重组人Ⅱ型胶原250-270多肽的鉴定及其特异性免疫调节作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类风湿关节炎(rheumatoid arthritis,RA)是一种以多关节侵蚀破坏为特征的全身性炎性自身免疫病。发病率约为0.3~1.0%,致残率和死亡率均高。RA的病因及发病机制目前尚不完全清楚,迄今尚无根治疗法。
     口服耐受是指口服某种抗原物质后机体对该抗原再次接触时表现的一种免疫无应答状态,可以作为治疗许多疾病特别是自身免疫性疾病的手段,并具有无毒、方便和抗原特异性的特点,因此,口服耐受成为免疫学和临床研究的热点。胶原诱导性关节炎(collagen-induced arthritis,CIA)是采用Ⅱ型胶原(typeⅡcollagen,CⅡ)免疫胶原敏感品系的鼠类,从而诱导多关节炎症的发生。CIA动物模型的症状和关节病理变化与RA相似,被广泛用于研究人类RA发病机制和探索治疗新方法。已有研究表明,口服CⅡ或CⅡ免疫显性多肽可抑制CIA的发展。合成CⅡ250-270多肽(synthesis collagen typeⅡpolypeptide 250-270,syCⅡ250-270)内含有免疫显性T细胞表位CⅡ260-270,可诱导敏感品系小鼠发生CIA和免疫耐受,对研究CIA和RA的发病机理和治疗都具有重要意义。
     化学合成多肽技术复杂、代价昂贵、产量少和难于标准化,无法满足基础研究和临床应用的需要,而采用基因工程技术生产的重组多肽产品则可以解决这一问题。因此,本研究对重组人CⅡ250-270基因进行表达,获得了重组人CⅡ250-270多肽(recombinant human collagen typeⅡpeptide 250-270,rh CⅡ250-270),对此肽段进行分离、纯化和鉴定。
     虽然,应用口服抗原诱导免疫耐受治疗自身免疫性疾病,在许多动物模型中己取得了令人满意的结果。但在临床以此方法治疗RA患者时,结果却不尽人意。为探讨口服耐受在治疗RA中确切机制和效果,本研究通过给予CIA小鼠早期口服低剂量CⅡ250-270多肽,观察其对CIA的特异性细胞和体液免疫反应的调节作用。同时,建立了在单细胞水平上对抗原特异性淋巴细胞的检测体系,使用流式细胞仪同时分析溴代脱氧尿嘧啶核苷(bromodeoxyuridine,BrdU)掺入、细胞内细胞因子、细胞表面活化标志并采用酶联免疫吸附测定法(enzyme-linked immunosorbent assay,ELISA)检测特异性抗体和酶联免疫斑点测定法(enzyme-linked immunospot assay,ELISPOT)检测抗原特异性抗体形成细胞的综合检测方法,有助于更好地理解口服耐受的免疫学机制。
     目的
     获得大量rhCⅡ250-270多肽,鉴定并确认rhCⅡ250-270多肽与预期的相符。建立一种评估抗原特异性细胞和体液免疫反应的免疫标记和方法,有助于口服耐受在疾病治疗的研究。研究CⅡ250-270多肽在RA和CIA发病中作用及其机制,并为应用口服CⅡ250-270多肽治疗RA提供理论依据。
     方法
     1. rhCⅡ250-270多肽的表达、纯化和鉴定:在E.coli BL21中表达rhCⅡ250-270蛋白多肽,用亲和层析法分离纯化。用限制性酶切法、聚合酶链式反应(polymerase chain reaction,PCR)法、基因序列测定法、琼脂糖凝胶电泳法、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳法(sodium dodecyl sulphate-polyacrylamine gel electrophoresis,SDS-PAGE)和免疫印迹法(Western Blotting)等方法在基因和蛋白水平上对rhCⅡ250-270多肽进行鉴定。
     2. rhCⅡ250-270多肽免疫原性的研究:以不同浓度(0.5、1.0、2.0mg/mL)的6聚rh CⅡ250-270和(20、200、2000μg/mL)CⅡ刺激体外培养的RA患者PBMC,等浓度的PBS作为阴性对照,PHA刺激组作为阳性对照。流式细胞仪测定刺激前后各组培养细胞中T细胞表面活化标志性抗原(CD69,CD25)的表达及5-溴脱氧尿嘧啶(BrdU)在DNA中的掺入;rhCⅡ250-270免疫CIA敏感小鼠DBA/1,比较与CⅡ和合成CⅡ250-270免疫后在体内血清特异性抗体水平的差异。
     3.建立CIA模型和诱导口服耐受:鸡Ⅱ型胶原(chicken collagenⅡ,CCⅡ)在DBA/1小鼠(H-2q单倍型)尾部皮内注射,定期观察并进行关节评分;在CⅡ免疫小鼠前一周,给予口服rhCⅡ250-270多肽(0.5mg/mL)或合成多肽(0.1mg/mL),分别两次。
     4. rhCⅡ250-270多肽对实验动物脾脏特异性T淋巴细胞活化及增殖实验:取加强免疫后7d治疗组和CIA对照组的小鼠脾脏淋巴细胞,体外经CⅡ250-270、CⅡ和PHA刺激培养后,采用BrdU掺入法和流式细胞术同时测定CⅡ特异性T细胞增殖情况、细胞膜表面标志;并通过流式细胞术测定外周血中CD4+T细胞的细胞内细胞因子干扰素-γ(interferon-γ,IFN-γ)、白细胞介素-4 (interleukin-4,IL-4)的水平分析辅助性T细胞1(helper T cell 1,Th1)和Th2亚群的变化。
     5. rhCⅡ250-270多肽对实验动物脾脏特异性B淋巴细胞反应:用ELISA法测定加强免疫后7d各组小鼠血清中抗CⅡ抗体的表达;用ELISPOT法检测加强免疫后7d各组小鼠脾脏淋巴细胞特异性抗CⅡ抗体形成脾细胞。
     6.组织病理学检查:加强免疫后6周,取小鼠的炎症关节进行HE染色。观察关节病变的变化情况并对其进行评分。
     结果
     1.纯化的rhCⅡ250-270多肽,大小约43 kD,纯度为89.3%。EcoRⅠ和SalⅠ双酶切法和PCR法得到的DNA大小约为500bp和650bp,与预期的522bp和679bp基本相符,基因序列测定证实基因DNA序列与设计的完全相符。SDS-PAGE结果显示rhCⅡ250-270多肽目的蛋白条带的大小约为43 kD,与设计预期相符。Western Blotting结果显示GST融合蛋白上存在CⅡ片段。
     2. rhCⅡ250-270多肽能刺激RA患者PBMC中的特异性淋巴细胞活化和增殖反应,同样可以诱导CIA敏感小鼠特异性抗体的活化,血清抗体水平与CⅡ和合成CⅡ250-270免疫组无显著性差异。提示重组CⅡ250-270具有CⅡ及合成CⅡ250-270相似的免疫学活性。
     3. DBA/1小鼠口服重组CⅡ250-270或合成CⅡ250-270多肽后, CIA的发病率低于对照组(口服PBS),关节炎评分也较对照组明显降低,关节炎发病延迟,且体重未减轻,而CIA对照组小鼠的体重则有所下降。表明CⅡ250-270多肽可在一定程度上减轻CIA小鼠病情。
     4.口服CⅡ250-270多肽可诱导对小鼠脾细胞中的抗原特异性T细胞的活化增殖及IFN-γ的分泌的抑制。口服CⅡ250-270多肽小鼠脾细胞中CD3+CD25+抗原特异性T细胞的百分比(18.76%)比对照组(30.67%)明显下降,P<0.01;口服rhCⅡ250-270多肽0.5mg组和syCⅡ250-270多肽0.1mg组CD3+BrdU+ T细胞的百分比分别为27.67%和24.79%,明显低于对照组(50.46%),P<0.01;口服CⅡ250-270多肽组脾细胞用rhCⅡ250-270多肽再刺激后,分泌IFN-γ的阳性细胞率为9.86%和12.89%,明显低于对照组的24.36%,P<0.01。
     5.口服CⅡ250-270小鼠血清中抗CⅡ和抗CⅡ250-270的IgG抗体水平[A值分别为(0.82±0.02)、(0.84±0.04)]比CⅡ免疫对照组[抗CⅡ的IgG抗体水平,A值为(1.01±0.06)]显著降低,而且特异性抗CⅡ250-270的IgG抗体反应在口服多肽组被明显抑制(P<0.01)。同时,口服CⅡ250-270小鼠的CⅡ和CⅡ250-270特异性抗体形成脾细胞的增殖频率分别为(158±9计数/孔)、(181±10计数/孔),比CⅡ免疫对照组[CⅡ特异性抗体形成脾细胞的增殖频率为(247±16计数/孔)]也显著减少(P<0.05),
     6.组织病理学观察,口服CⅡ250-270多肽,CIA小鼠关节破坏情况也得到了改善。炎细胞浸润、滑膜增生和血管翳的形成,软骨及骨组织损伤,口服rhCⅡ250-270多肽0.5mg组和syCⅡ250-270多肽0.1mg组,比口服PBS对照组,组织病理学评分均有所降低。
