醋糟基质对土传病害的抑制效果及其拮抗微生物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无土基质栽培由于其能够避免土传病害等连作障碍问题而在设施园艺中快速发展。但是目前对基质栽培避免连作障碍主要是靠更换新的基质,成本代价高,因此,研发出具有抑制土传病害作用的新型基质成为了设施园艺发展的重要课题。醋糟基质是将制醋行业的废料通过堆置发酵后加工而成,已有的研究结果表明其连作黄瓜3年都没有出现土传病害。为探究醋糟基质是否具有抑制土传病害作用,对哪些病害具有抑制作用,以及抑病的机制,本论文在温室盆栽实验条件下,对醋糟基质单独使用及其与草炭、蛭石按不同比例混配使用对黄瓜枯萎病和立枯病的抑制效果进行了评估,对醋糟基质中的拮抗微生物进行了深入的研究,初步探明了醋糟基质可以避免黄瓜枯萎病等连作病害的原因,并筛选出23株拮抗微生物,为高效利用醋糟基质并最终研制出具有土传病害抑制作用的新型基质提供了科学依据。主要研究结果如下:
     本研究得到如下主要结论:
     1.在温室盆栽条件下,进行了纯醋糟基质及其醋糟与草炭、蛭石不同配比(体积比)的基质对黄瓜枯萎病抑制效果的试验。结果表明:①与纯草炭对比,醋糟基质单独使用或者与草炭、蛭石混配使用对黄瓜枯萎病都有一定的抑制效果。不同混配基质对黄瓜枯萎病的抑制效果按从高到低依次为:醋糟:草炭:蛭石(3:1:1)>纯醋糟>醋糟:草炭:蛭石(6:1:1)>醋糟:草炭:蛭石(1:1:1)>醋糟:草炭(1:1);②将黄瓜枯萎病的病情指数与基质的理化性状和微生物数量进行Pearson相关性分析发现:基质的容重,C/N与黄瓜枯萎病的病情指数呈显著的正相关,相关系数r值分别为0.4788和0.6994;基质的总孔隙度、通气孔隙度、pH值、EC值与黄瓜枯萎病的病情指数呈显著的负相关,相关系数r值分别为-0.6463,-0.6463,-0.5708和-0.7766;种植前基质中芽孢杆菌的数量,种植后基质中细菌的数量、芽孢杆菌的数量都与黄瓜枯萎病的病情指数呈显著的负相关,相关系数r值分别为-0.5783,-0.5795和-0.3862;③采用主成分分析,以病情指数、苗高、茎粗、地上部分干重、地下部分干重、雌花数为评价对象,对不同混配基质下黄瓜的生长状况进行综合评价发现,在接种黄瓜枯萎病病原菌的情况下,不同混配基质下黄瓜的综合得分由高到低依次为醋糟:草炭:蛭石(3:1:1)>纯醋糟>醋糟:草炭:蛭石(6:1:1)>醋糟:草炭:蛭石(1:1:1)>醋糟:草炭(1:1)>纯草炭。
     2.在温室盆栽条件下,将醋糟基质与草炭、蛭石按照不同的体积配比,研究不同混配基质对黄瓜立枯病的抑制效果。研究表明:①与纯草炭基质相比,醋糟基质单独使用或者是与草炭或蛭石混配使用对黄瓜由立枯丝核菌引发的立枯病都没有明显的抑制效果;②将黄瓜立枯病的病情指数与基质的理化性质和微生物数量进行Pearson相关性分析发现,黄瓜立枯病的病情指数与基质的物理性状、化学性状、养分性状和微生物数量等各项指标都没有显著的相关性。
     3.在室内平板实验条件下,将经过过滤灭菌处理、高压灭菌处理和没有经过任何灭菌处理的醋糟浸提液分别添加到PDA培养基中,研究醋糟浸提液对黄瓜枯萎病和立枯丝核病原菌菌丝生长的抑制效果。结果表明:与对照组相比,经过过滤灭菌和高压灭菌处理过的醋糟浸提液对2种病原菌菌丝的生长都没有明显的抑制作用,而没有经过任何灭菌处理的醋糟浸提液对黄瓜枯萎病和立枯丝核菌菌丝生长的抑制率分别为65.16%和40.67%。
     4.在传统的稀释平板法上略做改进,对醋糟基质中的拮抗细菌进行了分离,根据16S rDNA序列分析对分离的拮抗细菌进行了鉴定。利用平板对峙法对分离的拮抗细菌的广谱抑菌效果进行了验证,采用平板实验通过水解圈的有无对拮抗细菌的水解酶进行了检测;采用无机磷Ca3(PO4)2固体溶磷圈法、CAS平板检测法、JNFb半固体培养基法、Salkowski比色法对拮抗细菌促生长相关的生物学特征如解磷、产铁载体、固氮、产IAA的能力分别进行了检测;并从中选取了5株在室内平板实验条件下对病原菌抑制效果较为突出的拮抗菌在室内盆栽实验条件下观察其抗病促生效果。通过研究发现,从醋糟基质一共分离到了18株芽孢杆菌和1株类芽孢杆菌。分离的这19株拮抗细菌对8种植物病原真菌都具有较好的广谱性抑制效果,类芽孢杆菌还对革兰氏阳性细菌和革兰氏阴性细菌都具有很好的抑制效果。分离的19株拮抗细菌全部都能产生纤维素酶,有11株拮抗菌能产生三种水解酶(纤维素酶、蛋白酶、几丁质酶),13株拮抗细菌(68%)能分泌几丁质酶,18株拮抗细菌(890%)能分泌蛋白酶。分离的每种拮抗细菌至少都能产生2种水解酶。分离的19株拮抗菌中有18株菌(95%)能产生铁载体,没有1株菌具有解磷功能,极少数菌具有固氮和产IAA功能,所有的拮抗细菌都表现出了至少一种与植物促生长相关的生物学特征。温室盆栽实验的结果表明,选取的5株拮抗细菌中有4株对黄瓜枯萎病和黄瓜立枯病都具有很好的抑制效果,有4株拮抗菌对黄瓜小苗的生长表现出了明显的促进效应。
     5.采用传统的稀释平板法,对醋糟中的拮抗真菌进行了分离,采用18S rDNA序列分析对分离的拮抗真菌进行了鉴定;采用赛璐酚膜法和双格实验法对分离的拮抗真菌产非挥发性和挥发性代谢产物的抑菌活性进行了检测;采用与上节拮抗细菌相同的方法进行了水解酶活性、解磷、产铁载体、产IAA能力等指标检测。结果表明:从醋糟基质中一共分离到了4株拮抗真菌,且这4株菌都为木霉菌。分离的4株木霉菌全部都能产生非挥发性的代谢产物抑制立枯丝核菌的生长,其中1株木霉菌还能产生挥发性的代谢产物抑制立枯丝核菌的生长。分离的4株木霉菌都能分泌几丁质酶、蛋白酶,3株能分泌铁载体,3株能产生IAA,1株具有解磷功能。
Soilless cultivation develops rapidly in horticulture because it can alleviate continuous cropping obstacles such as soil-borne diseases. The common approach to eradicate obstacles currently is to replace the substrate. So look for new substrate, which can suppress soil-borne diseases and overcome continuous cropping obstacles has been become the important issue of horticulture. Vinegar residue substrate is a new horticultural substrate made from waste residue produced by the vinegar industry. And the results of current research showed that the continuous cropping obstacles did not appear when continuous planting tomatoes or cucumbers for3years. In order to study whether the vinegar residue substrate has suppressive effects on soil-borne diseases, what is the mechanism? This paper studied the suppressive effects of mixed substrates of vinegar residue mixed with peat and vermiculite in different proportions to wilt caused by Fusarium oxysporum and damping off caused by Rhizoctonia