新型希夫碱金属配合物的合成、表征及荧光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属配位聚合物作为一种新型的分子材料,以其独特的结构可剪裁性、丰富的拓扑结构和在离子交换、非线性光学、分子识别等领域的巨大潜在应用而受到广泛的关注,同时由于希夫碱配合物在分析化学、生物、发光材料和金属腐蚀等领域具有广泛的应用,成为当前配位化学研究热点之一。合成新的希夫碱配体及配位聚合物,研究其性质及应用,对配位化学的发展有重要意义。
     本文合成了未见报道的4个系列29种新型配合物和一个希夫碱化合物的单晶。配合物中有6种高分子量的四元或二元配位聚合物,10种低聚配位聚合物,1种醋酸根桥联配位低聚物及8种稀土配合物及其它4种双核或多核配合物。这些配合物是以过渡金属(II)或稀土元素Ln(III)为中心离子,以2-羟基-1-萘醛缩4,4ˊ-二氨基二苯甲烷(H2DDMNA)、2-羟基-1-萘醛缩4,4ˊ-二氨基二苯醚(H2DDENA)、2-羟基-1-萘醛缩2,7-二氨基萘(H2DNNA)和2, 4-二羟基苯甲醛缩4,4ˊ-二氨基二苯醚(H4DDEDB)为配体合成的。采用元素分析、光谱分析、X-ray晶体衍射、摩尔电导率、热分析、凝胶渗透色谱(GPC),基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)等方法对合成的配体及配合物进行了表征,推断出配合物可能的结构,对配体和具有荧光的配合物进行了荧光光谱分析。同时对部分配合物与DNA的相互作用进行了研究。配合物的组成如下。
     2-羟基-1-萘醛缩4,4ˊ-二氨基二苯甲烷希夫碱(H2DDMNA)高分子量的过渡金属离子配位聚合物共6种,其中5种配位数为6的四元六配位聚合物,其组成分别为:[M(DDMNA)(L1)(H_2O)]n(M=Zn,Cu,Co,Ni,Mn),[Cd(DDMNA)]n。
     2-羟基-1-萘醛缩4,4ˊ-二氨基二苯醚希夫碱(H2DDENA)过渡及稀土金属离子配合物共10种,其中有6种属于低聚物的过渡金属配位聚合物,4种稀土配合物。其组成分别为:[M(DDENA)]n(M=Zn,Cu,Co,Ni,Mn,Cd),Ln(DDENA)(NO_3)(Ln=Sm,La,Gd,Dy)。
     2-羟基-1-萘醛缩2,7-二氨基萘希夫碱(H2DNNA)过渡及稀土金属离子配合物共8种,其中有4种属于低聚物的过渡金属配位聚合物,4种稀土配合物。其组成分别为:[M (DNNA)](nM=Zn,Cu,Co,Ni),Ln (HDNNA)(NO_3)2(H_2O()Ln=Sm,La,Gd,Dy)。\2,4-二羟基苯甲醛缩4,4ˊ-二氨基二苯醚希夫碱(H4DDEDB)过渡金属离子配合物共5种,其组成分别为:Cd2(DDEDB)L~2(H_2O)5、Cu3(DDEDB)L~2(L3)2(H_2O)2、Co5(DDEDB)(L3)6(H_2O)2、Ni4(DDEDB)(L3)4(H_2O)4和Zn2(DDEDB)(H_2O)2,它们为双核或多核配合物,其中Co5(DDEDB)(L3)6(H_2O)2属于低聚物的四元醋酸根桥联配位聚合物。
     合成的配合物均有颜色粉末状物质,在空气中能稳定存在;配体C=N上的N原子、苯环酚羟基的氧原子、硝酸根氧原子、醋酸根氧原子,四氢呋喃的氧原子都是可配位的原子;硝酸根在内界以双齿形式参与配位,醋酸根以桥联双核参与配位,水分子通常参与配位或以结晶形式存在;同配体的稀土配合物的配位数高于过渡金属配合物;稀土元素由于价电子层构型的相似性,使同一配体与不同的稀土金属离子生成的配合物具有相似的组成、结构及物理化学性质;Zn(II), Mn(II), Cu(II), Ni(II), Co(II)可形成六配位的配位聚合物,Cd(II)可以形成配位数为五的双核配合物。
     利用Achar的微分法和Coats-Redfern的积分法计算程序,分别对30种热分解动力学方程进行了拟合,对部分配合物进行了非等温热分解动力学处理,得出了配合物的热分解反应机理、热分解动力学方程、相应的动力学参数及活化熵ΔS≠和活化吉布斯函数ΔG≠,结果如下:
     配位聚合物[Zn(DDMNA)(L1)(H_2O)]n的第2步热分解过程的反应机理为:二级化学反应动力学函数为:f(α)=(1-α)2,热分解动力学方程为: dα/dt = A·e-E/RT·f(α) = A·e-E/RT(1-α)2,E = 348.61kJ/mol,lnA =52.10,r = 0.9981,△S≠=180.96J/mol·K,△G≠=219.04 kJ/mol。
     配位聚合物[Cd(DDMNA)]n的第1步热分解过程的反应机理为:三维扩散热,动力学函数符合Zhuralev、Lesokin和Templman方程: f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1,其热分解动力学方程为:dα/dt = A·e-E/RT·f(α) = A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1,E = 536.71kJ/mol,lnA =87.60,r = 0.9988,△S≠=476.66J/mol·K,△G≠=217.35 kJ/mol。
     配位聚合物[Zn(DDENA)]n的热分解过程的反应机理为:三维扩散,动力学函数符合Zhuralev、Lesokin和Templman方程: f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1,其热分解动力学方程为:dα/dt= A·e-E/RT·f(α)=A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1,E = 539.84kJ/mol,lnA =81.20,r = 0.9612,△S≠=422.56J/mol·K,△G≠=238.55 kJ/mol。桥联配位聚合物Co5(DDEDB)(L3)6(H_2O)2的第2步热分解动力学函数为:f(α)=1/4(1-α)[-ln(1-α)]-3,热分解的动力学方程为:dα/dt = A·e-E/RT·f(α) = A·e-E/RT f(α) =1/4(1-α)[-ln(1-α)]-3,E= 312.54kJ/mol,lnA =43.65,r =0.9784,△S≠=110.05J/mol·K,△G≠= 227.25kJ/mol。
     配合物Cd2(DDEDB)L~2(H_2O)5的第2步热分解过程的反应机理为:三维扩散,其反应动力学符合Zhuralev, lesokin和Templman方程函数:f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1 ,热分解动力学方程为: dα/dt=A·e-E/RT·f(α)= A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1 , E=175.07kJ/mol , lnA=30.83 , r=0.9984 ,△S≠=6.53J/mol·K,△G≠=171.57 kJ/mol。
     配位聚合物[Zn (DNNA)]n热分解过程的反应机理为:二级化学反应:其动力学函数符合方程:f(α)=(1-α)2,热分解动力学方程为:dα/dt = A·e-E/RT·f(α) = A·e-E/RT(1-α)2,E = 1789.21kJ/mol,lnA =260.92,r = 0.9768,△S≠=1916.15J/mol·K,△G≠=252.46 kJ/mol。
     培养得到了希夫碱2-[[(2-氨基苯基)亚胺]苯甲基]-4-氯苯酚(C19H15ClN2O)的晶体,通过x-射线单晶衍射测定了其结构。该晶体属三斜晶系,空间点群P-1 ,晶胞参数为a =8.5630(17)?,α= 68.96(3)?,b = 9.4940(19)? ,β= 84.84(3)?,c = 11.069(2)?,γ= 77.75(3)?,V = 820.7(3)?3,Z = 2,F(000) = 336,Dc = 1.306 g/cm3 ,μ= 0.24 mm-1。最终偏差因子[对I>2σ(I)的衍射点] R1 = 0.0442, wR2 = 0.1186和R1 = 0.0721,wR2 = 0.1339 (对所有衍射点):w = 1/[σ2 (Fo2)+(0.0738P)2+0.1224P],P =(Fo2+2Fc2)/3。运用Gaussian03量子化学程序包,采用密度泛函理论(DFT) B3LYP方法,采用6-31G+标准基组,计算采用的原子坐标来自晶体结构数据,对化合物进行几何全优化,并在优化构型基础上探讨了NBO电荷分布和转移、自然键轨道和分子轨道成份及能级等,通过对电荷布居分析、分子轨道成份、分子轨道相互作用稳定化能的研究,进一步说明了氢键的形成,用分子轨道理论(HOMO、LUMO轨道)揭示了化合物的微观结构化学活性部位,这可为同类异双希夫碱配体及其配合物的合成,催化和生物活性等方面的研究和应用提供参考。
     对配体H2DDMNA、H2DDENA和H2DNNA及具有荧光的希夫碱配位聚合物的荧光特性进行了研究。配体H2DDMNA和H2DDENA及希夫碱配位聚合物[Zn(DDMNA)(L1)(H_2O)]n、[Cd(DDMNA)]n、[Zn(DDENA)]n和[Cd(DDENA)]n的荧光光谱的激发峰和发射峰λex/λem分别为:491nm /510 nm;494nm /515 nm; 281nm /505 nm、348nm/505 nm、430nm/505 nm;290nm /515 nm、349nm/515 nm、430nm/515 nm、456nm/515nm、484nm/515nm;290nm /505 nm、360nm/505 nm;290nm /410 nm。
     配体H2DNNA及希夫碱配位聚合物[Zn(DNNA)]n、双核希夫碱配合物Zn2(DDEDB)(H_2O)2,和Cd2(DDEDB)L~2(H_2O)5,的荧光光谱的激发峰和发射峰λex/λem分别为:290nm /505 nm、352nm /505 nm和491nm /505 nm; 280nm /500 nm、332nm/500 nm、435nm/500 nm;275nm /385 nm,并且在292nm/385 nm和338nm/385 nm存在两个肩峰;300nm/375nm和325nm/375nm。
     配合物[Zn(DDMNA)(L1)(H_2O)]n , [Cd(DDMNA)]n , [Zn(DDENA)]n ,Cd2(DDEDB)L~2(H_2O)5,[Zn (DNNA)]n具有良好的荧光特性。与配体相比,相应的配合物激发峰个数和发射峰位置发生了变化,荧光强度也增强。
     采用吸收光谱分析法、荧光光谱法对配合物Cd2(DDEDB)L~2(H_2O)5、Dy(HDNNA)(NO_3)2(H_2O)与DNA的相互作用分别进行了研究。配合物Cd2(DDEDB )L~2(H_2O)5的吸收光谱随着DNA的加入发生增色效应,且吸收峰发生红移,而配合物的荧光越来越弱,发生荧光猝灭作用。DNA对配合物Cd2(DDEDB)L~2(H_2O)5的荧光猝灭属于静态猝灭,其静态猝灭结合常数KLB为2.2x104 L·mol-1。DNA与配合物Cd2(DDEDB)L~2(H_2O)5结合反应结合位点数n为1.32,结合常数KA为2.63X105 L·mol-1。
     配合物Dy(HDNNA)(NO_3)2(H_2O)与DNA相互作用后的吸收峰随着DNA浓度的增大吸收光谱发生微小的增色效应。随着而配合物Dy(HDNNA)(NO_3)2(H_2O)浓度的不断增加,使EB-DNA的荧光强度越来越弱,发生荧光猝灭作用。配合物Dy(HDNNA)(NO_3)2(H_2O)对EB-DNA体系荧光猝灭并非单纯的动态或静态猝灭,而是两种猝灭方式共同作用的结果。配合物Dy(HDNNA)(NO_3)2(H_2O)与DNA的作用方式为非嵌插的静电作用和嵌插作用两种方式。
Metal coordination polymers, a new kind of molecule materials, have attracted much more attentions for their flexible tailoring、various topologies and promising application in ion-exchange, non-liner optics, molecular recognition. Schiff base and its complexes are widely used in the fields of analytical chemistry, biology, metal corroded and luminescent material. The study of them is focus of the study of coordination chemistry. So, prepare new Schiff base coordination polymer and study their properties and application are of important significance to the development of coordination chemistry.