     结论
     本研究对rhCⅡ250-270多肽进行了较全面的鉴定,发现此肽段具有较强的免疫原性,可刺激RA患者PBMC中的特异性淋巴细胞活化和增殖反应以及诱导CIA敏感小鼠特异性抗体的活化,并且和合成CⅡ250-270多肽在抑制CIA小鼠的特异性细胞免疫和体液免疫上具有同样的效果。本实验还建立了在单细胞水平上同时检测分析抗原特异性细胞免疫和体液免疫的实验体系。这些研究将有助于阐明CIA的口服耐受机制,为应用口服CⅡ250-270多肽这一新的RA治疗方法提供理论依据。
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by a chronic inflammation of the synovial membrane which is associated with destruction of cartilage and bone. It is a common human autoimmune disease with a prevalence of about 0.3~1.0%. The pathogenesis is not completely understood.
     ‘Oral tolerance’has classically been defined as the specific suppression of cellular and/or humoral immune responses to an antigen by prior administration of the antigen by the oral route. Mucosal tolerance is an attractive approach for treatment of autoimmune and inflammatory diseases because of lack of toxicity, ease of administration over time, and antigen-specific mechanisms of action. Oral tolerance induced by typeⅡcollagen (CⅡ) and synthesis polypeptide 250-270 (syCⅡ250-270) peptide have been demonstrated to be a nondangerous, effective way for preventing harmful inflammatory in animal model of RA. However, it is more difficult to extract CⅡfrom animal cartilage tissue. Furthermore, the source of material is much limited to supply the demand of basal and clinical application for research and treatment of RA and the other diseases. The objective of this paper is to high-performance express the recombinant polymerized gene encoding human collagen typeⅡpolypeptide 250-270 (rhCⅡ250-270). Then, in order to proved that rhCⅡ2 50-270 characterize with predicted immunological characterization, we had explored its ability to stimulate the T cells of PBMC in patients with RA and detected autoantibodies to rhCⅡ250-270 in the sera of rhCⅡ250-270-immunized mice.
     It has been demonstrated that oral antigen administration can suppress animal models of autoimmune diseases. Unfortunately, although positive results have been observed in phase II trials, no effect was observed in phase III trials of CⅡin rheumatoid arthritis. In order to further investigat the modulation of rhCⅡ250-270 peptide, with immunodominant epitopes on special cellular and humoral immune response in the course of oral administration by in vitro and in vivo experiment, we induced low doses of orally administered rhCⅡ250-270 in early disease in mice CIA. The cellular events that characterize lymphocyte responses to specific stimuli include expression of cell surface activation antigens (CD69 or CD25), cytokine production (IFN-γ, IL-4) and proliferation (BrdU incorporation) were simultaneous detected. The antigen-specific antibody and antibody-forming cells were detected by ELISA and ELISPOT, respectively.
     Methods
     1. The human immunodominant peptide of CⅡ250-270 was expressed in E.coli.and purified by affinity chromatography for the first time. Fusion protein was expressed in pGEX-4T-1 and isolated and purified by Glutathione Sepharose? affinity chromatography.
     2. rhCⅡ2 50-270 was proved to characterize with predicted immunological characterization by flow cytometry analysis of activation and proliferation of antigen specific T cells including cellsurface markers (e.g. CD3, CD69 and CD25) and BrdU incorporation, and by the activity of IgG rhCⅡ2 50-270-specific antibody in sera in mice immunized with rhCⅡ2 50-270.
     3. DBA/1 mice were immunized with emulsified chicken CⅡor rhCⅡ2 50-270 in complete Freund’s adjuvant by intradermal injection to induce the mice model of arthritis; Oral tolerance was induced by oral rhCⅡ2 50-270 or syCⅡ2 50-270 in different doses (5 mg/mL, 1 mg/mL, respectively, twice before the induction phase of CIA).
