抑制性消减杂交方法筛选鹅肥肝中差异表达基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以朗德鹅为试验材料,运用抑制性消减杂交(SSH)技术检测填肥组和对照组之间的差异表达片段,将所获得的差异片段克隆测序后与GenBank中已知基因进行序列比对,寻找差异片段的同源基因或序列,对筛选出的差异表达基因进行功能聚类分析和代谢途径分析(KEGG),推测筛选的基因的功能,并绘制肥肝形成过程中脂类代谢调控示意图。选择12个与脂类代谢或糖代谢相关的基因进行荧光定量PCR(qRT-PCR)验证,并检测其中4个基因的时空表达规律,另外还测定了朗德鹅填肥前、填肥10天和填肥20天的血清生化指标和组织营养成分等。结果如下:
     (1)填肥鹅血清中谷丙转氨酶(ALT)、谷草转氨酶(AST)、甘油三酯(TG)、总胆固醇和高密度脂蛋白(HDL)水平显著增加,γ-谷氨酰转肽酶(GGT)在填肥过程中呈现出先升高后降低;脂肪主要在肝脏沉积,其他组织无明显差异,蛋白质在肌肉和肝脏中相对增加;填饲朗德鹅肝脏细胞胀大,肝细胞胞浆中充满大量大小不等的脂肪滴。表明填肥使鹅的肝脏脂肪代谢和血清发生改变。
     (2)采用SSH技术在填肥组和对照组间共检测到107条差异表达片段,其中未知基因18个,假设性基因26个,与鹅肥肝相关上调表达基因83个,下调表达基因24个。GO聚类分析显示这些差异表达基因主要参与细胞生化过程、信号转导、脂肪合成代谢等生物学过程。
     (3)荧光实时定量PCR技术检测结果证明,部分代谢相关差异表达基因的表达规律与消减杂交的结果一致。表明SSH技术是检测鹅肥肝形成过程中差异表达基因的有效方法。
     (4)差异表达基因代谢途径分析(KEGG)表明,在强饲的高能饲料诱导下,脂肪酸合成途径和TG合成途径加强,而糖酵解途径受阻,其中SCD、Elovl-6、ACSL1、NADP-ME等基因参与的不饱和脂肪酸合成途径在肥肝形成过程中发挥极其重要的作用。
In present study, suppression subtractive hybridization (SSH) was used to detect differential expression of genes in the livers of overfeeding and normal feeding Landes geese. These differential expression bands were cloned, sequenced and aligned homology with known genes from the GenBank.And then, they were classified into functional categories and analyzed by Kyoto Encyclopaedia of Genes and Genomes (KEGG) automatic annotation server for ortholog assignment and pathway mapping, and the possible functions and schematic representation of the roles of the genes were predicted and drawn. Twelve genes that related to metabolism processes and cellular processes were confirmed using quantitative real time PCR (qRT-PCR). Four genes were selected and detected in different tissues and period of overfeeding. The serum biochemical parameters were measured during the period of overfeeding and tissue nutrient composition and histological changes in liver were also measured, results are as follows:
     (1) The concentration of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol (TC) and high density lipoprotein (HDL) in overfeeding Landes geese serum were significantly increased. Theγ-glutamyl transpeptidase (GGT) level was increased and then decreased during the overfeeding period. The tissue nutrient component analysis showed that fat was mainly deposited in liver, and the content of protein was increased in muscle and liver after overfeeding. Histology observation shown that liver cytoplasm was full of fat in overfeeding group. The results indicated that overfeeding has changed the liver lipid metabolism and serum component of geese.
     (2) One hundred and seven differential expression genes containing 16 unknown sequences and 26 hypothetical genes in the livers of overfeeding geese and normal feeding geese were detected by SSH, of which 83 were up-regulated and 24 were down-regulated. The functional categories showed that these genes were maily related to lipids metabolism process, ceculler process and signal transduction.
