1999,1489 (1):159-166
    [28] Falkiewicz B. Peptide nucleic acids and their structural modifications[J]. Acta Biochim Pol, 1999,46 (3):509-529
    [29] Ardhammar M, Norden B, Nielsen PE, et al. In vitro membrane penetration of modified peptide nucleic acid(PNA) [J]. J Biomol Struct Dyn, 1999, 17(1): 33-40
    [30] Sohail M, Hochegger H, Klotzbucher A, et al. Antisense oligonucleotides selected by hybridisation to scanning arrays are effective reagents in vivo. Nucleic Acids Res,2001,29(10): 2041-51
    [31] Scherr M, LeBon J, Castanotto D, et al. Detection of antisense and ribozyme accessible sites on native mRNAs: application to NCOA3 mRNA.Mol Ther, 2001,4(5): 454-460
    [32] Gabler A, Krebs S, Seichter D, et al. Fast and accurate determination of sites along the FUT2 in vitro transcript that are accessible to antisense oligonucleotides by application of secondary structure predictions and RNase H in combination with MALDI-TOF mass spectrometry. Nucleic Acids Res ,2003,31 (15):e79
    [33] Bohula EA, Salisbury AJ, Sohail M, et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J Biol Chem, 2003, 278(18): 15991-97
    [34] Sokol DL, Zhang X, Lu P, et al. Real time detection of DNA.RNA hybridization in living cells. Proc Natl Acad Sci USA, 1998,95 (20): 11538-43
    [35] Allawi HT, Dong F, Ip HS, et al. Mapping of RNA accessible sites by extension of random oligonucleotide libraries with reverse transcriptase. RNA,2001,7(2): 314-327
    [36] Zhang HY, Mao J, Zhou D, et al. mRNA accessible site tagging(MAST): a novel high throughput method for selecting effective antisense oligonucleotides. Nucleic Acids Res, 2003,31(14):e72
    [37] Sierakowska H, Sambade MJ, Agrawal S, et al. Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides. Proc Natl Aead Sci USA, 1996,93(23):12840-44.
    [38] Bondensgaard K, Petersen M, Singh S-K, et al. Structural studies of LNA: RNA duplexes by NMR: conformations and implications for RNase H activity. Chemistry, 2000,6(15): 2687-95
    [39] Renneberg D, Bouliong E, Reber U, et al. Antisense properties of tricyclo-DNA. Nucleic Acids Res, 2002,30(13):2751-57
    [40] Braasch DA, Corey DR. Novel antisense and peptide nucleic acid strategies for controlling gene expression. Biochemistry, 2002,41 (14): 4503-10.
    [41] Villalona Calero MA,Rich P,et al. A phase Ⅰ/Ⅱ study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer Res, 2004, 10 (18PtI): 6086-93
    [42] Hofmann J. Protein kinase C isozymes as potential targets for anticancer therapy [J]. Curr Cancer Drug Targets,2004,4(2):125-146
    [43] Bettaieb A, Dubrez2Daloz L, Launay S, et al. Bcl-2 proteins: targets and tools for chemosensitisation of tumor cells[J]. Curr Med Chem Anti2Canc Agents, 2003,3(4):307-318
    [44] 孔灵玲,方伟岗,由江等。可调控型反义基因基质金属蛋白酶9表达抑制人黑色素瘤细胞侵袭转移表型的研究[J]。中华病理学杂志,2003,32(2): 137-141
    [45] Bollag G, Freeman S, Lyons JF, et al. Raf pathway in-hibitors in oneology[J]. Curr Opin Investig Drugs, 2003,4 (12):1436-41
    [46] Jansen B, Zangemeister2Wittke U. Antisense therapy for cancer - the time of truth[J]. Lancet Oncol, 2002,3(11):672-683
    [47] Gleave ME, Miyake H, Zellweger T, et al. Use of antisense oligonucleotides targeting the antiapoptotic gene, clusterin/ testosterone-repressed prostate message 2, to enhance and rogen sensitivity and chemosensitivity in prostate cancer [J]. Urology, 2001,58 (2 Suppl 1) :39-49
    [48] Goffin J, Eisenhauer E. DNA methyltransferase inhibitors- state of the art [J]. Ann Oncol, 2002,13 (11):1699-16
    [49] Lee Y, Vassilakos A, Feng N, et al. GTI-2040, an antisense agent targeting the small subunit component (R2) of human ribonucleotide reductase, shows potent antitumor activity against a variety of tumors[J]. Cancer Res, 2003,63(11): 2802-11
    [50] Du QY, Wang XB, Chen XJ, et al. Antitumor mechanism of antisense cantide targeting human telomerase reverse transcriptase[J]. World J Gastroenterol, 2003,9(9):2030-35
    [51] Fu XH,Zhang N,et al.Combination of telomerase antisense oligonucleotides simultaneously targeting hTR and hTERT produces synergism of inhibition of telomerase activity and growth in human colon cancer cell line.World J Gastroenterol 2005,11 (6):785-790
    [52] Lin L, Wang SQ, Guan W, et al. Antitumor activity of antisense oligonucleotides targeted to IGF1R in vivo and in vitro[J]. Prog Biochem Biophys, 2002, 29(2): 247-251
    [53] Xia C, Xu Z, Yuan X, et al. Induction of apoptosis in mesothelioma cells by antisurvivin oligonucleotides[J]. Mol Cancer Ther, 2002,1 (9):687-694
    [54] Forster Y,Meye A, Krause S,et al. Antisen-mediated VEGF suppression in bladder and breast cancer cells. Cancer Lett,2004,212(1):95-103
    [55] Gao XN ,Tang XF.S100A4 antisense oligonucleotide suppresses invasive potenial of neuroblastoma cells.J Pediatr Surg, 2005,40(4):648-52
    [56] Chana JS, Grover R, Tulley P, et al. The c-myc oncogene: use of a biological prognostic marker as a potential target for gene therapy in melanoma [J]. Br J Plast Surg, 2002,55(8) :623-627
    [57] Wiesenauer CA, Yip2Schneider MT, Wang Y, et al. Multiple anticancer effects of blocking MEK-ERK signaling in hepatocellular carcinoma[J]. J Am Coll Surg, 2004,198(3):410-421
    [58] Kausch I, Lingnau A, Endl E, et al. Antisense treatment against Ki-67 mRNA inhibits proliferation and tumor growth in vitro and in vivo [J]. Int J Cancer, 2003,105 (5) :710-716
    [59] Tanabe K, Kim R, Inoue H, et al. Antisense Bcl-2 and HER-2 oligonucleotide treatment of breast cancer cells enhances their sensitivity to anticancer drugs[J]. Int J Oncol,2003, 22(4):875-881

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700