水稻植株和土壤对CH_4排放的影响及定量模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究水稻植株通气组织与甲烷(CH_4)排放相关性为培育高产低甲烷排放的水稻品种提供理论与实践依据,同时也为通过栽培措施影响水稻植株通气组织来达到减排甲烷的目的提供理论基础。特别是近年来,随着水稻直播栽培技术的提高,直播稻面积越来越大;高产水稻品种的选育十分重视,超级稻品种的推广面积逐年增加。所以对直播稻以及高产水稻品种的甲烷排放观测也很重要,为高产水稻品种、直播稻的大面积推广提供环境学支撑具有重要的现实意义。
     2005~2006年早、晚共4季观测了39个不同水稻品种以及移栽、撒播、条播、穴播4种不同栽培方式的CH_4排放通量,计算了CH_4季节排放总量与季节排放均值,分析和比较了不同品种、不同栽培方式下的甲烷排放差异;测定了不同水稻品种、不同栽植方式下的水稻植株植物学特征;观测了稻鸭共栖复合生态系统中不同养鸭数量的稻田土壤特性及甲烷排放通量。主要结果如下:
     1不同水稻品种之间CH_4排放差异显著
     早稻常规稻品种湘早籼12号CH_4排放量是常规稻郴早糯1号的1.42倍;杂交早稻金优706是威优402的1.17倍;晚稻常规品种余赤231-8是湘晚籼12号的1.35倍,杂交晚稻T优259是金优207的1.24倍。早、晚稻常规稻CH_4排放量极差分别为8.31g/m~2、4.85 g/m~2,杂交稻分别为2.96 g/m~2、3.18g/m~2;常规稻CH_4排放变幅大于杂交稻。不同类型之间CH_4排放存在显著差异,早、晚稻常规稻CH_4排放量均值分别高出杂交稻3.66g/m~2、0.68g/m~2,杂交早稻比常规稻降低了18.4%,杂交晚稻比常规稻减少了3.1%。因此,种植杂交稻CH_4排放量低于常规稻。
     2水稻植株通气组织与稻田CH_4排放密切相关
     2005年早、晚稻观测了植株地上部茎秆通气组织与甲烷排放通量,分析了通气组织与CH_4排放相关性。结果表明:早稻期间,植株第1节间直径、第2节间茎秆维管束面积、茎秆壁厚以及叶鞘横切面积/节间横切面积、第3节间叶鞘横切面积/节间横切面积、茎壁横切面积/节间横切面积与CH_4排放量相关性达到显著性水平;晚稻期间:株高与CH_4排放量达到0.001的极显著性水平;第3节间叶鞘横切面积/节间横切面积、茎秆维管束面积/茎秆横切面积、第2节间维管束面积/节间横切面积、第1节间维管束总面积/茎壁横切面积、叶鞘维管束面积/茎壁横切面积均与CH_4排放量达到0.01极显著水平;此外,第1~5节间还有17个数量指标与CH_4排放量达到0.05显著性水平。根据上述相关数量特征确定聚类指标,对早、晚稻品种甲烷排放量进行模糊聚类分析,早、晚稻品种聚类结果与实测结果吻合度分别达到87.5%和90.0%。对水稻植株与CH_4排放相关的因子进行主成分分析,得出株高、维管束、气腔、茎壁等4个主因子,以这4个因子对水稻品种甲烷排放进行聚类,与实测结果吻合度达到83.3%。分析2006年不同栽培方式的甲烷排放通量与水稻根系特性相关性,分蘖盛期的根系生物量、体积、白根数量、根系活力、根系吸收总面积以及活跃吸收面积均与甲烷排放通量呈显著正相关关系。
     3稻叶气孔特性影响稻田CH_4排放
     早稻品种剑叶气孔密度、剑叶气孔总数量与拔节~孕穗期甲烷排放通量呈显著正相关;晚稻品种常规稻倒二叶气孔总个数与CH_4排放通量均值、倒三叶气孔总个数、上三叶气孔总个数与拔节~孕穗期甲烷排放通量相关性分别达到0.05、0.05、0.01水平;剑叶气孔总面积与抽穗~齐穗期甲烷排放通量均值呈显著负相关,倒二叶气孔总面积与抽穗~齐穗期甲烷排放通量均值呈显著正相关。直播稻剑叶气孔密度、气孔总数量与抽穗期甲烷排放通量呈显著负相关;不同栽培方式下的叶面积指数存在显著差异,CH_4排放通量与叶面积指数呈显著正相关关系。因此,稻叶气孔特性与甲烷排放通量之间存在一定程度的相关性,影响到稻田甲烷排放;同时也证实了王明星等认为稻叶气孔是甲烷排放通道的观点。
     4不同栽植方式下的CH_4排放量差异显著
     基于本田生长期早、晚稻直播与移栽甲烷排放数量比较,直播稻甲烷排放季节均值低于移栽稻,但直播稻甲烷排放季节总量高于移栽稻。2005年早稻移栽稻比直播稻低1.24g/m~2,减少了8.5%;2005年晚稻移栽稻比直播稻低1.02g/m~2,减少了3.7%;2006年早稻创丰1号抛栽稻甲烷排放量比直播稻减少7.5%,超级稻抛栽比直播要低3.8%;2006年晚稻移栽分别比撒播(80苗/m~2)、条撒(80苗/m~2)、穴播(2苗/穴)减少了28.9%、54.3%、34.1%。不同撒播密度、不同穴播密度甲烷排放量存在显著差异,而且密度越大,甲烷排放量越大。栽培密度对CH_4的排放通量影响很大。2006年晚稻移栽稻单位经济产量甲烷排放量为37.62g CH_4/kg稻谷,直播稻超出移栽稻17.7%。2006年早稻超级稻直播单位稻谷产甲烷量高于抛栽稻4.84 gCH_4/kg稻谷,常规稻创丰1号直播高于移栽稻3.48 gCH_4/kg稻谷,常规稻不论直播与移栽也都要高于超级稻。
     基于相同面积相同时间直播与移栽CH_4排放数量比较,早稻甲烷排放总量及季节排放均值排序为常规稻直播>常规稻抛栽>超级稻直播>超级稻抛;晚稻为直播>移栽。杂交稻与常规稻直播无论早稻还是晚稻单位稻谷的甲烷产生量要高于抛(移)栽稻,常规稻要高于超级稻。综合分析水稻生产与甲烷排放,撒播密度、穴播密度分别以80苗/m~2、4苗/穴为最优选择。
     5不同养鸭数量的稻田CH_4排放量差异显著
     在水稻不同生育时期,20只鸭/667m~2稻田水体溶解氧含量与常规稻田相比,早稻增加了2.2%~68.7%,晚稻增加了11.1%~110.8%;产CH_4细菌种群数量20只鸭/667m~2早稻田土壤低于对照38.9%~51.6%;晚稻田土壤低于对照69.8%~90.2%。与对照比,早稻土壤还原物质总量、活性还原物质以及活性有机还原物质降幅分别为0.322~1.118、0.239~0.689、0.203~0.548 cmol kg~(-1);晚稻降幅分别为0.171~0.628、0.220~0.591、0.157~0.433 cmolkg~(-1)。早稻期间,10只鸭/667m~2、15只鸭/667m~2、20只鸭/667m~2处理甲烷排放量分别比对照降低了18.2%、26.1%、28.1%;晚稻期间,降低了17.7%、27.6%、34.4%。
     环境经济效益分析表明,养鸭数量越多,经济效益越高。10只鸭/667m~2、15只鸭/667m~2、20只鸭/667m~2分别比常规稻作增加纯收入为:2644元/hm~2、2830元/hm~2、3006元/hm~2;环境经济收益分别增加2986、3197、3390 yuan/hm~2。但从水稻生产的角度来考虑,20只鸭/667m~2影响到了水稻生长发育,比常规稻作显著地减少了产量,而10只鸭/667m~2处理比常规稻作增加了产量;15只鸭/667m~2对水稻产量影响不大,与10只鸭/667m~2处理相比增加了环境经济效益。稻田应以水稻生产为主体,在不影响水稻产量的前提下考虑增加其它附加值,提高经济效益。因此综合考虑水稻生产、生态与经济效益,稻田生态种养模式中养鸭数量以15只鸭/667m~2为最优选择。
     6建立了基于稻鸭共栖系统土壤特性的CH_4排放定量模型
     (1)土壤还原物质与CH_4排放相关性:CH_4排放通量与还原物质总量间的线性回归方程为:Y=2.1138X+1.7552,相关性达到0.05显著水平(R=0.8397);与活性还原物质总量、活性有机还原物质总量回归方程分别为Y=3.6161X-0.3435,Y=5.9046X+1.9865,相关性都达到0.01显著水平(R=0.9250,0.9208)。表明CH_4排放通量与土壤还原性物质含量呈显著正相关。
     (2)水体溶解氧含量与CH_4排放相关性:以早、晚2季不同养鸭数量处理下的CH_4排放通量季节均值为依变量,以田面水中溶解氧含量季节均值为变量,其回归方程为:Y=-1.5276X+14.7707,相关性达到0.001显著水平(R=-0.9390),二者呈真实线性负相关关系。
     (3)土壤产甲烷细菌与CH_4排放相关性:早稻期间,CH_4排放通量与产甲烷细菌数量间线性回归方程为:Y=11.4949+0.5088X(R=0.7798);晚稻期间,CH_4排放通量与产甲烷细菌数量间的线性回归方程为:Y=12.9218+0.0558X(R=0.8037),相关性均达到了0.001显著性水平。表明CH_4排放通量与土壤产甲烷细菌种群数量呈显著正相关。
     稻鸭共栖复合系统中通过鸭子的活动增加水体溶解氧含量、减少产甲烷菌种群数量、降低土壤还原性物质含量,从而显著减少了甲烷排放。养鸭数量越多,溶氧含量越高,产甲烷菌数量及还原性物质减少幅度越大,导致土壤中CH_4气体生成量减少,氧化量增加,CH_4排放通量减少。
CH_4 is one of the main greenhouse gases, with importance second only to CO_2. Ricepaddies are an important human-made ecosystem for the global CH_4 budget. Methane transportcan occur via diffusion, gas bubble release and via the aerenchyma of rice plants. Of the threepathways, Over 90%CH_4 emitted to the atmosphere through aerenchyma transport, which isconsidered the most important when rice plants are involved in the ecosystem. Therefore, it iscrucial to research the correlation between methane emission from paddy soil and plantaerenchyma tissues. To understand the relationship is useful for breeding rice varieties with highyielding and low methane emission, as well as by culture measures influence rice plantaerenchyma to reduce methane emission from paddy soil. In addition, with the area of directsowing rice and high yielding rice cultivars increasing, especially super hybrid rice cultivarsbreed and spread quickly, it is vital to measure their methane emission flux and it is full of praxissignification to provide the environmental basis for direct sowing rice and super hybrid ricedevelopment.