     4. The lymphocytes were obtained from spleen of mice killed at 7 days of booster immunization, and the antigen specific reactive T cells were stimulated by CⅡor CⅡ250-270 in vitro. The proliferation response and phenotype were analyzed by BrdU incorporation and fluorescence-activated cell sorter (FACS). Intracellular cytokines (IFN-γ, IL-4) and surface antigen (CD4, CD3, CD69 and CD25 )of splenocytes were assayed by FACS.
     5. The frequency of IgG anti-CⅡ, anti-rhCⅡ250-270, and anti-syCⅡ( 250-270 antibody-forming spleen cells was measured with ELISPOT; ELISA was used to determine antigen-specific antibodies in sera in mice.
     6. To observe the effects of oral CⅡ250-270 on joint structure at the histologic level, inflamed joints were stained with hematoxylin and eosin and evaluated after mice was sacrificed at 3 weeks after booster immunization.
     Results
     1. rhCⅡ2 50-270 had been successfully expressed and purified. The relative molecular mass(Mr)of expressed product was 43 KD which is in accord with predicted. The purity of purified fusion protein reached 89.3 percent assessed by SDS-PAGE gel thin-layer scanning.
     2. rhCⅡ( 250-270 in vitro could stimulate the response of specific lymphocyte in RA patients PBMC including the increase of surface activation antigen marker CD69, CD25 expression and DNA synthesis. rhCⅡ2 50-270 in vivo could induced antigen-specific antibody in DBA/1 mice. As well as native CⅡ, rhCⅡ( 250-270 could be recognized as immunogenic antigens by T and B cells.
     3. We found that CⅡ(250-270 to some extent reduced the severity of CIA through the utilization of immunological regulatory mechanisms induced by feeding rhCⅡ250-270 to CIA. The general condition of the mice was improved.
     4. Splenocytes from mice fed rhCⅡ250-270 and syCⅡ250-270 stimulated significantly less specific splenocyte activation compare with CIA group. The percentages of CD3+CD25+ cell from mice fed CⅡ250-270 were reduced by at least 18.76% stimulated by rhCⅡ250-270. The percentages of CD3+BrdU+ cell from mice fed CⅡ250-270 after stimulation with antigens in vitro significantly less than CIA group. Those from mice fed rhCⅡ250-270 (5mg/mL),and syCⅡ250-270 (1mg/mL) were 27.67%, 24.79% and stimulated by rhCⅡ250-270, respectively, while in CIA was up to 50.46%. Splenocytes from the fed polypeptide groups of mice that were secreted significantly less IFN-γ, which were 9.86% and 12.89% stimulated by rhCⅡ250-270, respectively, than splenocytes from CIA (24.36%).
     5. The level of CⅡ- and CⅡ2 50-270 -specific IgG in serum from mice fed with rhCⅡ250-270 were (0.82±0.02) and (0.84±0.04) respectively,and significantly lower than those of collagen-induced arthritis (CIA) control group. The anti-CⅡ250-270 antibody responses were obviously suppressed (P<0.01).The frequency of antibody-forming cells in the spleen from rhCⅡ250-270-fed mice were (158±9 counts/well ) and (181±10 counts/well)respectively, and also significantly were reduced when compared with that in CIA control group (247±16 counts/well ).
     6. Consistent with the lack of treatment effect, oral rhCⅡ250-270 in doses of 5mg/mL have lower histologic scores for synovial inflammation or pannus invasion, degrees of cartilage damage and bone damage at either the joints.
     Generally, the human immunodominant peptide of CⅡ250-270 was expressed and purified for the first time in this paper. Then, it was proved to characterize with predicted immunological characterization. Further, present study identification that oral rhCⅡ250-270 could induce specific suppress of cellular and humoral in CIA. These findings and the experiment system, together with a better understanding of the mechanisms of oral tolerance and regulation cellular and humoral immune response in CIA, will help the development of innovative therapeutic intervention for RA.
引文
1. Smolen JS, Steiner G. Rheumatoid arthritis is more than cytokines: autoimmunity and rheumatoid arthritis. Arthritis Rheum, 2001, 44(10):2218-2220
    2. Goldring SR. Pathogenesis of bone erosions in rheumatoid arthritis. Curr opin Rheumatol, 2002, 14(4):406-410
    3. Smith MD, Tak PP. Rheumatoid arthritis: new insights into the role of synovial inflammation in joint destruction. Mod Rheumatol, 2002, 12(4):287-293
    4. Kraan MC, Haringman JJ, Weedon H, Barg EC, Smith MD, Ahern MJ, Smeets TJ, Breedveld FC, Tak PP. T cells, fibroblast-like synoviocytes, and granzyme B+ cytotoxic cells are associated with joint damage in patients with recent onset rheumatoid arthritis. Ann Rheum Dis, 2004, 63(5):483-488
    5. Weyand CM, Goronzy JJ. T-cell responses in rheumatoid arthritis:systemic abnormalities- local disease. Curr Opin Rheumatol, 1999, 11(3):210-217
    6. Liu H, Pope RM. Phagocytes: mechanisms of inflammation and tissue destruction. Rheum Dis Clin North Am, 2004, 30(1): 19-39
    7. Yamanishi Y, Firestein GS. Pathogenesis of rheumatoid arthritis: the role of synoviocytes. Rheum Dis Clin North Am, 2001, 27(2): 355-371
    8. Ma Y, Pope RM. The role of macrophages in rheumatoid arthritis. Curr Pharm Des, 2005,
    11(5):569-580
    9. Haringman JJ, Ludikhuize J,Tak PP. Chemokines in joint disease:the key to inflammation? Ann Rheum Dis, 2004, 63(10):1186-1194
    10. Edwards SW, Hallett MB. Seeing the wood for the trees:the forgotten role of neutrophils in rheumatoid arthritis. Immunol Today,1997,18(7):320-324
    11. Okada Y. Matrix-degrading metalloproteinases and their roles in joint destruction. Mod Rheumatol, 2000, 10(3):121-128
    12. Eyre DR. The collagens of articular cartilage. Semin Arthritis Rheum, 1991, 21(3 Suppl 2):2–11