     Four Schiff base ligands which are derived from 4,4ˊ-diaminodiphenylmethane- 2-hydroxy-1-naphthaldehyde (H2DDMNA), 4,4ˊ-diaminodiphenylether-2-hydroxy- 1-naphthaldehyde (H2DDENA), 2,7-diamino naphthalene -2-hydroxy- 1-naphthaldehyde (H2DNNA), 4,4ˊ-diaminodiphenylether-2,4-dihydroxybenzaldehyde(H4DDEDB) have been prepared, and twenty nine coordination compounds of transition metal or lanthanide nitrates with these ligands and crystal of Schiff base 2-[[(2-aminophenyl)imino] phenyl- methyl]- 4-chlorophenol have been synthesized. In these complexes, there are six coord- ination polymer, ten low coordination polymer, one low coordination polymer of the ac- etate as a bridge, eight rare earth complexes and four dinuclear or multinuclear compl- exes. All these complexes are first reported by author. These ligands and complexes were characterized by elemental analysis, IR spectra, UV spectra , TG-DTG,X-ray crystal diffraction , molar conductance analysis, gel permeation chromatography(GPC) and assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometer. Fluorescence of schiff base ligands and their complexes of Cd2+, Zn2+ have been studied. The interaction between partial complexes and DNA has been studied, too.
     The transition metal complexes with Schiff base ligands from 4, 4ˊ-diaminodiiphen- ylmethane-2-hydroxy-1-naphthaldehyde (H2DDMNA) are coordination polymers. The compositions of these complexes are confirmed to be [M(DDMNA)(L1)(H_2O)]n(M=Zn,Cu,Co,Ni,Mn,they are hexa-coordinated and quaternary coordination polymer ),[Cd(DDMNA)]n. The compositions of the metal complexes with Schiff base ligands from 4,4ˊ-di- aminodiphenylether-2-hydroxy-1-naphthaldehyde(H2DDENA) are confirmed to be [M(DDENA)]n(M=Zn,Cu,Co,Ni,Mn,Cd),Ln(DDENA)(NO_3)(Ln=Sm,La,Gd,Dy ). The transition metal complexes of this ligand are low coordination polymers.
     The compositions of the metal complexes with Schiff base ligands from 2,7-diamino naphthalene-2-hydroxy-1-naphthaldehyde (H2DNNA) are confirmed to be [M (DNNA)]n M=Zn,Cu,Co,Ni),Ln (HDNNA)(NO_3)2(H_2O)(Ln=Sm,La,Gd,Dy). The transition metal complexes of this ligand are low coordination polymers.
     The compositions of the metal complexes with Schiff base ligands from 2,7-diamino naphthalene-2-hydroxy-1-naphthaldehyde(H2DNNA) are confirmed to be Cd2(DDEDB)L~2(H_2O)5、Cu3(DDEDB)L~2(L3)2(H_2O)2、Co5(DDEDB)(L3)6(H_2O)2、Ni4(DDEDB)(L3)4(H_2O)4 and Zn2(DDEDB)(H_2O)2. The Co5(DDEDB)(L3)6(H_2O)2 is low coordination polymers. The others are dinuclear or polynuclear complexes.
     The synthesis of ligands and complexes was in non-aqueous solvents. All of the complexes were stable and could be preserved in the air for a long time. The complexes were colored and powered substances. The properties of the Ln(Ⅲ) complex with the
     In the complexes, the nitrogen atom of schiff base, oxygen atom of hydroxybenzene, and the oxygen atom in tetrahydrofuran are all coordinated to the metal ions. Water molecules are coordinated to the acceptor or exists as crystal water.
     The nitrate ions are within the coordination sphere, these are coordinated to the metal ions in the form of bidentate. The acetate tends to coordinate with the center ion as a bridge. Zn(II), Cu(II), Mn(II), Co(II), Ni(II) and Cd(II) atoms may be respectively hexa- or penta- coordinated.
     Combinating Achar differential and Coats-Redfern integral method which fits the thirty kinetic equations, the calculating program was designed. The kinetic equations of thermal decomposition for complexes and the corresponding kinetic parameters were gained. The kinetic parameters include E、A, order of reaction and correlation coefficient, etc. The activation entropy△S≠and activation free-energy△G≠for some thermal decomposition stage were also calculated.
     The thermal decomposition kinetic function of [Zn(DDMNA)(L1)(H_2O)]n in step 2 may be expressed as f(α)=(1-α)2, and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT(1-α)2, E = 348.61kJ/mol, lnA =52.10, r = 0.9981,△S≠=180.96J/mol·K,△G≠=219.04 kJ/mol. The thermal decomposition kinetic function of[Cd(DDMNA)]n in step 1 may be expressed as f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1, and the kinetic equation of thermal decom-
     position may be expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1, E = 536.71kJ/mol, lnA =87.60, r = 0.9988,△S≠=476.66J/mol·K,△G≠=217.35 kJ/mol.
     The thermal decomposition kinetic function of [Zn(DDENA)]n may be expressed as f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1, and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1,E = 539.84kJ/mol,lnA =81.20, r = 0.9612,△S≠=422.56J/mol·K,△G≠=238.55 kJ/mol. The thermal decomposition kinetic function of Co5(DDEDB) (L3)6(H_2O)2 in step 2 may be expressed as f(α)=1/4(1-α)[-ln(1-α)]-3, and the kinetic equation of thermal decomposition may be expressed as dα/dt = A·e-E/RT·f(α) = A·e-E/RT·1/4(1-α)[-ln(1-α)]-3, E=312.54kJ/mol, lnA=43.65, r=0.9784,△S≠=110.05J/mol·K,△G≠= 227.25kJ/mol.
     The thermal decomposition kinetic function of Cd2(DDEDB )L~2(H_2O)5 in step 2 may be expressed as f(α)=3/2(1-α)4/3[1/(1-α)1/3-1]-1, and the kinetic equation of thermal decomposition may be expressed as dα/dt=A·e-E/RT·f(α) =A·e-E/RT·3/2(1-α)4/3[1/(1-α)1/3-1]-1, E = 175.07kJ/mol, lnA =30.83, r = 0.9984,△S≠=6.53J/mol·K,△G≠=171.57 kJ/mol. The thermal decomposition kinetic function of [Zn(DNNA)]n may be expressed as f(α)=(1-α)2, and the kinetic equation of thermal decomposition may be expressed as dα/dt =A·e-E/RT·f(α)=A·e-E/RT(1-α)2, E=1789.21kJ/mol, lnA=260.92, r=0.9768,△S≠=1916.15 J/mol·K,△G≠=252.46 kJ/mol.