     CH_4 of 39 rice cultivars, including the conventional rice, hybrid rice and super hybrid ricewere determined using the static chamber technique and calculated the amount of methaneemission in the whole season and averaged seasonal methane emission flux. Then methaneemission from the different culture methods were conducted, including translating rice (TR),broadcast sowing rice (BSR), drill rice (DR) and hole sowing rice (HSR) and the differences ofmethane emission were analyzed. In the rice-duck complex ecosystem, the optimal number ofducks was confirmed to gain the objective of increasing the economic benefits and reducing theenvironmental cost on the base of comprehensive consideration the rice production, economicand environmental benefits. The main results were as follows.
     1. The differences of methane emission among rice cultivars were significant. Methane ofthe conventional early rice Xiangzaoxian No.12 was 1.42 times higher than that of ChenzaonuNo.1 and for hybrid early rice, Jinyou No.706 was 1.17 times higher than that of Weiyou No.402.The highest methane emission of late rice cultivars was Yuchi231-8, which was 1.35 timeshigher than that of Xiangwanxian No. 12, and for hybrid late rice, Tyou259 was 1.24 times higherthan that of Jinyou No.207. Methane emission differences were significant between theconventional rice and hybrid rice as the same as between non-glutinous rice and Indicia type rice. Methane emission amount of early and late conventional rice were by 3.66g/m~2, 0.68 g/m~2 morethan that of hybrid rice, respectively. Therefore, CH_4 emission of hybrid rice is lower than that ofthe conventional rice.
     2. Aerenchyma tissues of plant culms above ground were observed and the correlationshipsbetween aerenchyma characteristics and methane emission were analyzed. The results showedthat the significant relativities existed in methane emission and many quantitative indexes ofplant tissues, such as the highest internodes plant diameter, stem vascular bundles area, stem wallthickness and the area ratio of sheath transverse section and internodes transverse section of thesecond internodes during early rice season. During late rice season, the correlation between plantheight and methane emission was significant at 0.001 level. The area ratio of sheath transversesection and internodes transverse section, the area ratio of stem vascular bundle and stem walltransverse section of the third internodes, the area ratio of all vascular bundles and internodestransverse section of the second internodes, the area ratio of all the vascular bundles and stemwall transverse section, the area ratio of all the sheath vascular bundles and stem wall transversesection of the highest internodes, which were significant correlation with methane emission at0.01 levels. In addition, 17 quantitative indexes from the highest internodes to the fifthinternodes were significant with methane emission at 0.05 levels.
     With above mentioned correlative indexes, fuzzy clustering analysis method was applied tothe methane emission amount of rice cultivars of early and late rice. The consistent degrees ofclustering results with measured results of early and late rice were 87.5%, 90%, respectively. Itwas showed the clustering indexes were appropriate in distinguishing methane emission of ricecultivars to high, medium and low type. The principal component analysis method was applied tothe correlation factors of plant tissues and methane emission, the main factors of plant height,vascular bundles, air chambers and stem wall were determined and by the four main factors,clustering the cultivars with methane emission, the consistent degree was 83.3%comparing withthe observed results.
     To further analysis on the correlation between methane emission and rice rootcharacteristics, root biomass, volume, number of white roots, root activity, root total absorbingarea and active absorbing area all presented the significant positive correlation with methaneemission. Therefore, it can be concluded that rice root characteristics impacted methane emissionvia rice plant aerenchyma system largely.
     3. Analyzing on the correlation between rice leaf stoma and methane emission flux, theearly rice flag leaf stomata density and the stomatal number were significant positive correlationwith methane emission flux at the booting stage and for late rice cultivars, the number of thesecond leaf stoma of the conventional rice were significant correlation with average seasonal methane emission flux at 0.05 levels, and the number of the third leaf stoma, with the bootingstage methane emission flux at 0.05 level, the number of up three leaves stoma with bootingstage methane emission flux at 0.01 level.