    13. Diab BY, Lambert NC, L'Faqihi FE, Loubet-Lescoulie P, de Preval C, Coppin H. Human collagen Ⅱ peptide 256-271 preferentially binds to HLA-DR molecules associated with susceptibility to rheumatoid arthritis. Immunogenetics, 1999, 49(1):36-44
    14. Rowley MJ, Williamson DJ, Mackay IR. Evidence for local synthesis of antibodies to denatured collagen in the synovium in rheumatoid arthritis. Arthritis Rheum, 1987, 30(12):1420-1425
    15. Londei M, Savill CM, Verhoef A, Brennan F, Leech ZA, Duance V, Maini RN, Feldmann M.Persistence of collagen type Ⅱ-specific T-cell clones in the synovial membrane of a patient with rheumatoid arthritis. Proc Natl Acad Sci USA, 1989, 86(2):636-640
    16. von Delwig A, Altmann DM, Isaacs JD, Harding CV, Holmdahl R, McKie N, Robinson JH. The impact of glycosylation on HLA-DR1-restricted T cell recognition of type II collagen in a mouse model. Arthritis Rheum, 2006, 54(2):482-491
    17. Myers LK, Stuart JM, Seyer JM, Kang AH. Identification of an immunosuppressive epitope of type II collagen that confers protection against collagen-induced arthritis. J Exp Med, 1989, 170(6):1999-2010
    18. Myers LK, Terato K, Seyer JM, Stuart JM, Kang AH. Characterization of a tolerogenic T cell epitope of type II collagen and its relevance to collagen-induced arthritis. J Immunol, 1992, 149(4) :1439-1443
    19. Khare SD, Krco CJ, Griffiths MM, Luthra HS, David CS. Oral administration of an immunodominant human collagen peptide modulates collagen-induced arthritis. J Immunol, 1995, 155(7):3653-3659
    20. Myers LK, Seyer JM, Stuart JM, Kang AH. Suppression of murine collagen- induced arthritis by nasal administration of collagen. Immunology, 1997, 90(2): 161-164
    21. Chu CQ, Londei M. Differential activitives of immunogenic collagen type Ⅱ peptides in the induction of nasal tolerance to collagen-induced arthritis. J Autoimmun, 1999, 12(1):35-42
    22. Drosos AA. Epidemiology of rheumatoid arthritis. Autoimmun Rev, 2004, 3 (Suppl 1): S20-22
    23. 张乃峥,曾庆馀,张凤山,陈纪邦,施全胜,要庆平,赵岩,曾学军,董怡.中国风湿性疾病流行情况的调查研究.中华风湿病学杂志,1997,1(1):31-35
    24. Finch WR. Mortality in rheumatoid disease. J Insur Med, 2004, 36(3):200-212
    25. Korpela M, Laasonen L, Hannonen P , Kautiainen H, Leirisalo-Repo M, Hakala M, Paimela L, Blafield H, Puolakka K, Mottonen T; FIN-RACo Trial Group. Retardation of joint damage in patients with early rheumatoid arthritis by initial aggressive treatment with disease-modifying antirheumatic drugs: Five-year experience from the FIN-RACo study . Arthritis Rheum, 2004,50(7): 2072-2081
    26. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature, 2003,423(6937):356-361
    27. Arend WP. The innate immune system in rheumatoid arthritis. Arthritis Rheum, 2001, 44(10):2224-2234
    28. Goronzy JJ, Weyand CM. Rheumatoid arthritis. Immunol Rev. 2005, 204:55-73
    29. Weyand CM, Goronzy JJ, akemura S, Kurtin PJ. Cell-cell interactions in synovitis: Interactions between T cells and B cells in rheumatoid arthritis. Arthritis Res, 2000, 2(6): 457-463
    30. Firestein GS, Zvaifler NJ. How important are T cells in chronic rheumatoid synovitis? Arthritis Rheum, 1990, 33(6) :768-773
    31. Smolen JS, Steiner G. Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov, 2003, 2(6) :473-488
    32. Kim WU, Kim KJ. T cell proliferative response to type II collagen in the inflammatory process and joint damage in patients with rheumatoid arthritis. J Rheumatol, 2005, 32(2): 225-230
    33. van Amelsfort JM, Jacobs KM, Bijlsma JW, Lafeber FP, Taams LS. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum, 2004, 50 (9) : 2775- 2785
    34. Chabaud M, Garnero P, Dayer JM, Guerne PA, Fossiez F, Miossec P. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine,2000, 12(7) :1092-1099
    35. van Roon JA, Lafeber FP, Bijlsma JW. Synergistic activity of interleukin-4 and interleukin-10 in suppression of inflammation and joint destruction in rheumatoid arthritis. Arthritis Rheum, 2001,44(1) :3-12
    36. Klimiuk PA, Yang H, Goronzy JJ, Weyand CM. Production of cytokines and metallo- proteinases in rheumatoid synovitis is T cell dependent.Clin Immunol,1999,90(1):65-78
    37. Wakisaka S, Suzuki N, Nagafuchi H, Takeba Y, Kaneko A, Asai T, Sakane T. Characterization of tissue outgrowth developed in vitro in patients with rheumatoid arthritis:involvement of T cells in the development of tissue outgrowth. Int Arch Allergy Immunol, 2000, 121(1):68-79
    38. Dorner T, Burmester GR. The role of B cells in rheumatoid arthritis: mechanisms and therapeutic targets. Curr Opin Rheumatol, 2003, 15(3):246-252
    39. Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol, 2004, 5(10) :981-986
    40. Carroll MC. A protective role for innate immunity in systemic lupus erythematosus. Nat Rev Immunol, 2004, 4(10) :825-831
    41. Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med, 1978, 298(16) :869-871
    42. Takemura S, Klimiuk PA, Braun A, Goronzy JJ, Weyand CM. T cell activation in rheumatoid synovium is B cell dependent. J Immunol, 2001,167(8):4710-4718
    43. Salzer U, Chapel HM, Webster AD, Pan-Hammarstrom Q, Schmitt-Graeff A, Schlesier M, Peter HH, Rockstroh JK, Schneider P, Schaffer AA, Hammarstrom L, Grimbacher B. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet, 2005, 37(8):820-828
    44. Boackle SA.Complement and autoimmunity.Biomed Pharmacother,2003,57(7):269-273
    45. Lund FE, Garvy BA, Randall TD, Harris DP. Regulatory roles for cytokine-producing B cells in infection and autoimmune disease. Curr Dir Autoimmun, 2005, 8 :25-54
    46. Magalhaes R, Stiehl P, Morawietz L, Berek C, Krenn V. Morphological and molecular pathology of the B cell response in synovitis of rheumatoid arthritis. Virchows Arch, 2002, 441(5) :415-427
    47. Gause A, Berek C. Role of B cells in the pathogenesis of rheumatoid arthritis:potential implications for treatment. BioDrugs, 2001, 15(2):73-79