     (3) Tweleve different expression genes selected from SSH results confirmed by qRT-PCR, which indicated that SSH was an efficient way to screening different expression genes related to goose fatty liver.
     (4) KEGG analysis showed that most genes were associated with pathways related to metabolism or biosynthesis pathways, especially for the biosynthesis of fatty acids. The fatty acids and TG synthesis were enhanced and glycolysis was was reduced in response to overfeeding. Several genes such as stearoyl-CoA desaturase (delta-9-desaturase) (SCD), ELOVL family member 6 (Elovl-6), NADP+ dependent malic enzyme (NADP-ME) and long-chain acyl-CoA synthetase 1 (ACSL1) are involved in the biosynthesis of unsaturated fatty acids which play an important role in the formation of goose fatty liver.
引文
[1] Pilo B, George JC. Diurnal and seasonal variation in liver glycogen and fat in relation to metabolic status of liver and m. pectoralis in the migratory starling, Sturnus roseus, wintering in India. Comp Biochem Physiol A Comp Physiol, 1983, 74(3):601-604.
    [2] Yasuhara M, Ohama T, Matsuki N, et al. Induction of fatty liver by fasting in suncus. J Lipid Res, 1991, 32(6):887-891.
    [3] Mourot J, Guy G, Lagarrigue S, et al. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (Anser anser). Comp Biochem Physiol B Biochem Mol Biol, 2000, 126(1):81-87.
    [4] Bookout AL, Jeong Y, Downes M, et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell, 2006, 126(4):789-799.
    [5] Motomura W, Inoue M, Ohtake T, et al. Up-regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochem Biophys Res Commun, 2006, 340 (4):1111-1118.
    [6] Schwerin M, Dorroch U, Beyer M, et al. Dietary protein modifies hepatic gene expression associated with oxidative stress responsiveness in growing pigs. FASEB J, 2002, 16(10):1322-1324.
    [7] Junghans P, Kaehne T, Beyer M, et al. Dietary protein-related changes in hepatic transcription correspond to modifications in hepatic protein expression in growing pigs. J Nutr, 2004, 134(1):43-47.
    [8] Cogburn LA, Wang X, Carre W, et al. Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult Sci, 2003, 82(6):939-951.
    [9] Bourneuf E, Herault F, Chicault C, et al. Microarray analysis of differential gene expression in the liver of lean and fat chickens. Gene, 2006, 372:162-170.
    [10] Sharma MR, Polavarapu R, Roseman D, et al. Transcriptional networks in a rat model for nonalcoholic fatty liver disease: a microarray analysis. Exp Mol Pathol, 2006, 81(3):202-210.
    [11] Zhao A, Tang H, Lu S, et al. Identification of a differentially-expressed gene in fatty liver of overfeeding geese. Acta Biochim Biophys Sin (Shanghai), 2007, 39(9):649-656.
    [12]赵阿勇.一个在超饲养朗德鹅肝脏中差异表达基因的分离和鉴定.农业生物技术学报, 2009, 17(2):256-262.
    [13] Ding ST, Yen CF, Wang PH, et al. The differential expression of hepatic genes between prelaying and laying geese. Poult Sci, 2007, 86(6):1206-1212.
    [14]翟宁凤.四川白鹅和朗德鹅肝细胞间差异表达基因的筛选及鉴定[硕士学位论文];雅安:四川农业大学,2008.
    [15]罗锦标.填饲前后鹅PPARs基因组织表达特性的研究.中国家禽, 2008, 30(15):24-27.
    [16]苏胜彦.朗德鹅填饲后不同组织PPARγ基因mRNA表达量差异的初步研究.畜牧兽医学报, 2008, 39(7):879-884.
    [17]苏胜彦.朗德鹅肝脏和脂肪组织LXRα基因表达水平的比较.农业生物技术学报, 2008, 16(3):421-425.