solani of cucumber in pot experiment under greenhouse, especially deeply researched the antagonistic microorganisms in vinegar residue substrate. These rearches primary proved the reasons that the vinegar residue substrate can avoid continuous cropping diseases such as wilt, and isolated23antagonistic microorganisms, which provide scientific basis for using of vinegar residue substrate efficient and developing the new substrate with suppressive effects to soil-borne diseases eventually. The main conclusions of this study areas follows:
     1. Mixed the vinegar residue substrate with peat and vermiculite in different proportions, their suppressiveness to Fusarium oxysporum wilt were studied in pot experiment under greenhouse. These results showed that:①comparison with pure peat, vinegar residue substrate used alone or mixed with peat or vermiculite all had a certain inhibitory effect on cucumber wilt. The ability to suppress diseases of different mixed vinegar residue substrate followed the order:vinegar residue substrate:peat: vermiculite (3:1:1)> pure vinegar residue substrate> vinegar residue substrate peat:vermiculite (6:1:1)> vinegar residue substrate:peat:vermiculite (1:1:1)> vinegar residue substrate:peat (1:1)(ratios are by volume);②The results of Pearson correlation analysis of cucumber wilt disease index between the physicochemical property and the number of microorganisms found that there was significant positive correlation between wilt disease index and C/N (r=0.4788)、bulk density(r=0.6994) respectively; there was a significant negative correlation between cucumber wilt disease index and total porosity (r=-0.6463)、aeration porosity (r=-0.6463_、pH(r=-0.5708) and EC (r=-0.7766) of substrate; there was a significant negative correlation between cucumber wilt disease index and the number of Bacillus spp.(r=-0.5783) in substrate before planting、the number of bacteriar (=-0.5795) and Bacillus spp.(r=-0.386) after planting;③Using the disease index、height、stem diameter、shoot dry weight、root dry weight as an evaluation object to make a principal component analysis of growth of seedlings, the results of comprehensive evaluation found that under inoculation with the pathogen conditions, The synthesis score of seedlings in different mixed vinegar residue substrate followed the order:vinegar residue substrate:peat:vermiculite (3:1:1)> pure vinegar residue substrate> vinegar residue substrate:peat:vermiculite (6:1:1)> vinegar residue substrate:peat:vermiculite (1:1:1)> vinegar residue substrate:peat (1:1)(ratios are by volume).
     2. Mixed the vinegar residue substrate with peat and vermiculite in different proportions, their suppressiveness to Rhizoctonia solani damping-off were studied in pot experiment under greenhouse. These results showed that:①comparison with pure peat, vinegar residue substrate used alone or mixed with peat or vermiculite all did not have inhibitory effect on cucumber damping-off;②The results of Pearson correlation analysis of disease index values between the physicochemical property(bulk density, total porosity, aeration porosity, water-holding porosity, aeration porosity/water-holding porosity, pH, EC, total carbon, total nitrogen, total phosphorus, total potassium, available nitrogen, available phosphorus, available potassium and C/N) and the number of microorganisms (fungi, bacteria, Bacillus spp.) found that there was no significant correlation.