    48. Edwards JC, Cambridge G. Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes.Rheumatology (Oxford),2001,40(2):205-211
    49. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate auto- immunity by provision of IL-10. Nat Immunol, 2002, 3(10):944-950
    50. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med, 2004, 350(25):2572-2581
    51. Gamboa LM, Brezinschek HP, Burmester GR, D?rner T. Immunopathologic role of B lymphocytes in rheumatoid arthritis: Rationale of B cell-directed therapy. Autoimmun Rev, 2006, http://dx.doi.org/10.1016/j.autrev.2006.02.004
    52. Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, Takahashi K, Holers VM, Walport M, Gerard C, Ezekowitz A, Carroll MC, Brenner M, Weissleder R, Verbeek JS, Duchatelle V, Degott C, Benoist C, Mathis D. Arthritis critically dependent on innate immune system players. Immunity, 2002, 16(2):157-168
    53. Konttinen YT, Saari H, Santavirta S, Antti-Poika I, Sorsa T, Nykanen P, Kemppinen P. Synovial fibroblasts. Scand J Rheumatol Suppl, 1988, 76:95-103
    54. Lindblad S, Hedfors E. Intraarticular variation in synovitis. Local macroscopic and microscopic signs of inflammatory activity are significantly correlated. Arthritis Rheum, 1985, 28(9):977-986
    55. Rooney M, Condell D, Quinlan W, Daly L, Whelan A, Feighery C, Bresnihan B. Analysis of the histologic variation of synovitis in rheumatoid arthritis. Arthritis Rheum, 1988, 31(8):956-963
    56. Meinecke I, Rutkauskaite E, Gay S, Pap T. The role of synovial fibroblasts in mediating joint destruction in rheumatoid arthritis. Curr Pharm Des, 2005, 11(5):563-568
    57. Tak PP, Smeets TJ, Daha MR, Kluin PM, Meijers KA, Brand R, Meinders AE, Breedveld FC. Analysis of the synovial cellular infiltrate in early rheumatoid synovial tissue in relation to local disease activity. Arthritis Rheum, 1997, 40(2):217-225
    58. Yasuda H. Osteoclast differentiation factor and inflammatory bone destruction. Saishin Igaku, 2001, 56(4):883-890
    59. Takayanagi H. Rheumatioid arthritis:Defective immune control of bone matablism. Saishin Igaku, 2001, 56(4):891-896
    60. Arend WP, Gabay C. Cytokines in the rheumatic diseases. Rheum Dis Clin North Am, 2004, 30 (1): 41-67
    61. Vervoordeldonk MJ, Tak PP. Cytokines in rheumatoid arthritis. Curr Rheumatol Rep, 2002, 4(3):208-217
    62. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med, 2001;344(12):907-916
    63. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira- dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999, 397(6717):315-323
    64. Arron JR, Choi Y. Bone versus immune system. Nature, 2000, 408(6812):535-536
    65. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T. T-cell-mediated regulation of osteoclasto- genesis by signalling cross-talk betwenn RANKL and INF-gamma. Nature, 2000, 408 (6812) :600-605
    66. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T.IL-17 in synovial fluids from patients with rheumatioid arthritis is a potent simulator of osteoclastogenesis. J Clin Invest, 1999, 103(9) :1345-1352
    67. Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, Koshihara Y, Oda H, Nakamura K, Tanaka S. Involvement of receptor activator of nuclear factor kappa B ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum, 2000, 43(2):259-269
    68. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM. Activated T cells regulale bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nuture, 1999, 402(6759):304-309
    69. 林文棠,朱平主编.实用临床免疫学.西安:第四军医大学出版社,2003.28-44
    70. Gough A, Faint J, Salmon M, Hassell A, Wordsworth P, Pilling D, Birley A, Emery P. Genetic typing of patients with inflammatory arthritis at presentation can be used to predict outcome. Arthritis Rheum, 1994 , 37(8):1166-1170
    71. 金伯泉主编.细胞和分子免疫学.第二版.北京:科学出版社,2001.281-290
    72. Das P, Bradley DS, Geluk A, Griffiths MM, Luthra HS, David CS. An HLA-DRB1*0402 derived peptide(HV3 65-79) prevents collagen-induced arthritis in HLA-DQ8 transgenic mice. Hum Immunol, 1999, 60(7):575-582
    73. Valenzuela A, Gonzalez-Escribano MF, Rodriguez R, Moreno I, Garcia A, Nunez-Roldan A. Association of HLA shared epitope with joint damage progression in rheumatoid arthritis. Hum Immunol.1999,60(3):250-254
    74. Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B. Immunization against heterologous typeⅡcollagen induces arthritis in mice. Nature, 1980, 283(5748):666-668
    75. Terato K, Hasty KA, Cremer MA, Stuart JM, Townes AS, Kang AH. Collagen-induced arthritis in mice: Localization of an arthritogenic determinant to a fragment of the type Ⅱcollagen molecule. J Exp Med, 1985, 162(2):637-646
    76. Englert ME, Ferguson KM, Suarez CR, Sapp TM, Oronsky AL, Kerwar SS. Type Ⅱ collagen arthritis: identification of arthritogenic epitopes using fractionated anticollagen IgG . Cell Immunol, 1987, 105(2):447-453
    77. Burkhardt H, Holmdahl R, Deutzmann R, Wiedemann H, von der Mark H, Goodman S, von der Mark K. Identification of a major antigenic epitope on CNBr-fragment 11 of typeⅡcollagen recognized by murine autoreactive B cells. Eur J Immunol, 1991, 21(1):49-54
    78. Morgan K, Turner SL, Reynolds I, Hajeer AH, Brass A, Worthington J. Indentification of an immunodominant B-cell epitope in bovine type Ⅱ collagen and the production of antibodies to type Ⅱ collagen by immunization with a synthetic peptide representing this epitope. Immunology, 1992, 77(4):609-616
    79. Chiocchia G, Manoury-Schwartz B, Boissier MC, Gahery H, Marche PN, Fournier C. T cell regulation of collagen-induced arthritis in mice.III. Is T cell vaccination a valuable therapy? Eur J Immunol, 1994, 24(11):2775-2783