     The crystal of Schiff base 2-[[(2-aminophenyl)imino] phenylmethyl]-4-chlorophenol (C19H15ClN2O) was obtained and its crystal structure was determined by the single crystal X-ray diffraction. The compound crystallizes in the triclinic, space group P-1 with a =8.5630(17)?,α= 68.96(3)?, b = 9.4940(19)?,β= 84.84(3)?, c = 11.069(2)?,γ= 77.75(3)?, V = 820.7(3)?3, Z = 2, F(000) = 336, Dc = 1.306 g/cm3,μ= 0.24 mm-1, R1 = 0.0442, wR2 = 0.1186 (I>2sigma(I)), R1 = 0.0721, wR2 = 0.1339 (all data),w = 1/[σ2 (Fo2)+(0.0738P)2+0.1224P] and P=(Fo2+2Fc2)/3. The molecular structure of 2-[[(2-aminophenyl)imino]phenylmethyl]-4-chlorophenol is calculated using the density functional theory(DFT) with the gradient corrected B3LYP method. The standard 6-31G+ basis sets are applied for C、H、O、N and Cl atoms. Atom coordinates used in the calculation are from crystallographic data. The crystal structure of the compound is totally optimized. All data obtained from the calculations are consistent with those gained from the determination. All calculations are performed using the Gaussian03 program package. The formation of hydrogen bonding,, the relationship between fine micromechanism of the compound and its chemistry activities position are also expatiated according to the theory of molecular orbital (HOMO and LUMO) in this dissertation. It may direct to synthesize asymmetry schiff base ligand and complex etc.
     The excitation and emission peak wavelengths (λex/λem) of H2DDMNA, H2DDENA and H2DNNA are 491nm /510 nm; 494nm /515 nm and 290nm /505 nm, 352nm /505nm respectively in fluorescence spectra.
     The excitation and emission peak wavelengths(λex/λem) of the schiff base coordination polymer of [Zn(DDMNA)(L1)(H_2O)]n, [Cd(DDMNA)]n, [Zn(DDENA)]n, [Cd(DDENA)]n and [Zn(DNNA)]n are 281nm /505 nm, 348nm/505 nm, 430nm/505 nm; 290nm /515 nm, 349nm/515 nm, 430nm/515 nm, 456nm/515nm, 484nm/515 nm; 290nm /505 nm, 360nm/505nm; 290nm /410nm and 280nm/500 nm, 332nm/500 nm, 435nm/500 nm respectively in fluorescence spectra.
     The excitation and emission peak wavelengths(λex/λem) of Zn2(DDEDB )(H_2O)2 and Cd2(DDEDB)L~2(H_2O)5 are 275nm/385nm and 300nm/375nm, 325nm/375nm respectively in fluorescence spectra.. The complexes of [Zn(DDMNA)(L1)(H_2O)]n, [Cd(DDMNA)]n, [Zn(DDENA)]n, [Cd(DDENA)]n , Cd2(DDEDB)L~2(H_2O)5 , [Zn (DNNA)]n and Zn2(DDEDB )(H_2O)2 have good fluorescence. Compared with the ligands, the excitation peaks and the emission peakof their complexes have changed, and the fluorescence intensity increases.
     The interaction of the Cd2(DDEDB)L~2(H_2O)5 and Dy(HDNNA)(NO_3)2(H_2O) complexes with DNA was studied by UVspectra and fluorescence spectra respectively. Experimental results show that on the incremental addition of DNA,the UV absorption bands of the complex of Cd2(DDEDB)L~2(H_2O)5 enhance gradually and red-shifted while the fluorescence intensity of the complex weakens. The type of quenching of Cd2(DDEDB)L~2(H_2O)5 and DNA is a static quenching process. The static quenching constant is KLB=2.2x104 L·mol-1. The binding site number n and the intrinsic binding constant were measured respectively, they were n=1.32, KA=2.63X105 L·mol-1.
     Experimental results show that on the incremental addition of DNA,the UV absorption bands of the complexe of Dy(HDNNA)(NO_3)2(H_2O) tiny enhance gradually. The fluorescence intensity of the EB-DNA complex weakens with increasing concentration of Dy(HDNNA)(NO_3)2(H_2O). It was confirmed that the combinations of DNA with Dy(HDNNA)(NO_3)2(H_2O) were not a single static or dynamic quenching process .they are joint action of the static and dynamic quenching process. It was confirmed that electrostatical and intercalation binding were the both modes of interaction between Dy(HDNNA)(NO_3)2(H_2O) complex and DNA..
引文
[1] 邰子厚, 余学海, 杨昌正. 高分子金属配合物功能材料. 功能材料, 1991, 22 (1) :14-20.
    [2] 施莱佛HL, 格里曼G著. 曾成, 王国雄译. 配体场理论基本原理. 南京: 江苏科学技术出版社,1982,113-157.
    [3] 欧格尔LE著. 过度金属化学导论-配位场理论. 游效曾译. 北京: 科学出版社, 1966,45.
    [4] 游效曾. 配位化合物的结构和性质. 北京: 科学出版社,1992.
    [5] 赵大成. 理论无机化学-结构与反应机理. 长春: 东北师范大学出版社,1994.
    [6] 巴索洛F, 皮尔逊F.G. 无机反应历程-溶液中金属络合物的研究. 陈荣悌, 姚斌译. 北京:科学出版社, 1987.
    [7] Balzani V, Scandola F. Supermolecular Photochemistry. New York: Ellis Horwood, 1991.
    [8] Martell A E. Coordination Chemistry. Vol. 1. New York: Von Nostrand Reinhold, 1971.
    [9] 陈荣悌. 配位化学中的线性相关分析. 合肥: 安徽科学技术出版社, 1996.
    [10] Meites L, et al.. Electrochemical Data Organic, Organometallic and Biochemical Substances. New York: Wiley, 1974.
    [11] Wilkinson Sir, Stone G F A, Abel E W. Comprehensive Coordination Chemistry, The Synthesis, Reaction, Properties and Applications of Coordination Compounds. Oxford: Pergamon Press, 1987.
    [12] Dietrich B, Vion P, Lehn LM. Macrocyclic Chemistry. Germany: Federal Republic,1993.
    [13] 国家自然科学基金委员会. 自然科学学科发展战略调研报告. 无机化学. 北京: 科学出版社, 1994. [14 ]Orchin M., Schimidt P.T.. Pyridine n-oxide complexes of platinum(II). Coord. Chem. Rev., 1968, 3(3), 345-373.
    [15] Hodnett E. M.. J. Med. Chem., 1963, 63, 489.
    [16] Desai S B, Desai P B, Desai K R. Synthesis of some Schiff base thiazolidinones and azetidinones from 2, 6-diaminobonzol [1, 2-d: 4, 5-d}] bisthiazole and their activities. Hetercycl Commun, 2001, 7(1): 83-90.
    [17] Isse A A,Gennaro A, Vianello E. Electrochemical reduction of Schiff bases ligands H2 salen and HZ salophen. Electrochimical Acta, 1997, 42(13-14): 2065-2071.
    [18] Bastos M B R, Moreira J C, Farias P A M. Adsorptive striooing voltammetric behaviour of U02(II)complexed with the Schiff base N, N-prime-ethylenebis (salicylidenimine) in 4-(2-hydroxyethyl)小 piperazine ethanesulfonic acid medium. Analytica Chimica Acta, 2000, 408: 83-88.
    [19] 袁淑军, 蔡春, 吕春绪. 双亲性席夫碱铜(II)配合物的合成及苯甲醇的催化氧化. 应用化学,2003, 20 (3): 278-280.
    [20] 唐波, 张杰, 王栩. 新型主体试剂交联聚合 p-环糊精-邻香草醛苯甲酞踪的合成及荧光法识别锌. 分析化学, 2002, 30(10): 1196-1200. [21)李培凡, 刘燕,王智等. 对溴苯甲醛缩邻氨基酚席夫碱及其配合物的合成及抑菌活性. 天津师范大学学报,2003, 23(2): 10-12.
    [22] Maurya R C, Mishra D D.. Synthesis, magnetic and spectral studies of some mixed-ligand compl- exes of copper(II) and cobalt(II) with Schiff base and 2-or 3-pyrazoline-5-one derivatives. Synth. React. Inorg. Met. Org. Chem.1994, 24(3): 427-430.
    [23] Gaber M. Structural PH-metric and conductance studies of 4-(2-Pyridyl) (2-Hydroxyaceto- phenone)-3 -thiosemicar bazone (H2PHAT) complexes. symth. react, Inorg. Met. Org. Chem. 1994, 24(5): 813-816.
    [24] 王众钢, 杨志斌. 新席夫碱 SAAQ 合成及其分析应用研究一分光光度法测定镓. 化学试剂, 1993, 15(1): 17-18.
    [25] 李仲辉, 秦圣英. 冠醚化对双希夫碱钴(II)配合物催化氧化性能的影响. 应用化学, 1998 15(5): 43-46.
    [26] 王积涛. 手性过渡金属(Mn,Co, Ni)-Salen 配合物催化 NaOCI 不对称环氧化苯乙烯的反应. 有机化学, 1998 ,18(3): 228-232.
    [27] Mehmet T,Huseyin K and Selahattin S.. Synthesis, Charac -teriztion and Studies of Mononuciear and Binuclear Complexes of Copper( II )with Schiff Bases Derived from 1-Phenyl-2,3-Dimethyl-4-Amino-S-Pyrazolone. Synth. React. Inorg. Met. Org.Chem., 1996, 26(9): 1589-1594.
    [28] 陈德余, 江银枝. 过渡金属 L-丙氨酸希夫碱配合物的合成及其抗氧化性能. 应用化学, 1997, 14(3): 5-8.