     To late rice cultivars, total flag leaf stomata area was significant negative correlation withmethane emission flux at the full heading stage.However, total stomata area of the second leafwas significant positive correlation with methane emission flux at the full heading stage. TheDSR flag leaf stomata density and the total number of stoma presented significant negativecorrelation with methane emission flux at the early heading stage. Therefore, it was affirmativethat rice leaf stomata characters were correlative with methane emission and leaf stomatainfluenced methane emission from paddy field through plant aerenchyma tissues. This resultproved the viewpoint that rice leaf stoma opening and closing impacted the daily variationpattern of methane emission.
     4. Based on the methane emission from paddy field during rice growth stages,thedifferences of amount methane emission were significant between direct sowing rice(DSR) andtranslating rice(TR), as well as among three direct sowing methods. There existed manydifferences in sowing date, growing days in the field and growth stages between DSR and TR.So, difference of methane emission existed in the same days or in the same stage, which resultedin without comparison in methane emission between DSR and TR at the same time. In thisexperiment, methane emission fluxes of different cultural methods were measured at the intervalof three days and total amount methane emission calculated by the Inner-integral-sum method.Then the average values in the whole season were figured out by the growth days. It was feasibleto compare their amount of seasonal methane emission and average seasonal methane emissionflux of DSR and TR.
     The results showed that the seasonal average CH_4 flux of direct sowing rice were lower thanthat of translating rice. However, amount CH_4 emission of DSR was more than that of TR.Amount CH_4 emission of TR reduced by 1.24 g/m~2 comparing with DSR and by 1.02 g/m~2 in2005 early and late rice respectively. Amount CH_4 of the conventional early TR was low by 7.5%,and super hybrid TR was reduced by 3.8%in 2006 early rice. Amount CH_4 emission of TR werereduced by 28.9%, 54.3%, 34.1%comparing with the broadcast sowing rice with the density of 80seedlings/m~2 (BSR), drill rice with the density of 80 seedlings/m~2 (DR), hole sowing rice with 2seedlings per hole(HSR), respectively. The significant differences also existed in differentbroadcast rice densities or hole sowing densities, moreover, more density, higher methaneemission flux. In addition, methane emission of unit rice yielding of DSR was more than TR. In2006 late rice, methane emission of unit rice yielding of DSR was 37.62 g CH_4/kg rice, andenhanced 17.7%comparing with that of TR. During 2006 early rice, methane emission of unit rice yielding of the conventional DSR enhanced by 4.84 g CH_4/kg rice more than that of TR, forsuper hybrid rice, DSR increased by 3.48 gCH_4/kg rice higher than that of TR and theconventional rice was higher than the translating rice either DSR or TR method.
     Based on the methane emission of the DSR and TR in the same area and days, during earlyrice season, Comparing the total amount of methane emission and average CH_4 emission, theconventional DSR was the bggest and second to the conventional TR, next to the super hybridDSR and the super hybrid TR was the less.The methane emission of unit rice yielding for DSRwas higher than the TR and the conventional rice was higher than the super hybrid rice.Synthetically considering rice production and methane emission, the density of 80 seedlings/m~2and 4 seedlings/hole were the optimal patterns.
     5. CH_4 emission fluxes among different number of ducks existed significant differences inthe rice-duck ecosystem. Dissolution oxygen content of the water body and soil were increasedas result of ducks activities and looking for food, which resulted in number of methanogenicbacteria lower significantly at the maximum methane emission stage. A t the same time, ducks inthe fields controlled the inefficacy tiller numbers, reduced number of withered leaves. Therefore,methane emission flux reduced significantly with the conventional culture rice. Number ofmethanogenic bacteria under 20 ducks per 667m~2 treatment paddy soil was reduced by 38.9%~51.6%in early rice and by 69.8%~90.2%in late rice comparing with that of non-ducks paddysoil. Comparing with the non-ducks paddy soil, during early rice, the redox matter, the activeredox matter and the active organic matter were lower at the range of 0.322~1.118,0.239~0.689, 0.203~0.548 c mol kg~(-1), and for the late rice 0.171~0.628, 0.220~0.591, 0.157~0.433c molkg~(-1), respectively. Therefore, amount methane emission of 10ducks per 667m~2, 15ducks per667m~2, 20ducks per 667m~2 were reduced by 18.2%, 26.1%, 28.1%during early rice and for laterice, were17.7%, 27.6%, 34.4%comparing with that of non-ducks rice soil, respectively.Moreover, ducks were more in the field, dissolution oxygen content in the water body werehigher, but number of methanogenic bacteria in paddy soil and soil redox matter content werelower, which resulted in lower CH_4 emission flux.
     Environmental and economic benefits analysis showed that more ducks in the rice-duckecosystem resulted in more economic benefits. The net incomes of 10 ducks per 667m~2, 15 ducksper 667m~2, 20 ducks per 667m~2 increased by 2644 yuan/hm~2, 2830 yuan /hm~2, 3006 yuan/hm~2, respectively and environmental economic benefits increased by 2986 yuan/hm~2, 3197yuan/hm~2, 3390 yuan/hm~2 more than that of non-ducks paddy fields, respectively. Comparingwith the conventional culture rice yielding, the treatment of 20 ducks per 667m~2 impacted ricegrowths and development, reduced rice yielding significantly, and that 10 ducks per 667m~2treatment enhanced rice yielding. 15 ducks per 667m~2 treatment did not influence rice growth and development, at the same time its environmental and economic income was more than 10ducks per 667m~2. Rice paddy must give priority to rice production and add other affixationvalues in order to increase economic benefit in the premise of ensuring rice production.Therefore, synthetically considering rice production, environmental and economic benefits, 15ducks per 667m~2 was the optimum pattern in the rice-duck ecosystem.
     6. This thesis was analyzed the correlation between soil characteristics and methaneemission in the rice-duck ecosystem. Firstly, the significant correlation existed between the soilredox matter content and methane emission flux. The linear regression equation between the totalredox matter(X) and methane emission flux(Y) was Y=2.1138X+1.7552 and their relativity weresignificant at 0.05 level(R=0.8397), and for soil active redox matter(X), active organic redoxmatter(X) were Y=3.6161X-0.3435, Y=5.9046X+1.9865, respectively, and their relativities weresignificant at 0.01 levels(R=0.9250, 0.9208), respectively.
     Secondly, the significant negative correlation between water body dissolution oxygencontent and methane emission flux. The regression equation between methane emission(Y) anddissolution oxygen content(X) was Y=-1.5276X+14.7707, and their relativity were significant at0.001 level (R=-0.9390).
     Thirdly, the significant positive correlation existed between methane emission flux andnumber of soil methanogenic bacteria. During early rice, the regression equation between CH_4emission flux (Y) and number of methanogenic bacteria(X) was Y=11.4949+0.5088X, and laterice was Y=12.9218+0.0558X, and their relativities were significant at 0.001 level (R=0.7798,0.8037, respectively). During early and late rice, the number of soil methanogenic bacteria variedconsistently with methane emission flux variation from paddy soil. Therefore, soil methanogenicbacteria were important factor to control methane production and emission.
     The results showed that the ducks activities added the dissolution oxygen content of waterbody, reduced number of methanogenic bacteria and soil redox matter content, which resulted inlower methane emission flux significantly. Withal more ducks, higher dissolution oxygen content,lower number of methanogenic bacteria and redox matter content. Therefore, amount of CH_4production reduced and methane oxidation increased, then methane emission flux was lower.