    80. Holmdahl R, Klareskog L, Rubin K, Larsson E, Wigzell H . T lymphocytes in collagenⅡ-induced arthritis in mice.Characterization of arthritiogenic collagen Ⅱ-specific T-cell lines and clones. Scand J Immunol, 1985, 22(3):295-306
    81. Andersson M, Cremer MA, Terato K, Burkhardt H, Holmdahl R. Analysis of type Ⅱ collagen reactive T cells in the mouse.Ⅱ.Different locatization of immunodominant T cell epitopes on heterologous and autologous type Ⅱ collagen. Scand J Immunol, 1991, 33(5):505-510
    82. Myers LK, Cooper SW, Terato K, Seyer JM, Stuart JM, Kang AH. Identification and characterization of a tolerogenic T cell determinant within residues 181-209 of chick type Ⅱ collagen. Clin Immunol Immunopathol, 1995, 75(1):33-38
    83. Myers LK, Seyer JM, Stuart JM, Terato K, David CS, Kang AH. T cell epitopes of type Ⅱ collagen that regulate murine collagen-induced arthritis. J Immunol, 1993, 151(1):
    500-505
    84. Maeurer MJ, Trinder PK, Storkel S, Loos M. Modulation of type Ⅱ collagen-induced arthritis in DBA/1 mice by intravenous application of a peptide from the C1q-A chain. Immunobiology, 1992, 185(1):103-120
    85. Faria AM, Weiner HL. Oral tolerance. Immunol Rev, 2005, 206: 232-259
    86. Mowat AM, Strobel S, Drummond HE, Ferguson A. Immunological response to fed protein antigens in mice. I. Reversal of oral tolerance to ovalbumin by cyclophosphamide. Immunology, 1982, 45(1):105-113
    87. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA, 1994, 91(14): 6688-6692
    88. Miller A, Lider O, Roberts AB, Sporn MB, Weiner HL. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vivo and in vitro immune response by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci USA, 1992, 89(1):421- 425
    89. Weiner HL. Oral tolerance. Proc Natl Acad Sci USA, 1994, 91(23):10762-10765
    90. Chen Y, Inobe J, Marks R, Gonnella P, Kuchroo VK, Weiner HL. Peripheral deletion of antigen-reactive T cell in oral tolerance. Nature, 1995, 376(6536):177-180
    91. Chen Y, Kuchroo V,Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science, 1994, 265 (5176):1237-1240
    92. Melamed D, Friedman A. Direct evidence for anergy in T lymphocytes tolerized by oral administration of ovalbumin. Eur J Immunol, 1993, 23(4):935-942
    93. Whitacre CC, Gienapp IE, Orosz CG, Bitar DM. Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. J Immunol, 1991, 147(7): 2155-2163
    94. 朱平,王彦宏,冷南,王树宽,吴振彪,解慧,张惠琴,樊春梅.口服Ⅱ型胶原诱导分泌TGF-β的特异性Th3细胞.细胞与分子免疫学杂志,2000,16(4):338-341
    95. Krause I, Blank M, Shoenfeld Y. Immunomodulation of experimental autoimmune diseases via oral tolerance. Crit Rev Immunol, 2000, 20(1):1-16
    96. Harada M, Matsunaga K, Oguchi Y, Iijima H, Ito O, Tamada K, Kimura G, Nomoto K. The involvement of transforming growth factor beta in the impaired antitumor T-cell response at the gut-associated lymphoid tissue (GALT). Cancer Res, 1995, 55(24): 6146-6151
    97. Strobel S, Mowat AM. Immune responses to dietary antigens: oral tolerance. Immunol Today, 1998, 19(4):173-181
    98. Bayrak S, Mitchison NA. Bystander suppression of murine collagen-induced arthritis by long-term nasal administration of a self type Ⅱ collagen peptide. Clin Exp Immunol, 1998, 113(1):92-95
    99. Schramm CM, Puddington L, Wu C, Guernsey L, Gharaee-Kermani M, Phan SH, Thrall RS. Chronic inhaled ovalbumin exposure induces antigen-dependent but not antigen- specific inhalational tolerance in a murine model of allergic airway disease. Am J Pathol, 2004, 164(1):295-304
    100. Chen W, Jin W, Wahl SM. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4+ T cells. J Exp Med, 1998, 188(10):1849-1857
    101. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4+ CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med, 2001, 194(5):629-644
    102. Christ M, McCartney-Francis NL, Kulkarni AB, Ward JM, Mizel DE, Mackall CL, Gress RE, Hines KL, Tian H, Karlsson S, Wahl SM . Immune dysregulation in TGF-beta 1-deficient mice. J Immunol, 1994, 153(5):1936-1946
    103. Kim PH, Kagnoff MF. Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J Immunol, 1990, 145(11):3773-3778
    104. Roberts AB, Sporn MB. Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors, 1993, 8(1):1-9
    105. Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelites are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med, 1992, 176(5):1355-1364
    106. Chen Y, Inobe J, Kuchroo VK, Baron JL, Janeway CA Jr, Weiner HL. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci USA, 1996, 93(1):388-391
    107. Santos LM, al-Sabbagh A, Londono A, Weiner HL. Oral tolerance to myelin basic protein induces regulatory TGF-beta-secreting T cells in Peyer’s patches of SJL mice. Cell Immunol, 1994, 157(2):439-447
    108. Wang ZY, Link H, Ljungdahl A, Hojeberg B, Link J, He B, Qiao J, Melms A, Olsson T. Induction of interferon-gamma, interleukin-4, and transforming growth factor-beta in rats orally tolerized against experimental autoimmune myasthenia gravis. Cell Immunol, 1994, 157(2):353-368
    109. Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL. Hafler DA. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest, 1996, 98(1):70-77
    110. Neurath MF, Fuss I, Kelsall BL, Presky DH, Waegell W, Strober W. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med, 1996, 183(6):2605-2616
    111. Kitani A, Fuss IJ, Nakamura K, Schwartz OM, Usui T, Strober W. Treatment of experimental (Trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF) -beta1 plasmid. TGF-beta1-mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor beta2 chain downregulation. J Exp Med, 2000, 192(1):41-52
    112. Chen Y, Inobe J, Weiner HL. Inductive events in oral tolerance in the TCR transgenic adoptive transfer model. Cell Immunol, 1997, 178(1):62-68