     3. In the plate experimental, each of the non-sterilized, filter-sterilized and heat-sterilized extracts collected from vinegar residue substrate were added to the PDA medium to study their inhibitory effect on mycelial growth of Fusarium oxysporum f.sp. Cucumerinum and Rhizoctonia solani. These results showed that filter-sterilized and heat-sterilized extracts collected from vinegar residue substrate all had no inhibitory effect on mycelial growth of two pathogenic fungi tested, non-sterilized extracts had significant inhibitory effect compared with the control, the inhibitory ratio to Fusarium oxysporum f. sp. Cucumerinum and Rhizoctonia solani were65.16%and40.67%repectilvy.
     4. Using an improved dilution plate method isolated antagonistic bacteria from vinegar residue substrate; using16S rDNA gene sequencing to identify them; using a dual plate assay to test their broad antifungal inhibitory activity; using plate medium to test their hydrolytic enzymes by cleared zone; some growth-promoting features also were tested, such as mineral phosphate solubilisation activity was determined on dicalcium phosphate plates; the nitrogen fixation ability of the isolates was tested according to the observation of a pellicle formed near the surface of the NFb semi-solid N-free media; the production of indole-3-acetic acid (IAA) by Salkowski colorimetric technique; Five pre-screened prominent antagonistic bacteria in vitro studies were further evaluated individually for their antagonistic potential against disease and plant growth promotion potential under greenhouse conditions. These results showed that: Using the improved method rapidly isolated18Bacillus spp. and1Paenibacillus sp.; All isolated19antagonistic bacteria exhibited broad-spectrum antagonism towards the tested8fungi; Paenibacillus sp. showed antifungal activity against Gram-negative and Gram-positive bacteria; All of the selected19strains exhibited cellulase activity,11strains secreted three hydro lytic enzymes(cellulose, chitinase, protease),13strains (68%) chitinase activity,18strains (95%) protease activity respectively, all of the strains exhibited at least two enzyme activities;18strains (95%) were siderophore producer, no strains phosphatase activity, small strains showed nitrogen-fixing and producing IAA ability, all of strains showed one of the growth-promoting features, four out of five selected strains were found both to be effective in controlling wilt and damping-off disease and four strains showed strong growth-promoting activities for cucumber seedlings under greenhouse conditions.
     5. Using the traditional dilution plate method, isolated antagonistic fungi from vinegar residue substrate; using18S rDNA gene sequencing to identify them; using cellophane membranes and divided plate method to test their volatile and non-volatile inhibitors; testing phosphate solubilisation activity by Ca3(PO4)2dicalcium phosphate plates; testing the production of indole-3-acetic acid (IAA) by Salkowski colorimetric technique. These results showed that:four antagonistic fungi were isolated from vinegar residue substrate and the four fungus all belonged to the genus Trichoderma; All the four fungus can produce volatile and non-volatile metabolites that may inhibit the growth of R. solani; All the four Trichoderma have cellulase and chitinase activity, Three out of four can secrete siderophore; three out of four were IAA producer, one out of four strains had phosphatase activity.
引文
[1]张福墁.农业现代化与我国设施园艺工程[J].农业工程学报,2002,18:1-3.
    [2]李萍萍.设施园艺中的土壤生态问题分析及清洁生产对策[J].农业工程学报,2011,2(27):346-351.
    [3]刘宏军.关于我国设施农业,设施园艺业发展现状与对策研究[J].农业与技术,2007,27(4):5-8.
    [4]耿士均,刘刊,商海燕,等.园艺作物连作障碍的研究进展[J].北方园艺,2012,7:190-195.
    [5]吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施[J].东北农业大学报,2000,31(3):241-247.
    [6]孙光闻,陈日远,刘厚诚.设施蔬菜连作障碍原因及防治措施[J].农业工程学报,2005,21(14):184-188.
    [7]赵尊练,杨广君,巩振辉,等.克服蔬菜作物连作障碍问题之研究进展[J].中国农学通报,2007,23(12):278-282.
    [8]Abad M, Noguera P, Bures S. National inventory of organic wastes for use as growing media for ornamental potted plant production:case study in Spain[J]. Bioresource technology,2001,77(2): 197-200.
    [9]Chavez W, Di Benedetto A, Civeira G, et al. Alternative soilless media for growing Petunia hybrida and Impatiens wallerana:Physical behavior, effect of fertilization and nitrate losses[J]. Bioresource technology,2008,99(17):8082-8087.
    [10]李威,程智慧,孟焕文,等.轮作不同蔬菜对大棚番茄连作基质中微生物与酶及后茬番茄的影响[J].园艺学报,2012,39(1):73-80.
    [11]Liu T, Cheng Z, Meng H, et al. Growth, yield and quality of spring tomato and physicochemical properties of medium in a tomato/garlic intercropping system under plastic tunnel organic medium cultivation[J]. Scientia horticulturae,2014,170:159-168.