引文
[1]Arah J.R.M. and K.D.Stephen. 1998.A model of the processes leading to methane emission from peatland[J]. Atmos. Env. 32:3257-3264
    [2]Aulakh M S,Bodenbender J and Wassmann R,et al., 2000. Methane transport capacity of rice plants II.Variations among different rice cultivars and relationship with morphological characteristics[J] , Nutr Cycling Agroecosystem, 58:367-376
    [3]Adhya T K, Rath A K, Gupta P K,Rao V R,Das S N,Panida K M, Parashar D C, Sethnnathan. 1994. Methane emission from flooded rice fields under irrigated conditions[J]. Biol Fertil Soils, 18:245-248
    [4]AndoT,Yoshida Sand Nishiyamal. 1983. Nature of oxidizing power of rice roots[J]. Plant Soil, 72:57-71
    [5]Bouwman A F.1991. Agronomic aspects of wetland rice cultivation and associated methane emissions[J]. Biogeochemistry, 15: 65-88.
    [6]Bender M and Cmtrad R. 1994. Methane oxidation activity in various soils and freshwater sediments. occurrence, characteristics,vertical profiles and distribution on grain size fraction[J] J.Geophys.Res., 99:16531-16540
    [7]Butterbach-Bahl K,Papen Hand Rennenberg H. 1997. Impact of gas transport through ricec ultivars on methane emission from rice paddy fields[J]. Plant Cell Environ, 20:1175-1183
    [8]Bedard Cand Knowles R. 1989. Physiology,biochemistry and specific inhibitors of CH_4,NH_4~+ and CO_2 oxidation by methanotrophs and nitrifiers[J]. Microbiol Rew, 53:68-84
    [9]Banker B C,Kludze H K and Alford D P,etal.1995. Methane sources and sinks in paddy rice soils:Relationship to emissions[J]. Agric Ecosyst Environ, 53:243-251
    
    [10]Bachelet,D.,Kem,J.,Tolg,M., 1995. Balancing the rice carbon budget in China using a spatiallydistributed data. Ecological Modeling[J], 79:167-177
    [11]Bodelier PLE,Hahn AP and Arth R,etal., 2000. Effects of ammonium-based fertilization on microbial processes involved in methane emission from soils planted with rice[J]. Biogeochemistry. 51:225-257
    [12]Conrad,R., 1989. Control of methane production in Terrestrial ecosystems.Dahlem conference Background paper[C],February, west Berlin.
    [13]Cao M., Dent J.B. and Heal O.W.1995. Modeling methane emission from rice paddies[J]. Global Biogeochemical cycles, 9:183-195.
    [14]Mingkui Cao, J.B.Dent, O.W.H. et al., 1995. Methane emissions from Chinas paddyland[J]. Agriculture, Ecosystems and Environment. 55:129-137
    [15] Mingkui Cao, Keith Gredson and Stewart Marshall. 1998. Global methane emission from wetlands and its sensitivity to climate change[J],Atmospheric Environment, 32(19)3293-3299
    [16]Cicerone R J and Shetter J D. 1981. Sources of atmospheric methane :Measurements in rice paddies and a discussion.[J] Geophys Res, 86:7203-7209
    [17]CAI Z C,XU H. 1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management[J].Plant and Soil, 196:7-14
    
    [18]CAO Yun-ying,XU Jin-biao,ZHU qing-sen. 2005. Effect of Rice Plant Status and Difference Rice Varieties on M ethane Transport Rate[J],Acta agriculture borali-sinica, 20 ( 2 ) : 105-109
    [19]Dannenberg Sand Conrad R.1999. Effect of rice plants on methane production and rhizospheric metabolism in paddy soil[J]. Biogeochemistry, 45:53-71
    [20]Darashar D C,Gupta P K,Rai J,et al., 1993. Effect of soil temperature on methane emission from paddy fields[J]. Chemosphere, 26:247-250
    
    [21]De Bont JAM,Lee KK and Bouldin DF. 1978Bacterial oxidation of methane in a rice paddy[J]. Ecol Bull, 26:91-96
    [22]Deniervander Gon HAC and Neue HU. 1996. Oxidation of methane in the rhizosphere of rice plants[J]. Biol Fertil Soils, 22:359-366
    [23]Edar E, Yabuki R, Takayama K, et al., 1996. Comparative studies on behavior, weeding and pest control of ducks(mallard,cherry valley and their cresebreded)free-ranged in paddy fields[J].Jpn Poult Sci, 33(4): 261-267
    [24]Fetzer S, Conrad R. 1993. Effect of redos potential on methanogensis by methanosarcina barkeri[J]. Arch Microbiol. 160:108-113.
    [25]Frenzel P,Rothfuss F and Conrad R.1992. Oxygen profiles and methane turnover in a flooded rice microcosm[J]. Biol Fertil Soils, 14:84-89
    [26]Hosono Tand Nouchi. 1997. The dependence of methane transport in rice plants on the root zone temperature[J]. Plant Soil, 191:233-240
    [27]Holzapfel-Pschorn,A.,Conrad,R.,and Seiler,W. 1986. Effect of vegetation on the emission of methane from submerged paddy soil[J]. Plant Soil, 92:223-233
    [28]Holzapfel-Pschorn,A., and Seiler,W., 1984.Methane emission during a vegetation period from an Italian rice paddy[J],Geophys.Res., 91,11803-11814.
    [29]Huang Y, R.L.SASS and F.M.Fisher. 1999. Modeling Methane Emission from Rice Paddy Soils: I .Model Development[J]. Plant and Soil, 9(1):1-10
    [30]HUANG YAO,R.L.SASS and F.M.FISHER. 1999. Modeling Methane Emission from Rice Paddy Soils: II Model Validation and Application[J] , Plant Soil, 9(1): 11-24
    [31]IPCC-Intergovenmental panel on climate change. Climate change, 1995. In: The Science of Climate Change[C].Cambridge(UK):Cambridge University Press, 1996, 572.
    [32]Intergovernmental Panel on Climate Change (IPCC), 1992. Climate Change: The Supplementary Report to the IPCC Scientific Assessment, edited by J. T. Houghton. A. Callender and S.K.. Varney[M]. Cambridge University Press, New York,25-47.
    [33]Isamu Nouchi, et al. 1990. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants[J]. Plant Physiol, 94:59-66
    
    [34]International Rice Research Institute, IRRI Toward 2000 and Beyond[M], IRRI.Manda, Philippines, 1989.
    
    [35]James R.T. 1993. Sensitivity analysis of a simulation model of methane flux from the Florida Everglades[J]. Ecol. Modelling, 68:119-146
    [36]Jakobsen P, Patrick W H and Williams B G. 1981,Sulfide and methane formation in soil and sediments[J]. Soil Sci., 132:279-287.
    [37]Jia Z-J,Cai Z-C,Xu H,et al. ,2001. Effect of rice plants on CH_4 production, transport, oxidation and emission in rice paddy soil[J]. Plant Soil,230:211-221
    [38]Jia Z-J,Cai Z-C,Xu H,et al., 2002,Effect of rice plants on CH_4 production,transport,oxidation and emission in rice paddy soil[J]. Nutr Cycling Agroecosyst, 64:87-94
    [39]Jenkinson D S. 1981,The fate of plant and animal residues in soil. In: Greenland D J, Hayes M H B.ed. The chemistry of soil processes[M]. John Wiley Sons Ltd, 505-561.