    113. Marth T, Strober W, Kelsall BL. High dose oral tolerance in ovalbumin TCR-transgenic mice: systemic neutralization of interleukin 12 augments TGF-beta secretion and T cell apoptosis. J Immunol, 1996, 157(6):2348-2357
    114. Weiner HL. Induction and mechanism of action of transforming growth factor-beta- secreting Th3 regulatory cells. Immunol Rev, 2001, 182:207-214
    115. Weiner HL, Mayer LF. Oral tolerance: mechanisms and applications. Introduction. Ann NY Acad Sci, 1996, 778: xiii-xviii
    116. Weiner HL. Immunosuppressive treatment in multiple sclerosis. J Neurol Sci, 2004, 223(1):1-11
    117. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell, 1994, 76(2):241-251
    118. Im SH, Barchan D, Souroujon MC, Fuchs S. Role of tolerogen conformation in induction of oral tolerance in experimental autoimmune myasthenia gravis. J Immunol, 2000, 165(7):3599-3605
    119. Zhang X, Izikson L, Liu L, Weiner HL. Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration. J Immunol, 2001, 167(8):4245-4253
    120. Oida T, Zhang X, Goto M, Hachimura S, Totsuka M, Kaminogawa S, Weiner HL. CD4+ CD25- T cells that express latency-associated peptide on the surface suppress CD4+ CD45RBhigh-induced colitis by a TGF-beta-dependent mechanism. J Immunol, 2003, 170(5): 2516-2522
    121. Nakamura K, Kitani A, Fuss I, Pedersen A, Harada N, Nawata H, Strober W. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol, 2004, 172(2):834-842
    122. Nagatani K, Sagawa K, Komagata Y, Yamamoto K. Peyer’s patch dendritic cells capturing oral antigen interact with antigen-specific T cells and induce gut-homing CD4+ CD25+ regulatory T cells in Peyer’s patches. Ann NY Acad Sci, 2004, 1029: 366-370
    123. Tsuji NM, Nowak B. IL-18 and antigen-specific CD4+ regulatory T cells in Peyer’s patches. Ann NY Acad Sci, 2004, 1029: 413-415
    124. Thorstenson KM, Khoruts A. Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol, 2001, 167(1):188-195
    125. Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, Protschka M, Galle PR, Neurath MF, Blessing M. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+ CD25+ T cells. J Immunol, 2004, 173(11):6526-6531
    126. Challacombe SJ, Tomasi TB Jr. Systemic tolerance and secretory immunity after oral immunization. J Exp Med, 1980, 152(6):1459-1472
    127. Grdic D, Hornquist E, Kjerrulf M, Lycke NY. Lack of local suppression in orally tolerant CD8-deficient mice reveals a critical regulatory role of CD8+ T cells in the normal gut mucosa. J Immunol, 1998, 160(2):754-762
    128. Kato H, Fujihashi K, Kato R, Yuki Y, McGhee JR. Oral tolerance revisited: prior oral tolerization abrogates cholera toxin-induced mucosal IgA responses. J Immunol, 2001, 166(5):3114-3121
    129. Fuss IJ, Boirivant M, Lacy B, Strober W. The interrelated roles of TGF-beta and IL-10 in the regulation of experimental colitis. J Immunol, 2002, 168(2):900-908
    130. Shi MN, Huang YH, Zheng WD, Zhang LJ, Chen ZX, Wang XZ. Relationship between transforming growth factor beta1 and anti-fibrotic effect of interleukin-10. World J Gastroenterol, 2006, 12(15):2357-2362
    131. Kitani A, Fuss I, Nakamura K, Kumaki F, Usui T, Strober W. Transforming growth factor (TGF)-beta1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med, 2003, 198(8):1179-1188
    132. Weiner HL. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today, 1997, 18(7):335-343
    133. Chen Y, Inobe J, Weiner HL. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: Both CD4+ and CD8+ cells mediate active suppression. J Immunol, 1995, 155(2):910-916
    134. Gonnella PA, Chen Y, Inobe J, Komagata Y, Quartulli M, Weiner HL. In situ immune response in gut-associated lymphoid tissue (GALT) following oral antigen in TCR- transgenic mice. J Immunol, 1998, 160(10):4708-4718
    135. Lundin BS, Karlsson MR, Svensson LA, Hanson LA, Dahlgren UI, Telemo E. Active suppression in orally tolerized rats coincides with in situ transforming growth factor-beta (TGF-beta) expression in the draining lymph nodes. Clin Exp Immunol, 1999, 116(1): 181-187
    136. Barnard JA, Warwick GJ, Gold LI. Localization of transforming growth factor beta isoforms in the normal murine small intestine and colon. Gastroenterology, 1993, 105(1): 67-73
    137. Galliaerde V, Desvignes C, Peyron E, Kaiserlian D. Oral tolerance to haptens: intestinal epithelial cells from 2,4-dinitrochlorobenzene-fed mice inhibit hapten-specific T cell activation in vitro. Eur J Immunol, 1995, 25(5):1385-1390
    138. Lipscomb MF, Pollard AM, Yates JL. A role for TGF-beta in the suppression by murine bronchoalveolar cells of lung dendritic cell initiated immune responses. Reg Immunol, 1993, 5(3-4):151-157
    139. Haneda K, Sano K, Tamura G, Sato T, Habu S, Shirato K. TGF-beta induced by oral tolerance ameliorates experimental tracheal eosinophilia. J Immunol, 1997, 159(9): 4484-4490
    140. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature, 1992, 359(6397): 693-699
    141. Gorelik L, Flavell RA. Abrogation of TGF beta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity, 2000, 12(2):171-181
    142. Schramm C, Herz U, Podlech J, Protschka M, Finotto S, Reddehase MJ, Kohler H, Galle PR, Lohse AW, Blessing M. TGF-beta regulates airway responses via T cells. J Immunol, 2003,170(3):1313-1319
    143. Barone KS, Tolarova DD, Ormsby I, Doetschman T, Michael JG. Induction of oral tolerance in TGF-beta 1 null mice. J Immunol, 1998, 161(1):154-160
    144. Nokelaninen M, Helaakoski T, Myllyharju J, Notbohm H, Pihlajaniemi T, Fietzek PP, Kivirikko KI. Expression and characterization of recombinant human type Ⅱ collagen with low and high contents of hydroxylysine and its glycosylated forms. Matrix Biol, 1998, 16(6):329-338