    [18]郑智勇,周杰,朱枫桥.皖西白鹅与朗德鹅肝脏中GHR,IGF-1和IGF-1R基因的表达比较.农业生物技术学报, 2009, 17(5):937-938.
    [19]徐国庆.鹅肥肝中差异表达基因的筛选及分析[硕士学位论文].扬州:扬州大学, 2008.
    [20] Tarantino G, Saldalamacchia G, Conca P, et al. Non-alcoholic fatty liver disease: further expression of the metabolic syndrome. J Gastroenterol Hepatol, 2007, 22 (3):293-303.
    [21] Tsutsumi T, Suzuki T, Shimoike T, et al. Interaction of hepatitis C virus core protein with retinoid X receptor alpha modulates its transcriptional activity. Hepatology, 2002, 35 (4):937-946.
    [22] Perlemuter G, Sabile A, Letteron P, et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. FASEB J, 2002, 16 (2):185-1.
    [23] Paradis V, Perlemuter G, Bonvoust F, et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology, 2001, 34(4 ) :738-44.
    [24] Fromenty B, Robin MA, Igoudjil A, et al. The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab, 2004, 30 (2):121-138.
    [25] Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A, 1996, 93 (12):6025-6030.
    [26] Diatchenko L, Lukyanov S, Lau YF, et al. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol, 1999, 303:349-380.
    [27] Zhang L, Cilley RE, Chinoy MR. Suppression subtractive hybridization to identify gene expressions in variant and classic small cell lung cancer cell lines. J Surg Res, 2000, 93 (1):108-119.
    [28]李靖,韩本立,黄桂君,等.肝癌组织差异表达基因cDNA序列的筛选与鉴定.中华医学遗传学杂志, 2003, (1):53-56.
    [29] Kuang WW, Thompson DA, Hoch RV, et al. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line. Nucleic Acids Res, 1998, 26 (4):1116-1123.
    [30]王莹,陈葳,李旭.用抑制性消减杂交方法筛选人肾癌相关基因.南方医科大学学报, 2008 (01):89-93.
    [31]徐耀辉,焦新安,李求春,等.鸡白痢沙门菌基因组差异片段的筛选与分析.中国兽医科学, 2007(07):563-567.
    [32]李玉荣,尹俊,张燕军,等.绒山羊胚胎期和兴盛期皮肤毛囊差异表达基因研究.湖北农业科学, 2008, 47(2):146-14.
    [33]王慧梅,王延兵,祖元刚,等.干旱胁迫下黄檗幼苗cDNA消减文库的构建和分析.生物工程学报, 2008, 24 (2):198-202.
    [34] Bahn SC, Bae MS, Park YB, et al. Molecular cloning and characterization of a novel low temperature-induced gene, blti2, from barley (Hordeum vulgare L.). Biochim Biophys Acta, 2001, 1522 (2):134-137.
    [35] Takeuchi T, Katsume A, Tanaka T, et al, Tsukiyama-Kohara K, et al. Real-time detection system for quantification of hepatitis C virus genome. Gastroenterology, 1999, 116 (3):636-642.
    [36] Kessler HH, Preininger S, Stelzl E, et al. Identification of different states of hepatitis B virus infection with a quantitative PCR assay. Clin Diagn Lab Immunol, 2000, 7 (2):298-300.
    [37] Abe A, Inoue K, Tanaka T, et al. Quantitation of hepatitis B virus genomic DNA by real-time detection PCR. J Clin Microbiol, 1999, 37 (9):2899-2903.
    [38] Costa JM, Pautas C, Ernault P, et al. Real-time PCR for diagnosis and follow-up of Toxoplasma reactivation after allogeneic stem cell transplantation using fluorescence resonance energy transfer hybridization probes. J Clin Microbiol, 2000, 38 (8):2929-2932.
    [39] Hofmann-Lehmann R, Swenerton RK, Liska V, et al. Sensitive and robust one-tube real-time reverse transcriptase-polymerase chain reaction to quantify SIV RNA load: comparison of one- versus two-enzyme systems. AIDS Res Hum Retroviruses, 2000, 16 (13):1247-1257.