    [40]Jenkins D.Sewage treatment, 1963,In: Rainbow C and Rose A H(ed.),Biochemistry of industrial organisms[M]. Academic Press,New York, 508-536.
    [41]Jean L M, Pierre R. 2001,Production, oxidation and consumption of methane by soils:A review. Eur[J]. Soil Biol. 37:25-50
    [42]Koyama T 1963,Gaseous metabolism in lake sediments and paddy soils in the Production of atmospheric methane and hydrogen[J]. Geophys.Res. 6B:3917-3973
    [43]Kludze HK, DeLaune RD and Patrick WH. 1993,Aerenchyma formation and methane and oxygen exchange in rice[J]. Soil Sci Soc Am, 57:386-391
    [44]King GM. 1992, Ecological aspects of methane oxidation,a key determinant of global methane dynamics[J].Adv Microbial Ecol, 12:431-468
    [45]Lindau C W,Bollich PK and DeLaune RD. 1995, Effect of rice variety on methane emission from Louisiana rice[J]. Agric Ecosyst Environ, 54:109-114
    [46]Li Jing, Wang Mingxing, Huang Yao & Wang Yuesi. 2002, New estimates of methane emissions from Chinese rice paddies[J]. Nutrient Cycling in Agroesosystems , 64:33-42
    [47]Lin,E., 1993, Agricultural techniques: factors controlling methane emission. In: proceedings of International symposium on Climate Change, National Disasters and Agricultural Strategies, China Meteorological Press, Beijing, 120-126.
    [48]Lelieved J,Crutaen P J and Bmhl C. 1993, Climate effects of atmospheric methane[J]. Chemosphere, 26: 739 -768
    
    [49] Li C S,Mosier A,Wassmann R,et al.2004,Modeling greenhouse gas emissions from rice based production systems.Sensitivity and upscaling.Global Biogeochem Cycles,18:GB1043,doi:10. 1029P2003GB002045.
    
    [50]Mariko S, Haramno Y owa N ,et al., 1991, Methane in flooded soil water and the emission through rice plants to the atmosphere[J], Environ Experion Botany, 31 (30):343-350.
    [51]Ming Hang,Zhao Yuhua,Chen Meichi,et al., 1997, Methanogens in paddy rice soil. Nutrient Cycling in Agro-Ecosystems[J], Pedosphere, 49:143-148.
    [52]Ming Hang,Chen Meichi. 1996, Effect of land use history on methane emission and methanogenic flora in flooded soils[J].Pedosphere, 6(1):73-80.
    [53]Milkha S.Aulakh,ReinerWassmann,HeinzRennenberg. 2002, Methane transport capacity of twenty-two rice cultivars from five major Asian rice-growing countries.AgricuIture[J], Ecosystems and Environment, 91:59-71
    [54]Neue HU,Wassmann R and Kludze HK,etal., 1997, Factors and processes controlling methane emissions from rice fields[J]. Nutr Cycling Agroecosyst, 49:111-117
    [55]Nouchi I. 1994, Mechanisms of methane transport through rice plants. In:Minami K,eds.CH4 and N_2O: Global Emission and Controls from Rice Fields and Other Agricultural and Industrial Sources. Tokyo,Japan:YokendoPublishers. 87-105
    [56] Nouchi I, Mariko S. 1993, Mechanism of methane transport by rice plants.In.Oremland RS(ed)Biogeochemistry of global change. Chapman&Hall,New York, pp 336-352
    [57]Nouchi,Mariko S. 1990, Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plang Physiol, 94:59-66
    [58]Orapin Kerdchoechuen. 2005, Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield, Agriculrure[J], Ecosystems and Environment, 108:155-163
    [59]Peter M.van Bodegom. 2000, Methane emissions from rice paddies; experiments and modeling[M].PhD thesis,Wageningen University,The Netherlands.
    [60]P.M.van Bodegom, P.A.Leffelaar, A.J.M.Stams and R.Wassmann. 2000, Modeling methane emissions from rice fields: variability, uncertainty,and sensitivity analysis of processes invoIved[J], Nutrient Cycling in Agrecosystems, 58:231-248
    [61]Peters,V.andConrad,R. 1996, Sequential reduction processes and initiation of CH_4 production upon flooding of oxic upland soils[J]. Soil Biol. Biolchem., 28(3):371-382.
    [62]Patrick H M,Ronald D D and William H P. 1993, Methane and nitrous oxide emission from laborator measurements of rice soil suspension effect of soil oxidation-reduction status[J]. Chemosphere, 26: 251-260.
    [63]Parashar D C, Rai J, Gupta P K, Singh N. 1991, Parameters affecting methane emission from paddy fields[J]. Indian J Radio Space Phys, 20:12-17
    [64]Rajagopal B S,Belay N,Daniels L. 1988, Isolation snd characterization of methanogenic bacteria from rice paddies[J] .FEMS Microbial Ecol., 53:153-158.
    [65]R.B.Matthews, R.Wassmann & J.Arah. 2000, Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. I .Model development[J]. Nutrient Cycling in Agroecosystems 58:141-159
    [66]R.B.Matthews, R.Wassmann, J.W.Knox & L.V.Buendia, 2000, Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. IV. Upscaling to national levels[J]. Nutrient Cycling in Agroecosystems, 58:201-217
    [67]R.B.Matthews, R.Wassmann, J.W.Knox & L.V.Buendia, 2000, Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. II. Model validation and sensitivity analysis[J]. Nutrient Cycling in Agroecosystems ,58:161-177
    [68] Reiner Wassmann, Milkha S. Aulakh. 2000, The role of rice plants in regulating mechanisms of methane missions[J]. Biol Fertil Soils, 31:20-29
    [69]Schutz H., Seiler W. and Conrad R., 1990, Influence of soil temperature on methane emission from rice paddy fields[J]. Biogeochemistry, 11:77-95.
    [70]Schutz,H., et al., 1989, A 3-year continuous record on the influence of daytime,season and fertilizer treatment on methane emission rates from an Italian rice paddy[J],Geophys,Res., 94,16405-16416.
    [71]Schutz H ,Holzapfel-Pschorn A,Rennenberg H. 1990, Emission of methane(CH4) from Italian irrigated rice fields.International Rice Research.New letter, 15( 4):35-36
    [72]Sass R L., et al., 1994, Methane emission from rice fields:Effect of soil proporties[J]. Global Biogeochemistry Cycles, 8:135-140.
    [73]R.L.Sass, F.M.Fisher, Jr. and Y.Huang. 2000.A process-based model for methane emissions from irrigated rice fields.experimental basis and assumptions[J]. Nutrient Cycling in Agroecosystems, 58:249-258
    [74]Sass R L and Fisher F T. 1994, CH_4 emission from paddy fields in the United States Gulf Coast area.In:CH_4 and N_2O:GlobaI emission and controls from rice fields and other agricultural and industrial sources[M]. Edited by Minami K et al.NlAES, Fsukuba, Japan, 5:65-77.