    145. Thompson HS, Staines NA. Gastric administration of type II collagen delays the onset and severity of collagen-induced arthritis in rats. Clin Exp Immunol, 1986, 64(3): 581-586
    146. Wooley PH, Luthra HS, Stuart JM, David CS. Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I region) linkage and antibody correlates. J Exp Med, 1981, 154(3):688-700
    147. Trentham DE, Townes AS, Kang AH. Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med, 1977, 146(3):857-868
    148. Nagler-Anderson C, Bober LA, Robinson ME, Siskind GW, Thorbecke GJ. Suppression of type II collagen-induced arthritis by intragastric administration of soluble type II collagen. Proc Natl Acad Sci USA, 1986, 83(19):7443-7446
    149. Myers LK, Brand DD, Ye XJ, Cremer MA, Rosloniec EF, Bodo M, Myllyharju J, Helaakoski T, Nokelainen M, Pihlajaniemi T, Kivirikko K, Yang CL, Ala-Kokko L, Prockop DJ, Notbohm H, Fietzek P, Stuart JM, Kang AH. Characterization of recombinant type Ⅱ collagen: arthritogenicity and tolerogenicity in DBA/1 mice. Immunology, 1998, 95(4):631-639
    150. Yoshino S. Treatment with an anti-IL-4 monoclonal antibody blocks suppression of collagen-induced arthritis in mice by oral administration of type II collagen. J Immunol, 1998, 160(6):3067-3071
    151. Zhang ZY, Michael JG. Orally inducible immune unresponsiveness is abrogated by IFN-gamma treatment. J Immunol, 1990, 144(11):4163-4165
    152. van Eden W, Thole JE, van der Zee R, Noordzij A, van Embden JD, Hensen EJ, Cohen IR. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature, 1988, 331(6152):171-173
    153. Haque MA, Yoshino S, Inada S, Nomaguchi H, Tokunaga O, Kohashi O. Suppression of adjuvant arthritis in rats by induction of oral tolerance to mycobacterial 65-kDa heat shock protein. Eur J Immunol, 1996, 26(11):2650-2656
    154. Thompson SJ, Thompson HS, Harper N, Day MJ, Coad AJ, Elson CJ, Staines NA. Prevention of pristane-induced arthritis by the oral administration of type II collagen. Immunology, 1993, 79(1):152-157
    155. Yoshino S. Downregulation of silicone-induced chronic arthritis by gastric administration of type II collagen. Immunopharmacology, 1995, 31(1):103-108
    156. Inada S, Yoshino S, Haque MA, Ogata Y, Kohashi O. Clonal anergy is a potent mechanism of oral tolerance in the suppression of acute antigen-induced arthritis in rats by oral administration of the inducing antigen. Cell Immunol, 1997, 175(1): 67-75
    157. Yoshino S, Yoshino J. Effect of a monoclonal antibody against interleukin-4 on suppression of antigen-induced arthritis in mice by oral administration of the inducing antigen. Cell Immunol, 1998, 187(2):139-144
    158. Chen W, Jin W, Cook M, Weiner HL, Wahl SM. Oral delivery of group A streptococcal cell walls augments circulating TGF-beta and suppresses streptococcal cell wall arthritis. J Immunol, 1998, 161(11):6297-6304
    159. al-Sabbagh A, Miller A, Santos LM, Weiner HL. Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein-induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur J Immunol, 1994, 24(9):2104-2109
    160. Weiner HL, Komagata Y. Oral tolerance and the treatment of rheumatoid arthritis. Springer Semin Immunopathol, 1998, 20(1-2):289-308
    161. 朱平,冷南,王彦宏, 王树宽,吴振彪,张惠琴,解惠,樊春梅.口服Ⅱ型胶原蛋白诱导免疫耐受治疗佐剂关节炎的研究.细胞与分子免疫学杂志,1999,15(4):305-307
    162. Barnett ML, Kremer JM, St Clair EW, Clegg DO, Furst D, Weisman M, Fletcher MJ, Chasan-Taber S, Finger E, Morales A, Le CH, Trentham DE. Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo- controlled trial. Arthritis Rheum, 1998, 41(2):290–297
    163. Barnett ML, Combitchi D, Trentham DE. A pilot trial of oral type II collagen in the treatment of juvenile rheumatoid arthritis. Arthritis Rheum, 1996, 39(4):623-628
    164. Trentham DE, Dynesius-Trentham RA, Orav EJ, Combitchi D, Lorenzo C, Sewell KL, Hafler DA, Weiner HL. Effects of oral administration of type II collagen on rheumatoid arthritis. Science, 1993, 261(5129):1727-1730
    165. Choy EH, Scott DL, Kingsley GH, Thomas S, Murphy AG, Staines N, Panayi GS. Control of rheumatoid arthritis by oral tolerance.Arthritis Rheum,2001,44(9):1993-1997
    166. Myers LK, Higgins GC, Finkel TH, Reed AM, Thompson JW, Walton RC, Hendrickson J, Kerr NC, Pandya-Lipman RK, Shlopov BV, Stastny P, Postlethwaite AE, Kang AH. Juvenile arthritis and autoimmunity to type II collagen. Arthritis Rheum, 2001, 44(8): 1775-1781
    167. Postlethwaite AE. Can we induce tolerance in rheumatoid arthritis? Curr Rheumatol Rep, 2001, 3(1):64–69
    168. Weiner HL, Friedman A, Miller A, Khoury SJ, al-Sabbagh A, Santos L, Sayegh M, Nussenblatt RB, Trentham DE, Hafler DA. Oral tolerance:immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol, 1994, 12:809-837
    169. Joosten LA, Coenen-de Roo CJ, Helsen MM, Lubberts E, Boots AM, van den Berg WB, Miltenburg AM. Induction of tolerance with intranasal adminatretion of human cartilage gp-39 in DBA/1 mice: amelioration of clinical, histologic, and radiologic signs of type II collagen-induced arthritis. Arthritis rheum, 2000, 43(3):645-655
    170. 袁仕取, 林焯唐主编. 细胞分子生物学. 西安:陕西科学技术出版社,1994. 68-74
    171. 翟中和主编. 细胞生物学. 北京:高等教育出版社,1995. 84-86
    172. 宋今丹主编. 医学细胞生物学. 北京:人民卫生出版社,1997. 80-82
    173. Fridkis-Hareli M, Rosloniec EF, Fugger L, Strominger JL. Synthetic peptides that inhibit binding of the collagen type Ⅱ261-273 epitope to rheumatoid arthritis-associated HLA-DR1 and -DR4 molecules and collagen-specific T-cell responses.Hum Immunol, 2000, 61(7):640-650
    174. Tian J, Olcott A, Hanssen L, Zekzer D, Kaufman DL. Antigen-based immunotherapy for autoimmune disease:from animal models to human?Immunol Today,1999, 20(4):190-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700