    [40] Emery S, Bodrug S, Richardson BA, et al. Evaluation of performance of the Gen-Probe human immunodeficiency virus type 1 viral load assay using primary subtype A, C, and D isolates from Kenya. J Clin Microbiol, 2000, 38 (7):2688-2695.
    [41] Mizugaki M, Hiratsuka M, Agatsuma Y, et al. Rapid detection of CYP2C18 genotypes by real-time fluorescence polymerase chain reaction. J Pharm Pharmacol, 2000, 52 (2):199-205.
    [42]王梁燕,洪奇华,张耀洲.实时定量PCR技术及其应用.细胞生物学杂志, 2004, 2(2):62-67.
    [43]刘园园.猪伪狂犬病病毒TaqMan-MGB荧光定量PCR检测方法的建立及应用.中国畜牧兽医, 2009, 36 (4):76-79.
    [44]花群义. TaqMan(R) RT-PCR对水疱性口炎病毒的鉴定检测.动物医学进展, 2004, 25(2):64-68.
    [45]柴政,李曦,王小武,等. PRRSV高致病株和经典株SYBR Green-Ⅰ实时荧光PCR鉴别方法的建立.中国兽医科学, 2009, 39 (2):140-144.
    [46]朱燕.中国黄牛背最长肌中capn1 mRNA表达与嫩度的关系.南京农业大学学报, 2006, 29 (2):89-93.
    [47]张明辉.大豆深加工产品两种荧光定量PCR检测方法的比较研究.生物技术, 2006, 16(2):56.
    [48]许恒勇.脂蛋白脂酶(LPL)在填饲鹅脂肪组织中的表达研究[硕士学位论文].四川:四川农业大学, 2005.
    [49] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods, 2001, 25 (4):402-408.
    [50] Hermier D, Rousselot-Pailley D, Peresson R, et al. Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis. Biochim Biophys Acta, 1994, 1211 (1):97-106.
    [51] Fournier E, Peresson R, Guy G, et al. Relationships between storage and secretion of hepatic lipids in two breeds of geese with different susceptibility to liver steatosis. Poult Sci, 1997, 76 (4):599-607.
    [52]吴浩,曹明富.非酒精性脂肪性肝病的研究进展.临床肝胆病杂志, 2005 (03):192-193.
    [53]毛娜,陈琼.脂肪肝的研究近况.辽宁中医学院学报, 2005, 7 (2):122-124.
    [54] Szabo A, Mezes M, Horn P, et al. Developmental dynamics of some blood biochemical parameters in the growing turkey (Meleagris gallopavo). Acta Vet Hung, 2005, 53 (4):397-409.
    [55] Romvari R, Dobrowolski A, Repa I, et al. Development of a computed tomographic calibration method for the determination of lean meat content in pig carcasses. Acta Vet Hung. 2006, 54(1):1-10.
    [56] Peebles ED, Cheaney JD, Brake JD, et al. Effects of added lard fed to broiler chickens during the starter phase. 2. Serum lipids. Poult Sci, 1997, 76 (12):1648-1654.
    [57]周联高,刘巧泉,王捍东,等.转基因稻谷日粮对肉仔鸡血清生化指标的影响.饲料工业, 2009 (11):17-19.
    [58]方文,胡鸿.血清胆碱酯酶活性在肝病时的变化及其相关性.贵阳医学院学报, 1999(04):362-364.
    [59]邓开盛,王秀红.病毒性肝炎患者血清γ-谷氨酰转肽酶的检测.贵阳医学院学报,2004 (03):243-244.
    [60] Griffin HD, Butterwith SC, Goddard C. Contribution of lipoprotein lipase to differences in fatness between broiler and layer-strain chickens. Br Poult Sci, 1987, 28 (2):197-206.
    [61] Leveille GA, Romsos DR, Yeh Y, et al. Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult Sci, 1975, 54 (4):1075-1093.