    [75]Sass RL and Fisher FM. 1997, Methane emissions from rice paddies:a process study summary[J]. Nutr Cycling Agroecosyst, 48:119-127
    [76]Sass RL,Fisher FM and Harcombe PA et al. 1991, Methane emission from rice fields as influence by solar radiation,temperature and straw in corporation[J]. Global Biogeochem Cycle, 5(4):275-287
    [77]Sass R L., Fisher F M. Wang Y B. et al., 1992, Methane emission from rice fields:The effect of flooded water management [J]. Global Biogeochem Cycles , 6(3):249-262
    [78]Seiler W,Holzapfel-Pschorn A,Conrad R and Scharffe D. 1984, Methane emission from rice paddies[J]. Atmos.Chem., 1 : 241-2681
    [79]Singh S, Kashyap and Singh JS. 1998, Methane flux in relation to growth and phenology of a high yielding rice variety as affected by fertilization[J]. Plant Soil, 201:157-161
    [80] Ueckert J,Hurek T and Fendrik I,et al., 1990. Radial gas diffusion from roots of rice ( OryzasativaL.) and kallar grass ( Leptochloafusca L.Kunth ) ,and effects of inoculation with Azospirillumbra silence[J]. Plant Soil, 112:59-65
    [81]Wang MX,et al., 1990, CH_4 emission from a Chinese rice paddy field[J].Acta Meteorologica Sinica, 4: 265 - 274
    [82]Wang Mingxing,Shangguan X and Ding A., 1996, Methane in the rice agriculture,In IAP. eds,From Atmospheric Circulation to Global Change, Celebrating the 80th birthday of Professor Ye DuZheng,China Meteorological Press, Beijing, 647-659
    [83] Wang M X, Shangguan X J, 1996, CH_4 emissions from various rice fields in P. R. China[J], Theor. Appl. Climatol., 55:129-138
    [84] WangZ, Kludze C R and Patrick W H, et al., 1995, Soil characteristics affecting methane production and emission in flooded rice. In:Peng S et al(ed.), Climate Change and Rice[M]. Springer-Verlag Berlin Heidelberg, 81-90
    [85] Wang Z P, Delaune R D, Masscheleyn, P. H., Patrick W H. 1993, Soil redox and pH effects on methane reduction in a flooded rice soil. Soil Sci. Soc. Am. J., 57:382-385.
    [86] Watanabe A, Kajiwara M, Tashiro T, Kimura M. 1995, Influence of rice cultivar on methane emission from paddy fields[J]. Plant Soil, 17:51-56
    [87] Walter B. P., m. Heimann, R. D. Shannon and J. R. White. 1996, A process-based model to derive methane emissions from natural wetlands[J]. Geophys. Res. Lett. 23:3731-3734
    [88] Watanabel, Hashimoto T and Shimoyama A. 1997, Methane-oxidizing activities andmethanotrophic populations associated with wetland rice soils[J], Biol Fertil Soils, 24:261-265
    [89] Wang B-J, Neue HU and Samonte HP. 1997b. Role of rice in mediating methane emission[J]. Plant Soil, 189:107-115
    [90] Wang B-J, Neue HU and Samonte HP. 1997a, Effect of eultivar difference ('IR72, IR65598'and'Dular" ) on methane emission[J]. Agric Ecosyst Environ, 62:31-40
    [91] B. Wang, K. Adachi. 2000, Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission[J], Nutrient Cycling in Agroecosystems, 58:349-356
    [92] YagiK, Tsuruta H and Minamik K. 1996, The Effect of water management on methane emission from a Japanese rice paddy field: Automate methane monitoring[J]. Global Biogeochemical Cycle, 10(2):255-267.
    [93] Yagi K, Minami K. 1990, Effects of organic matter application on methane emission from some Japanese paddy field[J]. Soil Science and Plant Nutrition, 36(4):599-610.
    [94] Yagi K, Tsurua H, Minami K, et al., 1994. Methane emission from Japanese and Thai paddy fields[A]. In: Minami K, Mosier A, Sass R, eds. CH_4 and N_2O[C], 41-53.
    [95] 陈美慈,闵航,赵宇华,吴伟祥.1998.有机肥和无机肥对水稻土产甲烷的影响[J],植物营养与肥料学报,4(4):366-370
    [96] 陈中云,闵航,陈美慈,赵宇华.2001.不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究[J1,生态学报,21(9):1498-1505
    [97] 陈中云,闵航,吴伟祥,陈美慈.2001.土壤中甲烷氧化菌种群数量及其与甲烷氧化活性的关系[J],浙江大学学报(农业与生命科学版),27(5):546-550
    [98] 陈中云,闵航,吴伟祥.2003.农药污染对黄松稻田土壤产甲烷菌数量和甲烷排放通量影响的研究[J],中国沼气,21(1):18-21
    [99] 陈中云,闵航,吴伟祥.2002.不同离子对水稻田土壤甲烷氧化活性的研究[J],植物营养与肥料学报,8(2):219-223
    [100] 陈美慈,闵航,吴伟祥,贾伯华.1996.不同类型土壤中甲烷释放特性和产甲烷菌数量的研究[J],植物营养与肥料学报,2(1):79-83
    [101] 陈冠雄等.1995.稻田CH_4和N_2O的排放及养萍和施肥的影响[J],应用生态学报,6(4):378-382
    [102] 陈苇,卢婉芳,段彬伍.2002.稻草还田对晚稻稻田甲烷排放的影响[J],土壤学报,39(2):170-176.
    [103] 蔡祖聪等.1998.土壤质地、温度和Eh对稻田甲烷排放的影响[J],土壤学报,35(2):145-153.
    [104] 蔡祖聪,颜晓元,鹤田治雄等.1995.丘陵区稻田CH_4排放的空间分布[J],土壤学报,32:151-159.
    [105] 蔡祖聪.1999.水分类型对土壤排放的温室气体组成和综合温室效应的影响[J],土壤学报,36(4): 484-491.
    [106] 蔡祖聪,卢维盛,魏朝富等.1998.冬季水分管理方式对稻田CH_4排放量的影响[J],应用生态学报,9(2):171-175.
    [107] 曹云英,许锦彪,朱庆森2004.水稻叶片对甲烷传输速率的影响[J],山东农业科学,3:34-35
    [108] 曹云英,许锦彪.2003.水稻根系对甲烷传输速率的影响[J],安徽农业科学,31(1):90-92
    [109] 曹云英,朱庆林.2000.水稻品种及栽培措施对稻田甲烷放的影响[J],江苏农业研究,21(3):22-27
    [110] 曹云英,许锦彪,朱庆森.2005.水稻植株状况对甲烷传输速率的影响及其品种间差异[J],华北农学报,20(2):105-109
    [111] 陈温福,程红卫,刘丽霞,徐正进,侯秀英.2000.稻叶气孔性状研究新方法[J],作物学报,26(5):623-627
    [112] 陈温福,徐正进.1990.水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较究[J],中国水稻科学,4(4):163-168
    [113] 陈春涣,骆世名,李洪武.等.1993.水稻根系与产量构成关系的研究[J],华南农业大学学报,14(2):18-23
    [114] 丁维新,蔡祖聪.2002.土壤有机质和外源有机物对甲烷产生的影响[J].生态学报,22(10):1672-1677
    [115] 丁维新,蔡祖聪.2002.沼泽产甲烷能力和途径差异的机制[J].农村生态环境,18(2):53-57
    [116]] 戴志明,杨华松,张曦等.2004,云南稻-鸭共生模式效益的研究及综合评价[J],中国农学通报,20(4):265-268
    [117] 戴清明,黎用朝,张玉烛等2006,汉寿县创丰1号示范表现及配套高产栽培技术[J],湖南农业科学,3:35-36
    [118] 董春娟,李亚新,吕炳南.2002,微量金属元素对甲烷菌的激活作用[J].太原理工大学学报,33(5):495-498
    [119] 邓晓,廖晓兰,黄璜.2004,稻-鸭复合生态系统产甲烷细菌数量[J],生态学报,24(1):1696-1670
    [120] 邓晓,廖晓兰,黄璜.2004,湿地稻-鸭复合生态种养对甲烷菌种群数量影响的研究[J],环境污染与防治,26(5):393-397
    [121] 顾掌根,王岳钧.2001,水稻直播高产机理研究初报[J],浙江农业科学,2:51-54.