    [29] Juan M, Fernandez q Hernandez Ortega S.. The structures and electrochemical studies of three 2, 3-naohthalenic Schiff base copper(II)complexes. Polyhedron. 1998, 17(15): 2425-2432.
    [30] Punniyamurthy, T.; Madhava Reddy, M.; Kalra, Swinder Jeet Singh; Iqbal, Javed. . Cobalt(II) Schiff base catalyzed biomimetic oxidation of organic substrates with dioxygen. pure. Appl.Chem. 1996, 68(3):619-622.
    [31] Tumer Mehmet, Koksal Huseyin, Serin, Selahattin. Synthesis, characterization and thermal studies of mononuclear and binuclear complexes of copper(II) with Schiff bases derived from 1-phenyl-2,3-dimethyl-4-amino-5-pyrazolone. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 1996, 26(9), 1589-1598.
    [32] Syamal A, Maurya M. R.. Coordination Chemistry of Schiff Base Complexes of Molybdenum. Coord. Chem. Rev., 1989, 95(2):183-238.
    [33] Maurya R.C, Mishra D. D.. Synthesis, Magnetic and Spectral Studises of Some Mixed- Ligand Complexes of Copper (Ⅱ ) and Cobalt( Ⅱ) with Schiff Bases and 2-or3-Pyrazoine-5-one Derivatives . Synth. rect. Inorg. Met. Org. Chem., 1994:24(3):427-439.
    [34] H.Chen, J.Rhodes. Schiff base forming drugs: mechanisms of immune potentiation and therapeutic potentia. Mol.Med, 1996, 74(9): 497-504.
    [35] 王成刚, 祝心德, 张超灿. N-水杨醛甘氨酸合铜(II)的加合物的合成和表征. 华中师范大学学报(自然科学版), 1995, 29(3): 336-340.
    [36] 游效曾, 孟庆金, 韩万书. 配位化学进展. 北京: 高等教育出版社, 2000,17-27.
    [37] 南光明, 刘德蓉. 浅述希夫碱及其金属配合物的由来、产生机理、合成方法及展望. 伊犁师范学院学报, 2005:(3):58-69.
    [38] Ley KD ,Whittle C E ,Bartberger M D,et al .. J. Am. Chem. Soc., 1997 ,119 (14) :3423 -3424.
    [39] Mitchell-Koch, J. T.; Borovik, A. S Immobilization of a Europium Salen Complex within Porous Organic Hosts: Modulation of Luminescence Properties in Different Chemical Environments. Chem Mater, 2003 , 15 (18) : 3490-3495.
    [40] Meyers A, Weck M.. Design and Synthesis of Alq3-Functionalized Polymers. Macromolecules, 2003, 36 (6) : 1766-1768.
    [41] Seward C ,Chan J ,Song D T , et al .. Anion Dependent Structures of Luminescent Silver(I) Complexes. Inorg. Chem.,2003 ,42 (4) :1112-1120.
    [42] Bloom C J ,ELliott C M,Schroeder P G, et al .. Tervalent conducting polymers with tailor-made work functions: preparation, characterization, and applications as cathodes in electroluminescent devices. J. Am. Chem. Soc. , 2001 , 123 (38) : 9436 -9442.
    [43] 梅群波, 杜乃婴, 吕满庚. 高分子金属配合物发光材料的制备技术进展. 现代化工, 2004, 24(4): 23-26.
    [44] Baldev Singh Manhas, Arun Kumar Trikha. Synthesis and characterisation of uranium(IV) nitrate complexes with piperazines. J Chem Soc Dalton Trans, 1985(9): 1985-1987.
    [45] Amos B. Smith, , III Barry A. Wexler, Chin Yun Tu, et al.. Stereoelectronic effects in the cationic rearrangements of [4.3.2]propellanes. J. Am. Chem. Soc., 1985, 107: 1308-1320.
    [46] Okamoto Y, Veba Y,Dzhanibekov N F, et al . characterizatiation of Ion - Containing Polymer Sturctures Using RareEarth Metal Fluorescence Probes. Macromol , 1981, 14(1) :17~22.
    [47] Victor Gold, Michael E. McAdam. Radiation-induced organic hydrogen isotope exchange reactions in aqueous solution. Acc. Chem. Rev., 1978, 11(1): 36-43.
    [48]Hirabaru, Okikazu; Nakase, Tomohiro; Hanabusa, Kenji, et al.. Functional metal-porphyrazine derivatives and their polymers. Part 11. Secondary fuel cells based on oxygen reduction at a platinum electrode modified by metal-2,9,16,23- tetracarboxyphthalo- cyanine covalently bound to poly(2-vinylpyridine-styrene)., J Chem Soc Dalton Trans, 1984(8):1485-1489.
    [49] Masao Kaneko, Akira Yamada, Eishun Tsuchida, et al.. Novel effect of neighboring groups on the quenching of the excited state of a polymer-pendant Ru(bpy)32+ by methyl viologen. J Phys Chem, 1984, 88(6): 1061-1062.
    [50] Kurimura Yoshimi, Katsumata Kimiyo.Tris(2,2'-bipyridine)ruthenium(II)-photosensitized reduction of methyl viologen and molecular oxygen in a network of water-swollen cation-exchange resin. Bull Chem Soc Jpn, 1982, 55(8): 2560-2563.
    [51] Kingo Itaya and Kimio Shibayama. Prussian-blue-modified electrodes: An application for a stable electrochromic display device, J Appl Phys, 1982, 53(1): 804-805.
    [52] Orihashi, Yuji; Kobayashi, Norihisa; Tsuchida, et al.. Highly conductive single crystals of metallophthalocyanine. Chem Lett, 1985, 11: 1617-1620.
    [53] Minami, Nobutsugu; Sasaki, Kanji; Tsuda, Keishiro. Improvement of the performance of particulate phthalocyanine photovoltaic cells by the use of polar polymer binders. J. Appl. Phys., 1983, 5(11): 6764-6766.
    [54] K.C. Gupta, H.K. Abdulkadir, S. Chand. Synthesis of polymer anchored, N-bis- (3-allylsalicylidene) o-phenylenediamine cobalt(II) Schiff base complexand its catalytic activity for decomposition of hydrogen peroxide. Journal of Molecular Catalysis A: Chemical , 2003, 202: 253–268.
    [55]ANJAL C. SHARMA, VIVEK JOSHI, A. S. BOROVIK. Surface Grafting of Cobalt Complexes on PolymericSupports: Evidence for Site Isolation and Applicationsto Reversible DioxygenBinding. Journal of Polymer Science: Part A: Polymer Chemistry, 2001, 39: 888–897.
    [56] Stuart R. Batten, Richard Robson,Interpentrating Nets: Ordered, Periodic Entanglement, Angew Chem. Ed. Engl., 1998, 37: 1460-1494.
    [57] Robson, R., Abrahams, B. F. Supramolecular Architecture. American Chemical Society: Washington, DC, 1992; Chapter 9.
    [58] Xuzhong Luo, Xuefen Wang, Sanxie Wu ,et al. .Strong blue-fluorescence-emitted stable monolayers formed in organicsolvents by a coordination polymer with long-chained bis-Schiff base. Journal of Colloid and Interface Science , 2003, 258: 432–434.
    [59] X. T. Tao, H. Suzuki, T. Watanabe, S. H. Lee, S. Miyata, and H. Sasabeb,Metal complex polymer for second harmonic generation and electro- luminescence applications. Appl. Phys. Lett., 1997, 70 (12):1503-1505.
    [60] Huiyong Chen,Jon A.Croin,and Ronald D.Araher. Synthesis and Characterization of Linear Cerium(IV) Schiff-Base Coordination Polymers. Macromolecules,1 994, 27: 2174-2180.
    [61] Yu-Bin Dong, a Xia Zhao, a Bo Tang, a Huai-You Wang. Novel organic–inorganic composite coordination polymers generatedfrom new multidentate schiff-base ligand and Ag(I) salts. C h e m . C o m m u n . , 2 0 0 4 , 2 2 0 -2 2 1.
    [62] Yu-Bin Dong, Xia Zhao, and Ru-Qi Huang. New Ag(I)-Containing Coordination Polymers Gen- erated from Multidentate Schiff-Base Ligands. Inorganic Chemistry, 2004, 43(18): 5603-5612.
    [63] Ming-Liang Tong, Xiao-Ming Chen, Bao-Hui Ye, and Liang-Nian Ji,Self-Assembled Three- DimensionalCoordination Polymers with Unusual Ligand-Unsupported Ag?Ag Bonds: Synthe- ses,Structures, and Luminescent Properties. Angew. Chem. Int. Ed.. 1999, 38(15): 2237-2239. [64 ] Deshpande U G, Shah J R. Coordination polymers. IV. Physicochemical studies on chelate poly- mers of chromium(III), manganese(II), iron(II), cobalt(II), nickel(II), and copper(II) with a Schiff base of 4,4'-(4,4'-biphenylenebisazo)di(salicylaldehyde) with m-toluidine. J Macromol Sci Chem, 1983, A20 (3) : 355-363. [65 ] Carfagna C, Caruso U , Roviello A , Sirigu A. Metal-containing liquid-crystal polymers. Makro- mol Chem. Rapid Commun 1987, 8: 345-351.
    [66] Chen H, Cronin J A , A rcher R D. Synthesis and Characterization of Linear Cerium(IV) Schiff- Base Coordination Polymers. Macromolecules, 1994, 27(8): 2174-2180.
    [67]Chen H, Cronin J A, A roher R D. Synthesis and Characterization of Two New Schiff-Bases andTheir Soluble Linear Cerium(IV) Polymers . Inorg Chem, 1995, 34(9):2306-2135.