    [12]赵青松,李萍萍,王纪章,等.不同配比醋糟基质应用于黄瓜穴盘育苗的效果[J].长江蔬菜,2009(07X):61-63.
    [13]李萍萍,胡永光,赵玉国,等.利用醋糟开发植物栽培基质的发酵技术[J].城市环境与城市生态,2003,16(4):79-80.
    [14]Zhao QS, Li PP, Sun DM. Effects of inoculating thermophiles and rhizopus on composting process of vinegar residue and their nutrients status[J]. Advanced materials research,2012,518: 68-72.
    [15]赵青松,李萍萍,郑洪倩,等.灌水量对有机基质栽培黄瓜生长及氮素利用的影响[J].农业工程学报,2012,28(12):117-121.
    [16]朱咏莉,李萍萍,赵青松,等.不同配比醋糟有机基质氮素有效性与黄瓜生长的关系[J].土壤通报,2011,42(5):1184-1188.
    [17]赵青松.醋糟基质长期利用的理化性状变化及NPK养分管理研究[D].镇江:江苏大学,2012.
    [18]Hoitink HAJ, Schmitthener AF, Herr LJ. Compost bark for control of root rot in ornamentals. Ohio Report,1975,60,25-26.
    [19]Trillas MI,Casanova E, Cotxarrera L,et al. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings[J]. Biological control,2006,39(1):32-38.
    [20]Bernal-Vicente A, Ros M, Tittarelli F, et al. Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects [J]. Bioresource technology,2008,99(18):8722-8728.
    [21]Alfano G, Lustrato Q Lima G, et aL Characterization of composted olive mill wastes to predict potential plant disease suppressiveness[J].Biological Control,2011,58(3):199-207.
    [22]Pane C, Spaccini R, Piccolo A, et al. Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor [J]. Biological control,2011,56(2): 115-124.
    [23]黄啸.堆肥对黄瓜枯萎病抑制效果及其机理研究[D].杭州:浙江大学,2010.
    [24]张建华.典型有机废弃物堆肥化产品的基质利用和对土传细菌病害抑制作用的研究[D].杭州:浙江大学,2012.
    [25]Hadar Y, Papadopoulou KK Suppressive composts:microbial ecology links between abiotic environments and healthy plants [J].Annual review of phytopathology,2012,50:133-153.
    [26]Termorshuizen AJ,Van Rijn E,Van der Gaag D J, et al. Suppressiveness of 18 composts against 7 pathosystems:variability in pathogen response[J]. Soil biology and biochemistry,2006,38(8): 2461-2477.
    [27]Aviles M, Borrero C, Trillas M I. Review on compost as an inducer of disease suppression in plants grown in soilless culture[J]. Special issue compost Ⅲ-dynamic plant, dynamic soil. global science books,2011,5:1-11.
    [28]Hoitink HAJ, Boehm MJ. Biocontrol within the context of soil microbial communities:a substrate-dependent phenomenon [J]. Annual review of phytopathology,1999,37(1):427-446.
    [29]Hoitink HAJ, Stone AG, Han DY Suppression of plant diseases by composts [J]. HortScience, 1997,32(2):184-187.
    [30]Diab HQ Hu S, Benson DM. Suppression of Rhizoctonia solani on impatiens by enhanced microbial activity in composted swine waste-amended potting mixes[J]. Phytopathology,2003, 93(9):1115-1123.
    [31]Scheuerell SJ, Sullivan DM, Mahaffee WF. Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources [J]. Phytopathology,2005,95(3):306-315.
    [32]Segarra G, Casanova E, Aviles M, et al. Trichoderma asperellum strain T34 controls fusarium wilt disease in tomato plants in soilless culture through competition for iron [J]. Microbial ecology,2010,59(1):141-149.
    [33]Borrero C, Trillas MI, Ordovas J, et al. Predictive factors for the suppression of wilt of tomato in plant growth media [J]. Phytopathology,2004,94(10):1094-1101.
    [34]El-Masry M H, Khalil AI, Hassouna MS, et al In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi [J]. World journal of microbiology and biotechnology,2002,18(6):551-558.
    [35]Siddiqui Y, Meon S, Ismail R, et al Bio-efficiency of compost extracts on the wet rot incidence, morphological and physiological growth of okra (Abelmoschus esculentus (L.) Moench) [J]. Scientia horticulturae,2008,117(1):9-14.
    [36]李春霄,张双玺,袁旭超,等.两种药用植物残渣堆肥浸提液对黄瓜3种病害防治效果[J].西北农业学报,2009,18(1):208-212.
    [37]Sang M K, Kim J G, Kim K D. Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici[J]. Phytopathology,2010, 100(8):774-783.
    [38]Alfano G, Lustrato G, Lima Q et aL Characterization of composted olive mill wastes to predict potential plant disease suppressiveness [J]. Biological control,2011,58(3):199-207.
    [39]Hameeda B, Rupela O P, Reddy G Antagonistic activity of bacteria inhabiting composts against soil-borne plant pathogenic fungi [J]. Indian journal of microbiology,2006,46(4):389-396.
    [40]Suarez-Estrella F,Vargas-Garcia C, Lopez M J, et al. Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis [J]. Crop protection, 2007,26(1):46-53.