    [122] 段彬伍,卢婉芳,陈苇,1999,等.种植杂交稻对甲烷排放的影响及评价[J].中国环境科学,19(5):397-401.
    [123] 丁爱菊,王明星.1995,稻田甲烷排放的初级模式[J],大气科学,19(6):733-740
    [124] 傅志强,黄璜.2006,湿地稻田甲烷排放估算模型及减排措施研究进展[J],作物研究,17(5):328-331
    [125] 甘德欣,黄璜等.2005,免耕稻-鸭复合系统减少甲烷排放及其机理研究[J],农村生态环境,21(2):1-6
    [126] 侯爱新,陈冠雄,吴杰等.1997.稻田CH_4和N_2O排放关系及其微生物学机理和一些影响因子[J].应用生态学报,8(3):270-274
    [127] 黄毅斌,翁伯奇,唐建阳.2001,稻-萍-鱼体系对稻田土壤环境的影响[J],中国生态农业学报,9(1):74-76
    [128] 韩兴国,程维信.1992,营养物质的生物地球化学循环,(刘建国)现代生态学进展[M],北京:中国科学技术出版社,73-100
    [129] 黄璜,杨志辉等.2003,湿地稻-鸭复合系统的CH_4排放规律[J].生态学报,23(5):929-934
    [130] 黄璜,王华,龙江松等.稻田围栏养鸭[M].金盾出版社.2003
    [131] 黄耀,张稳,郑循华,韩圣慧,于永强.2006,基于模型和GIS技术的中国稻田甲烷排放估计[J],生态学报,26(4):980-988
    [132] 黄耀,Ronald L.Sass,Frank M.Fisher.1999,水稻物质生产对稻田甲烷排放的影响[J],农业环境保护18(4):150-154
    [133] 黄勤,魏朝富,谢德体等.1996,不同耕作制度对稻田甲烷排放通量的影响[J],西南农业大学学报,18(5):436-439
    [134] H.Schutz,W-Seiler,R-Conrad.1992,土地温度对水稻田甲烷排放的影响[J],国外农业环境保护,4:19-22
    [135] 黄示瑜,吴洁远,陆雪森,李敬卓.2003,直播稻不同播种量试验[J],广西农业科学,2:20-21
    [136] 贺仲雄.1985,模糊数学及其应用[M].天津科学出版社,152-185
    [137] 贺玲香,冯雪梅.2005,优质高产新组合T优259种植表现及高产栽培技术[J],湖南农业科学,5:22-23
    [138] 江长胜,王跃思,郑循华,王明星.2004.稻田甲烷排放影响因素及其研究进展[J],土壤通报,663-669
    [139] 蒋静艳,黄耀,宗良纲.2001,稻田土壤理化特性CH_4排放的影响[J].土壤与环境,10(1):27-29
    [140] 吕镇梅,闵航,陈中云,吕琴.2005,水稻田土壤甲烷厌氧氧化在整个甲烷氧化中的贡献率[J],环境科学,26(4):13-17
    [141] 刘小燕,邝雪梅,刘大志.2005,稻-金鱼共栖生态系统中甲烷排放规律研究[J],淡水渔业,35(4):7-11
    [142] 刘建栋,周秀骥,王建林,于强.2001,稻田CH_4排放的农业气象数值模拟研究[J],应用气象学报,12(4):409-418
    [143] 李晶,王明星,陈德章.1998,水稻田甲烷的减排方法研究及评价[J],大气科学,22(3):354-362
    [144] 李玉娥,林而达.1995,减缓稻田甲烷的减排的技术研究[J],农村环境与发展,2:38-40.
    [145] 林匡飞,项雅玲,姜达炳等.2000,湖北地区稻田甲烷排放量及控制措施的研究[J].农业环境保护,19(5):267-270.
    [146] 李俊,同小娟,于强.2005,不饱和土壤CH_4的吸收与氧化[J],生态学报,25(1):141-145
    [147] 陆峥嵘,王国忠.1999,密度对直播稻产量及群体质量的调节效应[J],上海农业学报,15(2):61-64
    [148] 鲁如坤编著.1999.土壤农业化学分析方法[M].中国农业科学出版社
    [149] 劳家柽,1988,土壤农化分析手册[M],农业出版社,123-133;229-237;420-428
    [150] 李晶,王明星,陈德章.1998,稻田甲烷排放非连续测量中采样时间的选择[J],中国科学院研究生院学报,15(1):24-29
    [151] 凌启鸿.陆卫平.蒋建中.1984水稻不同层次根系的功能及对产量形成作用的研究[J].中国农业科学.4 3-11
    [152] 李木英.1996,水稻根系营养吸收特性及其与干物质生产和稻米品质关系的研究[J].江西农业大学学报.18(4):376-382.
    [153] 梁建生,张建华.1995,杂交水稻叶片的若干生理指标与根系伤流强度关系[J].江苏农学院学报.14(4):25-30.
    [154] 刘丽霞,程红卫,陈温福.2002,水稻上三片功能叶气孔性状,北华大学学报(自然科学版)[J],3(1):61-68
    [155] 刘丽霞,程红卫,陈温福.2000,水稻叶片气孔长度、宽度和密度及其相关性的研究[J],沈阳农业大学学报,31(6):531-533
    [156] 孟范平.1997.湿地甲烷释放研究进展[J].重庆环境科学,(3):22-26
    [157] 闵航,陈美慈,钱泽澍.1994,不同栽培措施对水稻田甲烷释放甲烷产生菌和甲烷氧化菌的影响[J],农业环境保护,13(1):7-11
    [158] 闵航,陈中云,吴伟祥,陈美慈.2002,碳、氮物质对水稻田土壤甲烷氧化活性影响的研究[J],环境科学学 报,22(1):70-75
    [159] 闵航,陈美慈,赵宇华等.1992,厌氧微生物[M].杭州,浙江大学出版社,243
    [160] 马均,马文波,周开达,汪旭东,田彦华,明东风,许风英.2002,重穗型杂交稻穗颈节间维管束与籽粒充实关系的研究[J],中国农业科学,35(5):576-579
    [161] 潘根兴,赵其国,蔡祖聪.2005,《京都议定书》生效后我国耕地土壤碳循环研究若干问题[J],中国基础科学,7(2):12-18)
    [162] 彭世彰,李道西,缴锡云,何岩,郁进元.2006,节水灌溉模式下稻田甲烷排放的季节变化[J],浙江大学学报(农业与生命科学版),32(5):546-550,
    [163] 石庆华,李木英.1995,水稻根系特征与地上部关系的研究[J].江西农业大学学报.(2):110-115.
    [164] 邵可声,李震.1996,水稻品种以及施肥措施对稻田甲烷排放的影响[J],北京大学学报(自然科学版),32(4):505-513
    [165] 孙征,宗字光,东秀珠2001,一个甲烷杆菌新种的描述和系统分类学研究[J].微生物学报,41(3):265-269
    [166] 沈波.王熹.2000.籼粳亚种间杂交水稻根系伤流强度的变化规律及其与叶片生理的相互关系[J].中国水稻利学.14(2):122-124.