    [68] A rcher R D, Illingswo rth M L , Rau D N , Hardiman C I. A soluble linear Schiff-base coordi- nation polymer containing eight-coordinate zirconium(IV). Macromolecules, 1985, 18(7): 1371- 1376.
    [69] A rcher R D,W ang B. Synthesis and characterization of the thermally stable copolymer of tetrakis(salicylaldehydato-O,O')zirconium(IV) and 3,3'-diaminobenzidine. Inorg Chem, 1990, 29(1): 39-43.
    [70] Chen H,A rcher R D. Synthesis and Characterization of N,N',N'',N'''-Tetrasalicylidene-3,3'- diaminobenzidine Schiff-Base Coordination Polyelectrolytes of Yttrium(III), Lanthanum(III), Gadolinium(III), and Ytterbium(III) . M acromolecules, 1995, 28(5): 1609-1617.
    [71] Bajpal U D N , Rai S. Heat resistant coordination polymers based on amino group terminated oligomer of hexamethyleneadipamide. Synth React InorgMet Org Chem,1994, 24 (10) : 1719- 1732.
    [72] Caruso U, Roviello A, Sirigu A. Liquid-crystalline behavior of polymeric organometallic compl- exes of copper(II). Macromoletules, 1991,24(9): 2606-2609.
    [73] Marco s M , O rio l L , Serrano J L. Metal-containing homopolymers showing paramagnetic nematic mesophase. Macromolecules, 1990, 23(25): 5187-5191.
    [74] Chi-Ming Che, Siu-Chung Chan, Hai-Feng Xiang, et al.. Tetradentate Schiff base platinum(II) complexes as new class of phosphorescent materials for high-efficiency and white-light electroluminescent devices,Chem. Commun., 2004, 13: 1484-1485.
    [75] Yong-Yue Lin, Siu-Chung Chan, Michael C. W. Chan, et al.. Structural, Photophysical, and Electrophosphorescent Properties of Platinum(II) Complexes Supported by Tetradentate N2O2 Chelates. Chem. Eur. J., 2003, 9(6): 1263-1272.
    [76] Ku-Hsien Chang, Chiung-Cheng Huang, Yi-Hung Liu,et al. . Synthesis of photo-luminescent Zn(II) Schiff base complexes and its derivative containing Pd(II) moiety. Dalton Trans., 2004,11: 1731-1738.
    [77] Pengfei Wang, Ziruo Hong, Zhiyuan Xie,et al.. A bis-salicylaldiminato Schiff base and its zinc complex as new highly fluorescent red dopants for high performance organic electroluminesce- nce devices. Chem. Commun., 2003, 14: 1664-1665.
    [78] Takeshi Sano, Yoshitaka Nishio, Yuji Hamada, et al., Design of conjugated molecular materialsfor optoelectronics, J. Mater. Chem., 2000, 1: 157-161.
    [79] Jerry L., Reddinger and John R. Reynolds. Tunable Redox and Optical Properties Using Transition Metal-Complexed Polythiophenes. Macromolecules , 1997, 30: 673-675.
    [80] Olivier Lavastre, Ilya Illitchev, Gwenaelle Jegou, et al.. Discovery of New Fluorescent Materials from Fast Synthesis and Screening of Conjugated Polymers. J. Am. Chem Soc., 2002, 124: 5278-5279.
    [81] Alfred C. W. Leung, Jonathan H. Chong,Brian O. Patrick. Poly(salphenyleneethynylene)s: A New Class of Soluble, Conjugated, Metal-Containing Polymers, Macromolecules, 2003, 36: 5051-5054.
    [82] Zhen Yang, Jian-mei Lu , Li-hua Wang. Synthesis and Fluorescent Properties of Zn(II) Complex with Functionalized Polystyrene Containing Salicylaldehyde End Group. Polymer Bulletin ,2005, 53: 249–257.
    [83] Cecily Ma, Andy Lo, Amir Abdolmaleki, et al.. Synthesis and Metalation of Novel Fluorescent Conjugated Macrocycles. Org. Lett., 2004, 6(21): 3841-3844.
    [84] 谭松庭, 周建萍, 赵斌, 彭俊华. 双-8-羟基喹啉-席夫碱锌高分子配合物的制备及发光性能. 发光学报, 2003, 24(1): 51-55.
    [85] Ming-Liang Tong, Xiao-Ming Chen, Bao-Hui Ye. Self-Assembled Three-Dimensional Coordination Polymers with Unusual Ligand-Unsupported Ag?Ag Bonds: Syntheses, Structures, and Luminescent Properties. Angew. Chem. Int. Ed.,1999, 38(15): 2237-2240.
    [86] 谭正德. 双-8-羟基喹啉高分子配合物的合成与应用. 化学与黏合, 2005, 27(6): 328-331.
    [87] X. T. Tao, H. Suzuki, T. Watanabe, et al.. Metal complex polymer for second harmonic generation and electroluminescence applications. Appl. Phys. Lett., 1997, 70 (12): 1503-1505.
    [88] Yu-Bin Dong, Xia Zhao, and Ru-Qi Huang. New Ag(I)-Containing Coordination Polymers Generated from Multidentate Schiff-Base Ligands. Inorg. Chem., 2004, 43: 5603-5612.
    [89] Yu-Bin Dong,Jun-Yan Cheng, Huai-You Wang, et al. New Coordination Polymers and Supramolecular Complexes Generated from Oxadiazole-Containing Organic Ligands and Inorganic M(II) (M ) Zn and Cu) Salts, Chem. Mater.,2003, 15: 2593-2604.
    [90] Yu-Bin Dong, Xia Zhao, Bo Tang, et al. Novel organic–inorganic composite coordination polymers generated from new multidentate schiff-base ligand and Ag(I) salts. C h e m . C o m m- u n., 2 0 0 4 , 2 2 0- 2 2 1.
    [91] Doyel Bose, Jaya Banerjee, Sk Hafijur Rahaman, Polymeric end-to-end bibridged cadmium(II)thiocyanates containing monodentate and bidentate N-donor organic blockers:supramolecular synthons based on л-л and/or C-H???p interactions. Polyhedron, 2004, 23: 2045-2053.
    [92] Xuzhong Luo, Xuefen Wang, Sanxie Wu, et al... Strong blue-fluorescence-emitted stable monolayers formed in organic solvents by a coordination polymer with long-chained bis-Schiff base,. Journal of Colloid and Interface Science, 2003, 258: 432–434.
    [93] Chi-Chung Kwok, Sze-Chit Yu, Iona H. T. Sham , et al.. Self-assembled zinc(II) Schiff base polymers for applications in polymer light-emitting devices. C h e m . C o m m u n ., 2 0 0 4 , 2 7 5 8 – 2 7 5 9.
    [94] 王丽都, 杨遇春. 稀土荧光材料新进展. 稀有金属, 1996, 20(2): 129-133.
    [95] 任红霞, 雷自强, 张海涛等. P-共轭希夫碱聚合物的合成及其荧光性能. 西北师范大学学报, 2000, 36(3): 36-38.
    [96] 吕绪良, 许卫东, 崔传安等. 席夫碱的合成及其在热红外伪装涂料中的应用. 解放军理工大学学报, 2000, 1(6): 54-57.
    [97] 毕思玮, 余海滨. 一个含有端基双键的席夫碱型液晶化合物的合成与表征. 曲阜师范大学学报, 1999, 25(1):93-95.
    [98] 赵建章, 赵冰, 徐蔚青等. 希夫碱N,Nˊ-双水杨醛缩-1,6-己二胺的光致变色光谱的研究. 高等学校化学学报, 2001, 22(6): 97 I-975.
    [99] 李晓常, 孙景志, 马龄光等. 聚合物半导体电致光显示器件. 高等学校化学学报, 1999, 20(2): 309-314.
    [100] 王荣民, 王云普, 李树本. 高分子希夫碱金属配合物的研究进展: (Ⅱ )聚希夫碱金属配合物的制备、表征及性能. 高分子通报, 1998,2:27-31.
    [101] 宋雅茹, 吴红, 王德发. 新型发蓝光材料的合成和光谱表征及光致和电致发光性能的研究. 光谱学与光谱分析, 2000, 20(5): 730-731.
    [102] 王寿太, 林凌, 黄斌等. 视黄基席夫碱吸波材料的研究. 宇航材料工艺, 1989, 4-5: 24-27.
    [103] 李自法, 朱卫国, 郭凯. 新的席夫碱型高分子液晶冠醚的合成. 高分子材料科学与工程, 2004, 20(2): 81-84.
    [104] Xuzhong Luo, Xuefen Wang, Sanxie Wu, et al.. Strong blue-fluorescence-emitted stable monolayers formed in organic solvents by a coordination polymer with long-chained bis-Schiffbase. Journal of Colloid and Interface Science, 2003, 258: 432–434.
    [105] Chi-Chung Kwok, Sze-Chit Yu, Iona H. T. Sham ,et al. Self-assembled zinc(II) Schiff base polymers for applications in polymer light-emitting devices. C h e m . C o m m u n . , 2 0 0 4, 2 7 5 8 – 2 7 5 9.
    [106] 明阳福, 黄震年, 许宝安等. 双希夫碱 N,Nˊ- 二(2-羟基-1-萘甲醛)缩一 1,4 一苯二胺的电子光谱和光致变色机理研究. 中国科学(B 辑),1997 27 ( 2 ) : 120-124.