    [41]Santos M, Dianez F, del Valle M Q et al. Grape marc compost:microbial studies and suppression of soil-borne mycosis in vegetable seedlings [J]. World journal of microbiology and biotechnology,2008,24(8):1493-1505.
    [42]Kavroulakis N, Ntougias S, Besi M I, et al. Antagonistic bacteria of composted agro-industrial residues exhibit antibiosis against soil-borne fungal plant pathogens and protection of tomato plants from Fusarium oxysporum f. sp. radicis-lycopersici [J]. Plant and soil,2010,333(1-2): 233-247.
    [43]Cuesta G, Garcia-de-la-Fuente R, Abad M, et al. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents[J]. Journal of environmental management,2012,95:S280-S284.
    [44]郝晓娟,刘波,谢关林.植物枯萎病生物防治研究进展[J].中国农学通报,2005,21(7):319-322.
    [45]韩金星,洪日新,周林,等.西瓜,黄瓜,甜瓜等瓜类枯萎病研究进展[J].中国瓜 菜,2009,22(2):32-35.
    [46]郑雪芳,葛慈斌,林营志,等.瓜类作物枯萎病生防菌BS-2000和JK-2的分子鉴定[J].福建农业学报,2006,21(2):154-157.
    [47]殷晓敏,陈弟,郑服丛.尖镰孢枯萎病生物防治研究进展[J].广西农业科学,2008,39(2):172-178.
    [48]王志强,刘声锋,于蓉.压砂西瓜甜瓜主要病虫害及防治技术[J].北方园艺,2007,3:189-190.
    [49]Reuveni R, Raviv M, Krasnovsky A, et al. Compost induces protection against Fusarium oxysporum in sweet basil [J]. Crop protection,2002,1:583-587.
    [50]SerraWittling C, Houot S, Alabouvette C.Increased soil sup-pressiveness to fusarium wilt of flax after addition of municipal solid waste compost[J]. Soil biology and biochemistry,1996, 28:1207-1214.
    [51]Huang X, Shi D, Sun F, et al. Efficacy of sludge and manure compost amendments against Fusarium wilt of cucumber [J]. Environmental science and pollution research,2012,19(9): 3895-3905.
    [52]Shanmugam V, Kanoujia N. Biological management of vascular wilt of tomato by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture [J]. Biological control,2011,57(2):85-93.
    [53]Yan X, Guoxing S,Yu D. Effect of N, N-dimethyl formamide used as organic solvent on two species of green algae Chlorella[J]. Bulletin of environmental contamination and toxicology, 2002,68(4):592-599.
    [54]Zhang J, Zeng G, Chen Y, et al. Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting [J]. Bioresource technology,2011, 102(3):2950-2956.
    [55]Tian Y, Sun X, Li S, et al. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata [J]. Scientiahorticulturae,2012,143:15-18.
    [56]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [57]Sadfi N, Cherif M, Fliss I, et al. Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of fusarium dry rot of potato tubers[J]. Journal of plant pathology,2001,83(2):101-118.
    [58]Komada H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil [J]. Review of plant protection research,1975,8:114-124.
    [59]郭世荣.无土栽培学[M].北京:中国农业出版社,2003.
    [60]Abad M, Noguera P, Bures S. National inventory of organic wastes for use as growing media for ornamental potted plant production:case study in Spain[J]. Bioresource technology,2001, 77(2):197-200.
    [61]周跃华,聂艳丽,赵永红.国内外固体基质研究概况[J].中国生态农业学报.2005,13, (4),40-43.
    [62]Noguera P, Abad M, Puchades R, et al. Influence of particle size on physical and properties of coconut coir dust as container medium[J]. Communications in soil science and plant analysis, 2003,34(3-4):593-605.
    [63]Moldes A, Cendon Y, Barral M T. Evaluation of municipal solid waste compost as a plant. growing media component, by applying mixture design [J]. Bioresource technology,2007, 98(16):3069-3075.
    [64]Garcia-Gomez A, Bernal MP, Roig A. Growth of ornamental plants in two composts prepared from agroindustrial wastes [J]. Bioresource technology,2002,83(2):81-87.
    [65]Herrera F, Castillo JE, Chica AF, et al. Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants [J]. Bioresource technology,2008, 99(2):287-296.
    [66]Lozano J, Blok WJ, Termorshuizen AJ. Effect of compost particle size on suppression of plant diseases [J]. Environmental engineering science,2009,26(3):601-607.
    [67]Hoitink HAJ. Composted bark, a light weight growth medium with fungicidal properties [J]. 1982,36:618-620.
    [68]Bonanomi G, Antignani V, Capodilupo M, et al. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases [J]. Soil biology and biochemistry,2010, 42(2):136-144.
    [69]Jones JP, Engelhard AW, Woltz SS. Management of Fusarium wilt of vegetables and ornamentals by macro-and micro-element nutrition. In:Engelhard, A.W. (Ed.), Soilborne Plant Pathogen:Management of disease with macro-and microelement [M].1993, St Paul, Minnesota:The american phytopathological society press.
    [70]Cotxarrera L, Trillas-Gay MI, Steinberg C, et al. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress fusarium wilt of tomato [J]. Soil biology and biochemistry,2002,34(4):467-476.