    [62] Janan J, Bodi L, Agota G, et al. Relationships between force-feeding and some physiological parameters in geese bred for fatty liver. Acta Vet Hung, 2000, 48 (1):89-97.
    [63]苏胜彦,李齐发,陈睿,等.填饲对朗德鹅产肝性能、肝脏组织学和脂生成基因表达水平的影响.中国农业科学, 2009 (7):2523-2530.
    [64]郑建.鹅肥肝中重要物质测定及卵磷脂提取.食品科学, 2007, 28 (11):267-270.
    [65] Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing: expressed sequencetags and human genome project. Science, 1991, 252 (5013):1651-1656.
    [66] Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science, 1995, 270 (5235):484-487.
    [67] Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257 (5072):967-971.
    [68] Hubank M, Schatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res, 1994, 22 (25):5640-5648.
    [69] von Stein OD, Thies WG, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res, 1997, 25 (13):2598-2602.
    [70] Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev. 1997, 29 (1-2):413-580.
    [71]杨海峰.鸡肝微粒体细胞色素P450的初步研究[硕士学位论文].南京:南京农业大学, 2009.
    [72]范建高,曾民德,陈政绩,等. 265例脂肪肝患者病因及其特点分析.上海医学, 1998 (02):68-70.
    [73]石磊,张远.饮食与体内药物代谢.药学进展,1999 (04):214-218.
    [74] Oude Ophuis MB, van Lieshout EM, Roelofs HM, et al. Glutathione S-transferase M1 and T1 and cytochrome P4501A1 polymorphisms in relation to the risk for benign and malignant head and neck lesions. Cancer, 1998, 82 (5):936-943.
    [75] Lin J, Yang R, Tarr PT, et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell, 2005, 120 (2):261-273.
    [76] Moon YA, Shah NA, Moh apatra S, et al. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem, 2001, 276 (48): 45358-45366.
    [77] Matsuzaka T, Shimano H, Yahagi N, et al. Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. J Lipid Res, 2002, 43 (6):911-920.
    [78] Godinot C, Lardy HA. Biosynthesis of glutamate dehydrogenase in rat liver. Demonstration of its microsomal localization and hypothetical mechanism of transfer to mitochondria. Biochemistry, 1973, 12 (11):2051-2060.
    [79] Heinemann FS, Ozols J. Stearoyl-CoA desaturase, a short-lived protein of endoplasmic reticulum with multiple control mechanisms. Prostaglandins Leukot Essent Fatty Acids 2003 ,68 (2):123-133.
    [80] Jiang G, Li Z, Liu F, Ellsworth K, et al. Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1. J Clin Invest, 2005, 15 (4):1030-1038.
    [81] Miyazaki M, Kim YC, Ntambi JM. A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids fortriglyceride synthesis. J Lipid Res, 2001, 42 (7):1018-1024.
    [82] Miyazaki M, Man WC, Ntambi JM. Targeted disruption of stearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr, 2001, 131 (9):2260-2268.
    [83] Ntambi JM, Miyazaki M, Stoehr JP, et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A, 2002, 99 (17):11482-11486.
    [84] Cook HW, Spence MW. Formation of monoenoic fatty acids by desaturation in rat brain homogenate. Effects of age, fasting, and refeeding, and comparison with liver enzyme. J Biol Chem, 1973, 248 (5):1793-1796.
    [85] Pullarkat RK, Reha H. Stearyl coenzyme A desaturase activities in rat brain microsomes. J Neurochem, 1975, 25(5):607-610.
    [86] Thiede MA, Strittmatter P. The induction and characterization of rat liver stearyl-CoA desaturase mRNA. J Biol Chem, 1985, 260 (27):14459-14463.
    [87] Ntambi JM, Buhrow SA, Kaestner KH, et al. Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem, 1988, 263 (33):17291-17300.