    [107] 谭淑英, 汪玉庭, 彭长宏等. Schiff 碱型和仲胺型壳聚糖-冠醚对金属离子的络合吸附性能. 应用化学, 1992, 16(1): 98-100.
    [108] 夏锦尧著. 实用荧光分析法. 北京: 中国人民公安大学出版社,1992.
    [109] 史慧明, 唐波, 王宁等. 腙类荧光新试剂的合成及其分析性能的研究. 化学试剂, 1993, 15(6): 321-323.
    [110] 杨志斌,范洪. 新希夫碱的分析应用研究:BPDIB 荧光熄灭法测定水中微量铬(VI). 分析测试学报, 1995, 14(1): 29-32
    [111] 杨晶晖, 杨志斌, 张纯名. 新希夫碱 3,5-二溴水杨醛缩氨基硫脉的合成及其分析应用研究.I.荧光熄灭法测定微量银. 分析化学, 1993, 21(11): 1272-1274.
    [112] 沈含熙, 汤圆平. 双-[4-(a-蔡偶氮)-水杨醛』缩邻苯二胺的合成及其与铜的荧光熄灭反应.分析化学, 1995, 23(8): 894-896.
    [113] 洪朝辉,俞英等. 新试剂糠醛缩-7-氨基-8-羟基喹啉-5-磺酸催化荧光发测定痕量银. 冶金分析, 1997, 17(6): 9-11.
    [114] Asuero A G. Schiff bases derived from biacetyl as analytical reagents: A Review.Microchem. J., 1981, 26(4): 527-545.
    [115] 赵昌后, 毛翼萍. 新荧光试剂 HNHND 荧光碎灭法测定痕量锰(UQ)的研究. 上海环境科学,1996, 15(11): 28-30.
    [116] 尤进茂, 孙学军, 郑庚修. 新席夫碱 3,5-二溴水杨醛缩邻氨基酚的合成及荧光熄灭法测定痕量铝的研究. 化学试剂, 1996, 18(3): 162-167.
    [117] Cejas M A, Comez Hens A, Valcarcel M. Flurimetric determination of magnesium by ternary complex formation with pyridoxal nicotinylhydra-zone and amines. Anal. Chem. Acta, 1981,130(1): 73-79.
    [118] 崔完苍, 唐波, 史会明. 毗哆醛异烟酞踪与铝荧光反应的研究.分析化学, 1993, 21(11): 1340-1345.
    [119] 杨志斌, 范洪. 新席夫碱的分析应用研究:BPDIB 荧光熄灭法测定水中微量铬(VI). 分析测试学报, 1995, 14(1): 29-31
    [120] 廖见培,刘国东,黄杉生. 水溶性金属希夫碱与 DNA 相互作用的荧光光谱. 分析测试学报, 2001, 20(3): 5-8.
    [121] Jamesp, Collma, etc. Thoreitol-strapped manganese porphyrins as enantio- selecctive epoxida- tioncatalysts of unfunctionalized olefins. J. Am. Chem. Soc., 1995,117:692-703.
    [122] Renji Okazaki et al.. A Conformational Study on Highly Croueded 1,3,5-tris[bis[trimethy isilyyl] benzene] Derivatives. Chemistry Letters, 1989, 493-496.
    [123] 1,3,5-tris[bis[trimethyisilyyl]benzene] Derivatives. Chemistry Letters, 1989, 493-496. [124 ]Tetsuya Haga, Yoshiyuki Nishiyama. Regeneration of Nickel Catalyst on Carben. Journal of Catalysis, 1993, 140:168-172.
    [125] Stefan Forster, Anton Rieker. Cobalt Schiff Base Complex-catalyzed Oxidation of Anilines with tert-butyl Hydroperxide. J. Org. Chem., 1996, 61, 3320-3326.
    [126] Botteghi G., Schionato A, and Salvadori P. Michael addition promoted by bis-bidentate nickei(II) Schiff base complexes derived from aromatic 2-hydrooxy aldehydes. Journal of Molecular Catal- ysis, 1990, 63:155-165.
    [127] Joseph J, Bozell, Bonnie R. Hames. Cobalt-Schiff Base Complex Catalyzed Oxidation of Para-Substituted Phenolics-Preparation of Benzoquinones. J. Org. Chem., 995, 60, 2398-2404.
    [128] 王长风, 宋世栋, 杨光明. 3-甲氧基-4-羟基苯甲醛Schiff 碱及其配合物的合成与催化性能. 石油化工, 1998, 27(12): 869-872.
    [129] 梁芳珍, 沈含熙. 水杨醛缩-2-氨基-4-苯基噻唑及其配合物的合成与仿酶催化性能研究. 无机化学学报, 1999, 15(3): 393-397.
    [130] 李琛, 张维萍, 姚小泉等. 一种新型手性席夫碱的合成及其在不对称环丙烷化反应中的催化性能. 催化学报, 2000, 21(3): 289-291
    [131] 范谦,黎耀忠,程克梅等. 组氨酸席夫碱锰配合物及合成环己烯催化氧化. 四川大学学报(自然科学版), 2001, 38(2): 230-234.
    [132] Kwiatkowowski E, Kwiatkowski M. Unsymmetrical Schiff base complexes of nickel (II) and palladium(II) . Inorg. Chim. Acta, 1980,42,197-202.
    [133] 杜向东, 俞贤达. 非对称Schiff 碱过渡金属配合物模拟酶催化烯烃环氧化(I). 高等学校化学学报, 1997, 18 (4) : 567.
    [134] 杜向东, 俞贤达. 非对称希夫碱过渡金属配合物模拟催化烯烃环氧化(II ). 分子催化, 1997, 12 (1) : 26-30.
    [135] 王积涛, 陈蓉, 冯霄等. 手性过渡金属(Mn, Co,Ni) -Salen 配合物催化NaOCl不对称氧化苯乙烯的反应研究. 有机化学, 1998, 18: 228-234.
    [136] Li S L, Chen S H, Lei S B, et al. Investigation on some Schiff bases as HCl corrosion inhibitors for copper. Cormsion Science, 1999,41: 1273-1287.
    [137] Ma H, Chen S H. Niul, et al. Studies on electrochemical behavior of copper in aerated NaBr solutions with Schiff base. Journal of Electrochemical Society, 2001, 148(5):208-216.
    [138] Grabowska A, Kownacki K, Karpiuk J. et al. Photochromism and proton transfer reaction cycle of new internally H-bonded Schiff bases. Chemical Physics Letters, 1997, 267: 132-140.
    [139] Desai M N, Chauhan P O, Shah N. Schiff base derived form chloroanilines as corrosion inhib- itors of zinc in sulfuric acid solutions. European Symposium on Corrision Inhibitors, 1995, 27: 891-902.
    [140] Kuzentsov Y I, Vagapov R K. On the inhibition of hydrogen sulfide corrosion of steel with Schiff bases. Rrot Met, 2001, 37(3): 210-215.
    [141]Quan Z, Wu X, Chen S. Self-assembled monolayers of Schiff base on copper surfaces. Corrosion, 2001, 57(3): 195-201.
    [142] H. Chen·J. Rhodes. Sch iff base fo rm ing drugs: mech- anism s of immune po tent iat ion and therapeut ic po ten- t ial. J Mol Med , 1996, 74: 497-504.
    [143] Hodnett E M , Mooney P D. Antitumor activities of some Schiff bases. J Med Chem, 1970, 13 (4): 768-768.
    [144] Sylvain R ,Bernier J L ,Waring M J. Synthesis of a functionalized Salen-copper complex and its interaction with DNA. Org Chem , 1996, 61(7): 2326-2331.
    [145] Santanu B, Subhrangsu SM. Ambient oxygen activating water soluble Cobalt - Salen complex for DNA cleavage. J Chem Soc. Chem Commun, 1995, 24: 2489-2490.
    [146] 柳翠英, 李忠, 刘培漫. 5-硝基水杨醛亚胺合铜(II) 类鳌合物的合成与抑菌活性. 华西药学杂志, 1996, 11(2) : 69-71.
    [147] 柳翠英, 赵全芹, 郭秀英. 5-氯, N-(2-羟基乙基) 水杨醛亚胺Sch iff 碱的合成与表征. 化学试剂, 1998, 20(1) : 42-43.
    [148] KokaiTokkyoKoho , Jp. 01, 07950.
    [149] Shen D, Martell A E, Sun U. New synthesis cobalt Schiff base complexes as oxygen carriers. Inorg. Chem., 1989, 28, 2647-2652.
    [150] Nakanmoto K, Nomaka Y, Lshiguro T. et al. .Resonance raman and infrared spectra of mokc- ular oxyger adducts of N,N-Ethylene bis(2,2-diacetylethyl-lideneaminato) cobalt(II). Chem. Soc., 1982, 104(3): 386-392.
    [151] 姜海辉, 李淑兰, 孟凡芹等. 钴希夫碱配合物的合成和载氧性质. 山东大学学报(自然科学版).1989, 33(3): 351-353.
    [152] 戴寰, 李进, 韩志坚, 陈汉文. 钴希夫碱配合物及其分子氧加合物的合成与表征. 无机化学学报, 1998, 4(1): 61-67.
    [153] 李建章, 秦圣英, 李仲辉等. 冠醚化单和双Sch iff 碱的合成及其钴(II) 配合物的氧化加合性能. 化学学报, 1999, 57: 289-304.
    [154] 王金胜, 郭春绒, 程玉香. 铈离子清除超氧自由基的机理. 中国稀土学报1997, 15(2): 151-154.