    [71]Segarra G, Casanova E, Aviles M, et al. Trichoderma asperellum strain T34 controls fusarium wilt disease in tomato plants in soilless culture through competition for iron [J]. Microbial ecology,2010,59(1):141-149.
    [71]Dordas C. Role of nutrients in controlling plant diseases in sustainable agriculture:a review [M]//Sustainable Agriculture. Springer netherlands,2009:443-460.
    [72]Walters D, L Bingham. Influence of nutrition on disease development caused by fungal pathogens:implications for plant disease control. Annals of applied biology,2007.151(3): 307-324.
    [73]Raviv M, Oka Y, Katan J, et al. High-nitrogen compost as a medium for organic container-grown crops [J]. Bioresource technology,2005,96(4):419-427.
    [74]Larkin RP, Hopkins DL, Martin F N. Ecology of Fusarium oxysporum f. sp. niveum in soils suppressive and conducive to fusarium wilt of watermelon [J]. Phytopathology,1993,83(10): 1105-1116.
    [75]De Brito AM, Gagne S, Antoun H. Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria [J]. Applied and environmental microbiology,1995,61(1):194-199.
    [76]田淑慧.黄瓜立枯病的发生与防治进展[J].中国果菜,2011,(2):29-31.
    [77]何迎春,高必达.立枯丝核菌的生物防治[J].中国生物防治,2000,16(1):31-34.
    [78]Kazempour MN. Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistics bacterial in greenhouse and field conditions [J]. Plant pathology journal,2004, 3(2):88-96.
    [79]周而勋,叶永武,林如泉.拮抗菌的筛选及其对黄瓜苗期立枯病的防治作用[J].广东农业科学,2001(1):44-47.
    [80]Anees M, Tronsmo A, Edel-Hermann V, et aL Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani [J]. Fungal biology,2010,114(9):691-701.
    [81]Lahlali R, Hijri M. Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants [J]. FEMS microbiology letters, 2010,311(2):152-159.
    [82]Grosch R, Dealtry S, Schreiter S, et al. Biocontrol of Rhizoctonia solani:complex interaction of biocontrol strains, pathogen and indigenous microbial community in the rhizosphere of lettuce shown by molecular methods [J]. Plant and soil,2012,361(1-2):343-357.
    [83]Chandanie WA, Kubota M, Hyakumachi M. Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber[J]. Plant and soil,2006,286(1-2):209-217.
    [84]Scheuerell SJ, Sullivan DM, Mahaffee WF. Suppression of seedling damping-off caused by Pythium ultimum, P. itregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources[J]. Phytopathology,2005,95(3):306-315.
    [85]Vander Gaag DJ, Van Noort FR, Stapel-Cuijpers LHM, et al. The use of green waste compost in peat-based potting mixtures:fertilization and suppressiveness against soilborne diseases [J]. Scientia horticulturae,2007,114(4):289-297.
    [86]戴志聪,杜道林,司春灿,等.用扫描仪及Image J软件精确测量叶片形态数量特征的方法[J].广西植物,2009,29(3):342-347.
    [87]Szczech MM. Suppressiveness of vermicompost against Fusarium wilt of tomato [J]. Journal of phytopathology,1999,147(3):155-161.
    [88]Siddiqui Y, Meon S, Ismail R, et aL Bio-potential of compost tea from agro-waste to suppress Choanephora cucurbitarum L. the causal pathogen of wet rot of okra[J]. Biological control, 2009,49(1):38-44.
    [89]Sang MK, Kim JG, Kim KD. Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici [J]. Phytopathology,2010,100(8): 774-783.
    [90]Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants [J]. Environmental microbiology,2007, 9(4):1084-1090.
    [91]Leelasuphakul W, Sivanunsakul P, Phongpaichit S. Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight [J]. Enzyme and microbial technology, 2006,38,990-997.
    [92]陈雪,赵克明.土传病害生物防治微生物的研究进展[J].现代农业,2011(7):34-35.
    [93]Jenana RKB, Haouala R, Triki MA, et al. Composts, compost extracts and bacterial suppressive action on Pythium aphanidermatum in tomato[J]. Pakistan journal of botany,2009,41(1): 315-327.
    [94]Kim YK, Lee SC, Cho YY, et al. 2012. Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN MicrobioL
    [95]Singh A, Mehta G, Chhatpar H. Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach[J]. Letters in applied microbiology,2009,49,708-714.
    [96]Songsiriritthigul C, Lapboonrueng S, Pechsrichuang P, et al. Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste [J]. Bioresource technology,2010,101(11):4096-4103.
    [97]Pikovskaya R. Mobilization of phosphorus in soil in connection with vital activity of some microbial species [J]. Mikrobiologiya,1948,17362-370.
    [98]Alexander DB, Zuberer DA Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria [J]. Biology and fertility of soils,1991,12(1):39-45.
    [99]Eckert B, Weber OB, Kirchhof G, et al. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus [J]. International journal of systematic and evolutionary microbiology,2001,51(1):17-26.
    [100]Stajkovic O, Delic D, Josic D, et al. Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria[J]. Romanian biotechnol Letter,2011, 16:5919-5926.
    [101]Deng H, Han Y, Liu Y, et al. Identification of a newly isolated erythritol-producing yeast and cloning of its erythritol reductase genes[J]. Journal of industrial microbiology & biotechnology,2012,39(11):1663-1672.