    [88] Kaestner KH, Ntambi JM, Kelly TJ, et al. Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem, 1989, 264 (25):14755-14761.
    [89] Flowers JB, Rabaglia ME, Schueler KL, et al. Loss of stearoyl-CoA desaturase-1 improves insulin sensitivity in lean mice but worsens diabetes in leptin-deficient obese mice. Diabetes, 2007, 56(5):1228-1239.
    [90] Ntambi JM. Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J Biol Chem, 1992, 267 (15):10925-10930.
    [91] Cohen P, Miyazaki M, Socci ND, et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science, 2002, 297 (5579):240-243.
    [92] Herault F, Saez G, Robert E, et al. Liver gene expression in relation to hepatic steatosis and lipid secretion in two duck species. Anim Genet, 2009, 41 (1):12-20.
    [93] Diot C, Lefevre P, Herve C, et al. Stearoyl-CoA desaturase 1 coding sequences and antisense RNA affect lipid secretion in transfected chicken LMH hepatoma cells. Arch Biochem Biophys, 2000, 380(2):243-250.
    [94] Zhang YJ, Wang Z, Sprous D, et al. In silico design and synthesis of piperazine-1-pyrrolidine-2, 5-dione scaffold-based novel malic enzyme inhibitors. Bioorg Med Chem Lett, 2006, 16 (3):525-528.
    [95] Guay C, Madiraju SR, Aumais A, et al. A role for ATP-citrate lyase, malic enzyme, andpyruvate/citrate cycling in glucose-induced insulin secretion. J Biol Chem, 2007, 282 (49):35657-35665.
    [96] Mourot J, Hermier D. Lipids in monogastric animal meat. Reprod Nutr Dev. 2001, 41(2):109-18.
    [97] Coleman RA, Lewin TM, Muoio DM. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr, 2000, 20:77-103.
    [98] Mashek DG, McKenzie MA, Van Horn CG, et al. Rat long chain acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle-RH7777 cells. J Biol Chem, 2006, 281(2):945-950.
    [99] Parkes HA, Preston E, Wilks D, et al. Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo. Am J Physiol Endocrinol Metab, 2006, 291(4):E737-E44.
    [100] Ryu MH, Cha YS. The effects of a high-fat or high-sucrose diet on serum lipid profiles, hepatic acyl-CoA synthetase, carnitine palmitoyltransferase-I, and the acetyl-CoA carboxylase mRNA levels in rats. J Biochem Mol Biol, 2003, 36 (3):312-318.
    [101] Suzuki H, Kawarabayasi Y, Kondo J, et al. Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem, 1990, 265 (15):8681-8685.
    [102] Li LO, Mashek DG, An J, et al. Overexpression of rat long chain acyl-coa synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. J Biol Chem, 2006, 281 (48):37246-37255.
    [103] Busch SJ, Barnhart RL, Martin GA, et al. Human hepatic triglyceride lipase expression reduces high density lipoprotein and aortic cholesterol in cholesterol-fed transgenic mice. J Biol Chem, 1994, 269 (23):16376-16382.
    [104] Ooi K, Shiraki K, Sakurai Y, et al. Clinical significance of abnormal lipoprotein patterns in liver diseases. Int J Mol Med, 2005, 15 (4):655-660.
    [105]徐斌,蒋敬庭,吴昌平.高密度脂蛋白在肝癌中的代谢.医学综述. 2008, 14(17):2625-2628.
    [106] Oram JF, Mendez AJ, Slotte JP, et al. High density lipoprotein apolipoproteins mediate removal of sterol from intracellular pools but not from plasma membranes of cholesterol-loaded fibroblasts. Arterioscler Thromb, 1991, 11 (2):403-414.
    [107] Mooney RA, Lane MD. Formation and turnover of triglyceride-rich vesicles in the chick liver cell. Effects of cAMP and carnitine on triglyceride mobilization and conversion to ketones. J Biol Chem, 1981, 256 (22):11724-11733.