    [155] 易国斌, 崔英德, 陈德余. 生理活性氨基酸Schiff base 的合成与表征. 精细化工, 2001, 18(5): 252-254.
    [156] 谢凤桐, 段莉梅. 稀土氨基酸混配配合物的制备条件及质谱分析. 内蒙古民族师院学报(自然科学版), 2000, 15(2):164-166.
    [157] Achar B N. Studies of thermal decomposition kinetics. Proceeding international clay conference.. Jerusalem, 1966, 1: 67-69.
    [158] 刘振海. 热分析导论. 北京: 化学工业出版社, 1991, 7.
    [159] 胡荣祖, 史启祯. 热分析动力学. 北京: 科学出版社, 2001, 8. 100.
    [160] 李余增. 热分析. 北京: 清华大学出版社, 1987, 39.
    [161] Straszko J, Olstak-Humienik M, Mozejko J. .Kinetics of Thermal Decomposition of ZnSO4·7H2O. Thermochim.Acta., 1997, 292: 145-150.
    [162] Eftimic, E., Segal, E.. Basic language programs for automatic processing non-isothermal kinetic data . Thermochim,Acta, 1987, 111: 359-367.
    [163] Coats A W, redfern J P. Kinetic Parameters from thermogravimetric data. Nature. London, 1964, 201: 68-69.
    [164] 宁斌科, 杨正权, 刘蓉等. 高氮量硝化棉的脱硝反应动力学研究. 火炸药学报, 2000, 23(1): 65-67.
    [165] 夏锦尧, 实用荧光分析法. 北京: 中国人民公安大学出版社, 1992, 3.
    [166] 杨根元, 金瑞祥, 应武林. 实用仪器分析. 北京: 北京大学出版社, 1997, 93-97.
    [167] 陈国珍, 黄贤智, 许金钩等. 荧光分析法, 北京: 科学出版社出版, 1990, 8-15.
    [168] 张慧茹, 黄素萍. 荧光防伪纤维. 合成纤维工业,2002 ,25(4) :39-41. [169 ] Posch P, Fink R , et al . A comparison of hole block/ electron transport polymers in organic LEDs. Acta Polym. , 1998 , 49 : 487-494. [170 ] Friend R H , Gymer R W, Holmes A B , et al . Electroluminescence in conjugated polymer. Nature , 1999 , 397 : 121-128.
    [171] Lu J P , Hlil A R , Meng Y Z, et al . Synthesis and characterization of a novel Alq32 containing polymer. J . Polym. Sci . ,Part A : Polym. Chem. , 2000 , 38 : 2887-2829. [172 ] Christopher P S , Simone C , et al . Orange electroluminescence from a divalent europium complex. Adv. Mater. , 1999 , 11(7) : 533-535. [173 ] Ma Y G, Chao H Y, Wu Y, et al . A bule electroluminescent molecular device from a tetranucluear zinc(Ⅱ ) compound [ Zn4O(AID) 6 ]. Chem. Commun. , 1998, 2491-2492.
    [174] 闫冰. 异金属Cu-Ag有机配位聚合物的光物理性质. 发光学报, 2004, 25(1): 47-50.
    [175] 余海湖, 陈小么, 胡传达. 高分子化-8-羟基喹啉及其Cu(Ⅱ)配合物的制备与光谱性质. 合成化学, 2004,3: 283-286.
    [176] 谭松庭, 周建萍, 赵 斌, 彭俊华. 双-8-羟基喹啉-席夫碱-锌高分子配合物的制备及发光性能. 发光学报, 2003, 24(1): 51-55.
    [177] Yu-Bin Dong, Xia Zhao, and Ru-Qi Huang. New Ag(I)-Containing Coordination Polymers Generated from Multidentate Schiff-Base Ligands. Inorg. Chem., 2004, 43: 5603-5612.
    [178] Wu Zishan, Lu Zhiping, Yan Zhenhuan. Synthesis, Characterization Scavenger Effect on O2 - of Copper(II) and Zinc(II)Complexes Derived from Thiosemicarbazide. Trans. Met.Chem., 1993, 18: 291.
    [179] 张文昭, 周彦同, 余宝源. Co(II)、Ni(II)、Cu(II)、Ag(I)和Pb(II)的2,5-噻吩二甲醛双缩邻氨基苯酚席夫碱配合物的合成及性质的研究. 无机化学学报, 1993, 9(2): 216-220.
    [180] 中本一雄著. 黄德如, 汪庆仁译. 无机和配位化合物的红外和拉曼光谱. 北京: 化学工业出版社,1986: 208-234.
    [181] 刘宝殿, 徐永祥. 混合而烃基二氯化锡与水杨醛缩苯胺类Schiff 碱配合物的合成和表征. 高等化学学报, 1994, 15(9): 1322-1326.
    [182] 林沁, 谌东中, 余学海. 新型大分子席夫碱配合物的合成和表征. 无机化学学报, 1998, 14(3): 287-289.
    [183] Shen , X. Q. , Li , Z. J . , Zhang , H. Y. , et al. . Mechanism and kinetics of thermal decomposi- tion of 5 - benzylsulfanyl - 2 - amino - 1 ,3 ,4 - thiadiazole. Thermochimica Acta , 2005 ,428 : 77.
    [184] 叶镜清. 高聚物分子量对高分子材料性能的影响. 化学工业与工程技术, 2000, 21(5):27-27. [185 ] MICHEL A , HARVERY P D. Luminescent unidimensional organometallic materials : structural and emission properties of the { [Ag ( dmb) 2 ] Y}n polymers ( dmb = 1 , 8-diisocyano-p-menthane ; Y = PF6 , BF4 , NO3). Inorg. Chem. ,1992 , 31: 3688-3689.
    [186] Chi-Chung Kwok, Sze-Chit Yu, Iona H. T. Sham and Chi-Ming Che,Self-assembled zinc(II) Schiff base polymers for applications in polymer light-emitting devices. Chem. Commun.,2 0 0 4, 2 7 5 8 – 2 7 5 9.
    [187] 张红明, 季怡萍, 陈天禄. 芳香环状聚膦酸酯齐聚物的基质辅助激光解吸电离飞行时间质谱分析. 分析化学, 2001, 29(11): 1303-1306.
    [188] 于凯, 关淑霞, 张宏伟等. 有机光致发光材料的研究进展. 哈尔滨师范大学自然科学学报, 2006, 22(3): 70-73.
    [189] 白井汪芳, 英谦二. 高分子, 1993, 42 (7) : 576.
    [190] 白木, 子荫. 稀土发光材料的发光原理与应用. 灯与照明, 2002, 26(6):48- 51.
    [191] 程上穆, 邓胜昌, 孟庆江. 稀土在医学领域中应用研究现状. 稀土, 1999, 20 (5) : 59-61.
    [192] 甘新民, 谭民裕, 唐宁等. 稀土与甘氨酸及 2 ,2’- 联吡啶氮氧化物多元固体配合物研究. 无机化学学报, 1991, 7 (1): 421.
    [193] 李红, 乐学义, 吴建中等. 铜邻菲咯啉蛋氨酸配合物与DNA相互作用研究. 化学学报, 2003, 61(2): 245-250.
    [194] 林秋月, 冯旭文, 胡瑞定等. 水杨醛缩赖氨酸Schiff碱金属配合物的合成和表征. 化学研究与应用, 2004, 16(4): 547-548. [195 ] Li Z C , Li C Q. Synthesis and antitumor activity of lanthanum sulfate complex with Glycine . J . SW Normal University (Nature Sience) , 1997 , 22 (5) : 581.
    [196] 李付安, 梅崇珍, 陶偌偈,乙二胺缩-3-醛基水杨酸Schiff 碱铜单核及均双核配合物的晶体结构. 河南大学学报(自然科学版), 2006, 36(1): 32-36.
    [197] 陶偌偈, 臧双全, 娄本勇等. 铜锌异双核配合物[CuZn(fsan)(H2O)]·H2O 的合成、晶体结构和电化学性质. 结构化学, 2002, 21(5) : 562-566.
    [198] 中本一雄. 无机和配位化合物的红外和拉曼光谱. 北京: 化学工业出版社出版, 1986, 235-238. [199 ] Geary W J. The use of Conductivity Measurements in Organic Solvents for the Characterizition of Coordination Compounds. Coor. Chem. Rev., 1971, 7: 81-122.
    [200] Huang G S, Liu Y H, Chen B H, et al.. (E)-cinnamoylferrocene S-Benzylcarbodithioyl- hydrazone and its chelates. Chemical Papers, 1999, 53(1): 65-68.
    [201] Syamal A., Maurya M. R. Coordination chemistry of Schiff base complexes of molybdenum. Coordination Chemistry Reviews, 1989, 95(2): 183-238.
    [202] Liang Y M, Chen B H,Jing H W, et al.. (E)-cinnamoylferrocene S-methylcarbodithioyl- hydrazone and its complexes. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 1998, 28(5): 803-810.
    [203] Lions F, Martin K V. Tridentate chelates. I. Journal of the American Chemical Society, 1957, 79: 2733-2738.
    [204] Marcos M, Serrano J L, Sierra T, et al.. Ferroelectric metallomesogenic palladium(II) complexes derived from bidentate Schiff bases. Chemistry of Materials, 1993, 5(9): 1332-1337.
    [205] Ghedini M,Pucci D,Cesarotti E, et al. Transition metals complexed to ordered mesophases. XIII. Synthesis and mesomorphic properties of potentially ferroelectric Schiff's base palladium(II) complexes. Liquid Crystals, 1993, 15(3): 331-344.