    [102]Tamura K, Dudley J, Nei M, et al. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular biology and evolution,2007,4,1596-1599.
    [103]From C, Pukall R., Schumann P, et al. Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group [J]. Applied and environmental microbiology,2005,71,1178-1183.
    [104]Lopez AC, Alippi AM. Diversity of Bacillus megaterium isolates cultured from honeys [J]. lwt-food science and technology,2009,42,212-219.
    [105]Nagano N, Matsui S, Kuramura T, et al. The distribution of extracellular cellulase activity in marine eukaryotes, thraustochytrids [J]. Marine biotechnology,2011,13,133-136.
    [106]Ribeiro CM, Cardoso EJBN. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia) [J]. Microbiological research 2012.167,69-78.
    [107]Ash C, Priest F G, Collins M D. Molecular identification of rRNAgroup 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test[J]. Antonie van leeuwenhoek,1993,64(3-4): 253-260.
    [108]李俊,沈德龙,林先贵.农业微生物研究与产业化进展[间,北京:科学出版社,2011.
    [109]Ki JS, Zhang W, Qian PY Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification [J]. Journal of microbiological methods,2009,77,48-57.
    [110]Solanki MK, Kumar S, PandeyAK, et al. Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani [J]. Biocontrol science and technology.2012,22,203-217.
    [111]Nimnoi P, Pongsilp N, Lumyong S. Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production[J]. World journal microbiol biotechnol,2010,26,193-203.
    [112]Vardhan S, Yadav A K, Pandey A K, et al. Diversity analysis of biocontrol Bacillus isolated from rhizospheric soil of rice-wheat (Oryza sativa-Triticum aestivum L.) at India[J]. Journal of Antibiotics,2013,66,485-490.
    [113]陈海英,林健荣,廖富蘋,等.多粘类芽孢杆菌CP7对荔枝霜疫霉菌的抗菌活性及其作用机制[J].园艺学报,2010,37(7):1047-1056.
    [114]杨少波,刘训理.多粘类芽孢杆菌及其产生的生物活性物质研究进展[J].微生物学通报,2008,35(10):1621-1625.
    [115]Lee BH, Kim BK, Lee YJ, et al. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53[J]. Enzyme and microbial technology.2010,46,38-42.
    [116]Ajit NS, Verma R, Shanmugam V Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f.sp.dianthi causing carnation wilt [J]. Current microbiology,2006,52(4):310-316.
    [117]Chen F, Wang M, Zheng Y, et aL Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber fusarium wilt by Bacillus subtilis B579[J]. World Journal of microbiology and biotechnology,2010,26(4):675-684.
    [118]Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS microbiol. lett.2006,170,265-270.
    [119]Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion [J]. Biotechnology advances,1999,17(4):319-339.
    [120]Chen YP, Rekha PD, Arun AB, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities[J]. Applied soil ecology,2006,34(1):33-41.
    [121]O'sullivan DJ, O'Gara Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens [J]. Microbiological reviews,1992,56(4):662-676.
    [122]Nagarajkumar, M., Bhaskaran, R,Velazhahan, R.,2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen[J]. Microbiological research 159,73-81.
    [123]Malik K A, Bilal R, Mehnaz S, et al. Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice[J]. Plant and soil,1997,194(1-2):37-44.
    [124]Kuklinsky-Sobral J, Araujo W L, Mendes R, et al. Isolation and characterization of soybean associated bacteria and their potential for plant growth promotion[J]. Environmental microbiology,2004,6(12):1244-1251.
    [125]Park M, Kim C, Yang J, et al. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea[J]. Microbiogical research,2005,160, 127-133.
    [126]Zuniga A, Poupin M J, Donoso R, et al. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN[J]. Molecular plant-microbe interactions,2013, (5):546-553.
    [127]Seldin L. Paenibacillus, Nitrogen Fixation and Soil Fertility[M]//Endospore-forming soil bacteria. Springer berlin heidelberg,2011:287-307.
    [128]Lemessa F, Zeller W. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia[J].Biological control,2007,42(3):336-344.
    [129]Lugtenberg B, F. Kamilova. Plant-growth-promoting rhizobacteria[J]. Annual review of microbiology,2009,63:541-556.
    [130]Ran LX, Liu CY, Wu GJ, et al. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China [J]. Biological control,2005,32(1):111-120.
    [131]Simonetti E, Carmona M A, Scandiani M M, et al. Evaluation of indigenous bacterial strains for biocontrol of the frogeye leaf spot of soya bean caused by Cercospora sojina[J]. Letters in applied microbiology,2012,55(2):170-173.
    [132]Dal Bello G, Monaco C, Rollan M C, et al. Biocontrol of postharvest grey mould on tomato by yeasts[J]. Journal of phytopathology,2008,156(5):257-263.
    [133]Bashan Y, de-Bashan LE. Chapter two-how the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment [J]. Advances in agronomy,2010, 108,77-136.
    [134]Pedraza RO, Motok J, Salazar SM,et al. Growth-promotion of strawberry plants inoculated with Azospirillum brasilense[J]. World journal microbiol biotechnol.2010,26,265-272.
    [135]Askew DJ, Laing MD. The in vitro screening of 118 Trichoderma isolates for antagonism to Rhizoctonia solani and an evaluation of different environmental sites of Trichoderma as sources of aggressive strains [J]. Plant and soil,1994,159(2):277-281.