    [108] Nokelainen P, Peltoketo H, Vihko R, et al. Expression cloning of a novel estrogenic mouse 17 beta-hydroxysteroid dehydrogenase/17-ketosteroid reductase (m17HSD7), previously described as a prolactin receptor-associated protein (PRAP) in rat. Mol Endocrinol, 1998, 12(7):1048-1059.
    [109] Horton JD, Shah NA, Warrington JA, et al. Combined analysis of oligonucleotide microarray datafrom transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A, 2003, 100(21):12027-12032.
    [110] Seth G, McIvor RS, Hu WS. 17Beta-hydroxysteroid dehydrogenase type 7 (Hsd17b7) reverts cholesterol auxotrophy in NS0 cells. J Biotechnol, 2006, 121 (2):241-252.
    [111] Fomitcheva J, Baker ME, Anderson E,et al. Characterization of Ke 6, a new 17beta-hydroxysteroid dehydrogenase, and its expression in gonadal tissues. J Biol Chem, 1998, 273 (35):22664-22671.
    [112] Schwabe I, Husen B, Einspanier A. Expression of the estradiol-synthesizing17beta-hydroxysteroid dehydrogenases type 1 and type 7 in the nonhuman primate Callithrix jacchus. Mol Cell Endocrinol, 2001, 171(1-2):187-192.
    [113] Krazeisen A, Breitling R, Imai K, et al. Determination of cDNA, gene structure and chromosomal localization of the novel human 17beta-hydroxysteroid dehydrogenase type 7(1). FEBS Lett, 1999, 460 (2):373-379.
    [114] Meng G, Chan JC, Rousseau D, et al. Study of protein-lipid interactions at the bovine serum albumin/oil interface by Raman microspectroscopy. J Agric Food Chem, 2005, 53(4):845-852.
    [115]于康,蒋朱明.白蛋白在肠外营养支持中的地位.中国医刊, 2004(05):3-4.
    [116] Salvatore F, Izzo P, Paolella G. Aldolase gene and protein families: structure, expression and pathophysiology. Horiz Biochem Biophys, 1986, 8:611-665.
    [117] Kinoshita M, Miyata M. Underexpression of mRNA in human hepatocellular carcinoma focusing on eight loci. Hepatology, 2002, 36(2):433-438.
    [118] Esposito G, Santamaria R, Vitagliano L, et al. Six novel alleles identified in Italian hereditary fructose intolerance patients enlarge the mutation spectrum of the aldolase B gene. Hum Mutat, 2004, 24 (6):534.
    [119]徐永华,彭素芬,徐亚男,等.二乙基亚硝胺诱发大鼠肝脏癌变过程中醛缩酶同功酶基因表达的改变.实验生物学报, 1978, 11:239-244.
    [120] Jirouskova M, Smyth SS, Kudryk B, et al. A hamster antibody to the mouse fibrinogen gamma chain inhibits platelet-fibrinogen interactions and FXIIIa-mediated fibrin cross-linking, and facilitates thrombolysis. Thromb. Haemost, 2001, 86 (4):1047-1056.
    [121] Hirota-Kawadobora M, Tozuka M, Yamauchi K, et al. Quantitative RT-PCR analysis demonstrates that synthesis of the recombinant fibrinogen is dependent on the transcription and synthesis of gamma-chain. Clin. Chim. Acta, 2002, 319(1):67-73.
    [122]范秉琳.人肝癌细胞差异表达基因纤维蛋白原γ-多肽的克隆与鉴定.癌症, 2004, 23(3):249-253.
    [123]贺淑霞.血浆纤维蛋白原水平与恶性肿瘤的生长转移关系.宁夏医学院学报, 2007, 29(5):508-509.
    [124]凌关庭.氧化·疾病·抗氧化(十八).粮食与油脂, 2005 (2):48-51.
    [125] Matsuzaka T, Shimano H, Yahagi N, et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med, 2007, 13 (10):1193-1202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700