    [206] Gopinathan S, Deshpande S S,Gopinatha C. Novel ruthenium(II) Schiff base complexes. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 1989, 19(4):321-337.
    [207] 唐婷, 龚钰秋. 几个新的席夫碱合铜配合物的合成及性质. 无机化学学报, 2001, 17 (5) : 745-750.
    [208] Kwiatkowowski E, Kwiatkowski M. Unsymmetrical schiff base complexes of nickel ( Ⅱ) and palladium ( Ⅱ ). Inorg. Chim. Acta. ,1980 , 42(2) : 197-202.
    [209] Bi C F, Fan Y H , Sun G X, et al .Synthesis and characterization of Ln ( Ⅲ) complexes with N , N′- p-phenylenebis (o-vanillylideneimine). Synth. React . Inorg. Met-Org. Chem., 2001 ,31(2) : 219-225.
    [210] 毕彩丰, 范玉华. 稀土异双希夫碱配合物的合成、表征及热分解反应动力学. 稀有金属, 2004, 28(4): 699-702.
    [211] 朱必学, 阮文娟, 袁瑞娟等. 新型双二元席夫碱的合成与谱学性质. 应用化学, 2004, 21(10):1046-1050.
    [212] 孔繁荣, 丁晨元, 空间不对称希夫碱(HCBP-PHEN-SALH)的合成和表征. 化学世界, 1999: 636-638.
    [213] Atkins R., Brewer G., Kokot E., et al.. Copper(II) and nickel(II) complexes of unsymmetrical tetradentate Schiff base ligands. Inorg.Chem., 1985, 24: 127–34.
    [214] Sheldrick G. M. SHELXTL 97, Program for Crystal Structure Refinement, University of Gottingen, Germany, 1997.
    [215] Sheldrick G. M. SHELXTL,υ5 Reference Manual,Siemens Analytical X-ray Systems, Inc.,Wisconsin,USA 1996.
    [216] Allen Frank H., Kennard Olga, Watson David G,et al.. Tables of bond lengths determined by x-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry, 1987, 2: S1-S19.
    [217]Gilli P., Bertolas V., Ferretti V. & Gilli G. Evidence for Intramolecular N-H···O Resonance-Assisted Hydrogen Bonding in β -Enaminones and Related Heterodienes. A Combined Crystal-Structural, IR and NMR Spectroscopic, and Quantum-Mechanical Investigation. J. Am. Chem. Soc., 2000, 122(42): 10405–10417.
    [218] 徐丽娜, 肖鹤鸣, 方国勇等. NTO二聚体分子间相互作用的理论研究. 化学学报, 2005, 63(12): 1062-1068.
    [219] 肖鹤鸣, 居学海. 高能体系中的分子间相互作用. 北京: 科学出版社, 2004.
    [220] 马海霞, 宋纪蓉, 徐抗震等. 3-硝基-1 ,2 ,4-三唑-5-酮二甲胺盐(CH3)2NH2+ C2N4O3H- 的合成、晶体结构和量子化学研究. 化学学报, 2003, 61(11): 1819-1823.
    [221] Ma H X,Song J R,Hu R Z, et al. Non-isothermal Kinetics of the Thermal Decomposition of 3-Nitro-1,2,4-triazol-5-one Magnesium Complex. J. Chin.J. Chem. 2003, 21(12), 1558-1561.
    [222] 刘军, 罗国安, 王义明等. 小分子与核酸相互作用的研究进展. 药学学报, 2001, 36(1): 74-78.
    [223] Yang G, Wu J Z, J i L N, et al.. Study of the interaction between novel ruthenium ( II)-polypyridyl comp lexes and calf thymus DNA. Inorg Biochem, 1997, 2 : 141 - 144. [224 ] Kumar C V, Asuncion E H. DNA binding studies and site selective fluorescence sensitization of an anthryl p roble, J Am Chem Soc, 1993, 115: 8547-8553.
    [225] 蒋尚达, 王科志, 刘芙蓉等. 双核钌(Ⅱ)多吡啶配合物与酵母RNA的相互作用研究. 化学学报, 2005, 63(8): 783-786.
    [226] Barton J K, Goldherg J M, .Kumar C V , et a1.. Binding modes and base specificity of tris(phenanthroline)ruthenium(II) enantiomers with nucleic acids: tuning the stereoselectivity. J.Am. Chem.Soc., 1986, 108(8): 2081-2088.
    [227] 席小莉, 杨.曼曼, 杨频. 6-苄氨基嘌呤及其金属配合物与DNA的作用机理. 无机化学学报, 2005, 21(12): 1847-1852. [228 ] 周庆华, 杨 频. 1,3-双(2-苯并咪唑基)-2-氧杂丙烷与锌配合物的合成、晶体结构及其与DNA 作用方式的研究. 化学学报, 2006, 64(8): 793-798.
    [229] 李风华, 吴红星, 林华宽. N-烷基, 邻菲咯啉,甲胺La( Ⅲ) 配合物的合成及抗癌活性. 高等学校化学学报, 2006, 27(10): 1800-1804.
    [230] Marmur J..A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol., 1961,3: 208-218.
    [231] Reichmann M. E., Rice S. A., Thomas C. A., Doty P.. A further examination of the molecular weight and size of deoxypentose nucleic acid. J. Am. Chem. Soc., 1954, 76: 3047-3053.
    [232] Piura P-E., Grzeskowiak K., Dickerson R. E. J. Mo1. Bio1., 1987, 197: 257.
    [233] 黄波, 邹国林, 杨天鸣. 阿霉素与牛血清白蛋白结合作用的研究. 化学学报, 2002, 60 (10) : 1867-1871.
    [234] 李娜, 魏永巨. 药物分子与血清白蛋白结合反应的荧光法研究进展. 河北师范大学学报(自然科学版), 2003, 27 (2) : 176-180.
    [235] Tu C. , Wu X F., Liu Q., Wang X. Y. et al.. Crystal structure, DNA-binding ability and cytotoxic activity of platinum(II) 2,2′-dipyridylamine complexes. 1norg. Chim. Acta, 2004, 357:95-102.
    [236] Liu F. , Meadows K. A. , McMillin D. R. DNA-binding studies of Cu(bcp)2+ and Cu(dmp)2+: DNA elongation without intercalation of Cu(bcp)2+. J. Am. Chem. Soc. , 1993, 115:6699-6704.
    [237] 郭东方, 何疆, 曾正志. 肉桂酸邻菲罗啉稀土三元配合物对DNA作用的光谱研究. 中国稀土学报, 2004, 22(1): 55.
    [238] 周庆华, 杨 频. 二(2-苯并眯唑亚甲基)胺合铜(II)配合物与DNA作用方式的光谱研究. 化学学报, 2005, 63(1): 71-74.
    [239] 江崇球, 贺吉香, 王金山. EB荧光探针法研究多粘菌素B与DNA 的作用方式. 光谱学与光谱分析, 2002, 22(11): 103-106.
    [240] 王娟, 陈婧. Fe(phen)3 与DNA作用的荧光光度法研究. 中国稀土学报, 2003, 21(2): 183.
    [241] Song Y. F.,Yang P.. Mononuclear tetrapyrido[3,2-a:2′,3′-c:3′′,2′′-h:2′′′,3′′′-j]phenazine (tpphz) cobalt complex . Polyhedron, 2001, 20(6): 501-506.
    [242] 黄建华, 马洪敏, 孙舒婷等. 荧光法研究牛血清白蛋白与三羟基苯基荧光酮钼(Ⅵ )配合物探针的作用机理. 光谱学与光谱分析, 26(10):1899-1902.
    [243] LAKOW ICZ J R. Princip les of Fluorescence Spectroscopy. New York: Plenum Press, 1983: 257 - 295.
    [244]Jiang C Q, Gao M X, Meng X Z. . Study of the interaction between daunorubicin and human serum albumin and the determination of daunorubicin in blood serum samples. Spectrochimica Acta Part A, 2003, 59(7): 1605-1610.
    [245] 李来生, 葛小辉, 黄志兵等. 光谱法研究羟基葫芦[6]脲与对氨基苯磺酸的分子识别作用.应用化学, 2006, 23 (7): 747-752.
    [246] 陈国珍, 黄贤志, 许金钩等. 荧光分析法. 第2版, 北京: 科学出版社,1990: 112.
    [247] 盛良全, 童红武, 张淑萍等. 烟碱与人血清蛋白相互作用的光谱研究. 分析化学, 2006, 34: S203-S206.
    [248] 魏晓芳, 刘会洲. Triton X-100与牛血清白蛋白的相互作用. 分析化学, 2000, 28(6):699-701.
    [249] 胡敏, 杨欣, 晋卫军等. 荧光光谱法研究抗癌新药吡柔比星与DNA的相互作用. 药学学报, 1999 , 34(8): 608~612.
    [250] 郭东方, 何疆, 曾正志. 肉桂酸-邻菲罗啉-稀土三元配合物对DNA 作用的光谱研究. 中国稀土学报, 2004, 22(1): 55-60.
    [251] Wu K C. Lippard S J. Binding of p latinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs. Biochemistry, 1978, 15 (19) : 4339 - 4346.
    [252] 唐宏武, 陈蓓. 吖啶橙-细胞DNA荧光抑制法初步筛选抗癌药物的研究. 武汉大学学报(自然科学版), 1997, 43(6):711-716.
    [253] 陈国珍, 黄贤智, 郑朱梓等. 荧光分析法. 北京: 科学出版社, 1990, 263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700