    [136]Srinon W, Chuncheen K, Jirattiwarutkul K, et al. Efficacies of antagonistic fungi against Fusarium wilt disease of cucumber and tomato and the assay of its enzyme activity[J]. Journal of agricultural technology,2006,2(2):191-201.
    [137]Peterson RA, Bradner JR, Roberts TH, et al. Fungi from koala (Phascolarctos cinereus) faeces exhibit a broad range of enzyme activities against recalcitrant substrates [J]. Letters in applied microbiology,2009,48(2):218-225.
    [138]Qualhato TF, Lopes FAC, Steindorff AS, et al. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi:evaluation of antagonism and hydrolytic enzyme production [J]. Biotechnology letters,2013,35(9):1461-1468.
    [139]Bell DK, Wells HD, Markham CR. In vitro antagonism of Trichoderma species against six fungal plant pathogens[J]. Phytopathology,1982,72:379-38.
    [140]昂莎莎,荚荣,卢伟.白腐真菌总DNA提取方法的研究[J].生物学杂志,2009,26(4):82-85.
    [141]Alvindia DG, Natsuaki KT. Evaluation of fungal epiphytes isolated from banana fruit surfaces for biocontrol of banana crown rot disease[J]. Crop protection,2008,27(8):1200-1207.
    [142]Kai M, Effmert U, Berg G, et al.Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani[J].Archives of microbiology,2007,187(5):351-360.
    [143]Zheng Y, Xue Q Y, Xu L L, et al. A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton [J]. Biological control,2011,56(3):209-216.
    [144]匡治州,许杨.核糖体rDNA ITS序列在真菌学研究中的应用[J].生命的化学,2004,24(2):120-122.
    [145]Stoppacher N, Kluger B, Zeilinger S, et al. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS[J]. Journal of microbiological methods,2010,81(2):187-193.
    [146]El-Hasan A, Walker F, Buchenauer H. Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fuaric acid produced by Fusarium moniliforme[J].J. Phytopathol, 2008,156:79-87.
    [147]Fiedler K, Schiitz E, Geh S. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials [J]. International journal of hygiene and environmental health,2001,204,111-121.
    [148]Nemcovic M, Jakubikova L, Viden I, et al. Induction of conidiation by endogenousvolatile compounds in Trichoderma spp [J]. FEMS Microbiogy letter,2008,284231-236.
    [149]孙虎,杨丽泰全鑫,等.木霉生防机制及应用的研究进展[J].中国农学通报,2011,27(3):242-246.
    [150]宋晓妍,孙彩云,陈秀兰,等.木霉生防作用机制的研究进展[J].中国农业科技导报,2006,8(6):20-25.
    [151]Lopez-Mondejar R, Ros M, Pascual JA Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent [J]. Biological control,2011,56(1):59-66.
    [152]dos Reis Almeida FB, Cerqueira FM, do Nascimento Silva R, et al. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani:evaluation of coiling and hydrolytic enzyme production[J]. Biotechnology letters,2007,29(8):1189-1193.
    [153]Cao R, Liu X, Gao K, et al. Mycoparasitism of endophytic fungi isolated from reed on soilborne phytopathogenic fungi and production of cell wall-degrading enzymes in vitro[J]. Current microbiology,2009,59(6):584-592.
    [154]Dean JFD, Gamble HR, Anderson JD. The ethylene biosynthesis-inducing xylanase:its induction in Trichoderma viride and certain plant pathogens [J]. Phytopathology,1989,79(10): 1071-1078.
    [155]How ell CR. Mechanisms employed by Trichoderma species in the biological control of plant diseases:the history and evolution of current concepts [J]. Plant disease,2003,87:4-10
    [156]Renshaw J, Robson G, Trinci A, et al. Fungal siderophores:structure, functions and applications [J]. Mycology research,2002,106,1123-1142.
    [157]Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane[J]. Applied and environmental microbiology,1991,57(2):535-538.
    [158]Procopio ARL, Procopio REL, Pizzirani-Kleiner AA, et aL Diversity of propanil-degrading bacteria isolated from rice rhizosphere and their potential for plant growth promotion[J]. Genetics and molecular research,2012,11(3):2021-2034.
    [159]Hoyos-Carvajal L, Orduz S, Bissett J. Growth stimulation in bean(Phaseolus vulgaris L.) by Trichoderma [J]. Biological control, 2009,51(3):409-416.
    [160]Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, et al. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis [J]. Plant physiology,2009,149(3): 1579-1592.
    [161]Yehia AH, Abd-El-Kader DA, Salem DE, et aL Biological soil treatment with Trichoderma harzianum to control brown stem rot of soybean in Egypt [J]. Egyptian journal of phytopathology,1994,22(2):143-157.
    [162]Kapri A, Tewari L. Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp [J]. Brazilian journal of microbiology,2010,41(3):787-795.
    [163]Altomare C, Norvell WA, Bjorkman T, et al. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22[J]. Applied and environmental microbiology,1999,65(7):2926-2933.
    [164]Rawat R, Tewari L. Effect of abiotic stress on phosphate solubilization by biocontrol fungus Trichoderma sp [J]. Current microbiology,2011,62(5):1521-1526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700