    [167] 土壤微生物研究会编,1983,土壤微生物实验法[M],科学出版社,
    [168] 童泽霞.2002,稻田养鸭与稻田生物种群的关系初探[J].中国稻米,(1):33-34
    [169] 唐建阳,翁伯前.1998,稻田甲烷排放机理和调控技术[J],中国农业大学学报,3(3):101-106.
    [170] 唐文邦,陈立云,刘国华,邓化冰.2005,超级杂交早稻陆两优996的种植表现及高产栽培技术[J],湖南农业科学,6:22-23
    [171] 吴海宝,叶兆杰.1993,我国稻田甲烷排放量初步估算[J].中国环境科学,13(1):76-80
    [172] 吴海宝,1992,稻田甲烷排放量的估算方法[J],浙江农业大学学报,18(1):69-72
    [173] 王明星著.2001,中国稻田甲烷排放[M].北京:科学出版社,83-172.
    [174] 王明星著,1999,大气化学(第二版)[M].北京:气象出版社,106-120.
    [175] 王华,黄璜等.2003,湿地稻-鸭复合生态系统综合效益研究[J].农村生态环境,19(4):23-26,44
    [176] 王胜春,刘可星,游植麟等.1998,不同母质发育的水稻土中Fe、Mn对CH_4排放的影响[J],农村生态环境,14(1):52-54.
    [177] 王步军,过益先.1996,稻田甲烷排放研究进展与成果[J].作物杂志,(6):3-6
    [178] 王缨,雷慰慈.2000,稻田种养模式生态效益研究[J],生态学报,20(2):311-316
    [179] 王增远,徐雨昌。1999,水稻品种对稻田甲烷排放的影响[J],作物学报,25(4):441-446
    [180] 王增远,徐雨昌.1999,不同水稻品种对稻田甲烷排放量的影响[J],植物营养与肥料学报,5(1):93-96
    [181] 王增远,徐雨昌.1997,施肥对两种水稻土甲烷生产力的影响[J],作物学报,23(2):137-143
    [182] 王强盛,黄丕生,甄若宏,等.2004,稻鸭共作对稻田营养生态及稻米品质的影响[J].应用生态学报,15(4):639-645
    [183] 王效科,白艳莹,欧阳志云,苗鸿.2002,陆地生物地球化学模型的应用和发展[J].应用生态学报,13(12):1703-1706
    [184] 王卫东,谢小立.1995,我国南方红壤丘陵区稻田CH_4产生规律[J],农村生态环境,11(3):11-13
    [185] 王玲,谢德体,刘海隆,阳作明.2003,稻田温度与甲烷排放通量关系的研究[J],中国生态农业学报,11(3):29-31
    [186] 吴伟明,宋祥甫,孙宗修,于永红,邹国燕.2001,不同类型水稻的根系分布特征比较[J],中国水稻科学,15(4):276-280
    [187] 吴伟明,程式华.2005,水稻根系育种的意义与前景[J],中国农业科学,19(2):174-180
    [188] 王明星,李晶,郑循华.1998,稻田甲烷排放及产生,转化,输送机理[J].大气科学,22(4):600-612
    [189] 上官行健,王明星,沈壬兴,等.1994,我国华中地区稻田甲烷排放特征[J],大气科学,18(3):358-365
    [190] 上官行健,王明星,沈壬兴.1993,稻田CH_4的排放规律[J].地球科学进展,8(5):23-36
    [191] 上官行健,王明星.1994,温度对稻田CH_4排放日变化及季节变化的影响[J],中国科学院研究生院学报,11:(2):214-224
    [192] 徐正进,陈温福,曹洪任,张龙步,杨守仁.1998,水稻穗颈维管束数与穗部性状关系的研究[J],作物学报,24(1):47-54
    [193] 上官行健,王明星等.1993,稻田甲烷排放影响到因素研究进展[J],中国农业气象,14(4):48-53
    [194] 许光辉,郑洪元等主编,1986,土壤微生物分析方法手册[M],北京,农业出版社,102-136
    [195] 许炳雄,卢巨祥.1997,广州地区稻田甲烷排放通量研究[J].环境科学研究,10(4):10-13
    [196] 上官行健,王明星.1993,稻田土壤中甲烷的产生[J],地球科学进展,8(5):1-12.,
    [197] 徐华,蔡祖聪.1999,种稻盆钵土壤甲烷排放通量变化的研究[J],农村生态环境.15(1):10-13,16
    [198] 徐华,蔡祖聪,李小平.1999,土壤Eh和温度对稻田甲烷排放季节变化的影响[J],农业环境保护,18(4):145-149.
    [199] 徐华,蔡祖聪2000,烤田对种稻土壤甲烷排放的影响[J],土壤学报,37(2):157-164
    [200] 徐华.2001.土壤性质和冬季水分对水稻生长期CH_4排放的影响及机理[C],中科院南京土壤研究所
    [201] 熊效振,沈壬兴,王明星等.1999,太湖流域单季稻的甲烷排放研究[J].大气科学.23(1):9-18
    [202] 向平安,黄璜,甘德欣等.2005,免耕稻-鸭生态种养技术的环境经济学分析[J],生态学报,25(8): 1981-1986
    [203] 杨志辉,黄璜,王华.2004,稻-鸭复合生态系统稻田土壤质量研究[J],土壤通报,35(2):115-121
    [204] 谢军飞,李玉娥.2002,农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,23(4):47-48
    [205] 颜晓元,蔡祖聪.1996,淹水土壤中甲烷产生的影响因素研究进展[J],环境科学进展,4(2):24-31
    [206] 岳进,梁巍,吴劫.2003,黑色稻田土壤CH_4和N_2O排放及减排策略[J],应用生态学报,14(11):2015-2018
    [207] 于荣,徐明岗,王伯仁.2005,土壤活性有机质测定方法的比较[J],土壤肥料,(2):49-52
    [208] 禹盛苗,欧阳由男,张秋英,彭钢,许德海,金千瑜.2005,稻鸭共育复合系统对水稻生长与产量的影响[J],应用生态学报,16(7):1252-1256
    [209] 张光亚,方柏山,闵航,陈美慈.2003,甲醇对土壤甲烷氧化的影响及其微生物学机理[J],生态环境,12(4):469-472
    [210] 张光亚,陈美慈,闵航,柴卫国.2002,设施栽培土壤氧化亚氮释放及硝化、反硝化细菌数量的研究[J].植物营养与肥料学报,8(2):239-243
    [211] 张稳,黄耀等.2004,稻田甲烷排放模型研究—模型及其修正[J].生态学报,24(11):2347-2352
    [212] 邹应斌.2004,亚洲直播稻栽培的研究与应用[J],作物研究,3:133-136
    [213] 周青,夏燕,王华学.2002,直播稻主茎分蘖生产力的研究[J].安徽农业科学,30(4):546-548
    [214] 中科院南京土壤研究所微生物室编著,1985,土壤微生物研究方法[M],北京,科学出版社,54-90
    [215] 章家恩,陆敬雄,张光辉等.2002,鸭稻共作生态农业模式的功能与效益分析[J].生态科学,21(1):6-10
    [216] 赵世杰,刘华山,董新纯.1998,植物生理学实验指导[M].北京:中国农业科学技术出版社,51-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700