复杂系统失效率评估与多目标优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着系统复杂程度的增加,系统失效率估计的难度也随之增大,这使得系统之间设计目标的权衡与协调的难度随之增加。通过多目标优化设计方法对系统进行设计是解决上述问题的有效方法之一。本文对复杂系统失效率估计方法、非约束多目标优化以及约束多目标优化设计方法开展了研究。
     在计算由并联或串联系统组成的复杂系统失效率时,基于其组成子系统或其运行时间的方法通常存在较大误差,有必要建立与复杂系统等效并能精确估计其失效率的方法。本文提出了一种将复杂系统减化成最小割集进而估计复杂系统失效率的方法,对由不同部件组成的串-并联系统和混合系统、相同部件组成的网络系统三种复杂系统失效率进行了估计,并与复杂系统简化方法估计的系统失效率进行对比。结果显示,本文提出的方法能够精确有效的估计复杂系统的失效率。
     系统复杂性的增加通常会导致多个目标相互冲突。通过对复杂系统多目标优化方法的研究,基于遗传算法和启发式搜索原则提出了GPSIA算法产生非支配最优解,并通过含有冗余的串-并联系统对GPSIA算法进行了验证,其中系统可靠性和费用作为优化目标,系统的重量作为约束,优化结果为均匀分布的非支配解,并用连续Pareto点的距离评价了算法的效果。通过与NSGA-II和SPEA-2算法的对比分析,对GPSIA算法的鲁棒性做了讨论。
     在实际问题的分析中,约束是广泛存在的。在基于GPSIA算法的优化策略中考虑了满足所有约束的可行解。非可行解会加快Pareto解的收敛速度。本部分在GPSIA方法的基础上,提出了GPSIA+DS算法,该算法在优化策略中同时考虑了可行解和非可行解。通过与GPSIA和NSGA-II算法在复杂系统优化中的对比分析,表明了GPSIA+DS算法的有效性。
     采用GSPIA+DS算法对某型飞机起落架位置指示和作动系统进行了多目标化,验证了该算法在可靠性工程中应用的有效性。
Engineering systems especially in aerospace industries are increasingly becomingcomplex. As system complexity increases, system failure rates estimation difficulty alsoincreases. Increase system complexity usually generates conflicting design objectives.Designing systems with optimal parameter setting requires efficient optimizationtechniques to handle these multiple objectives design issues. In this thesis the failure rateestimation and multi-objective optimization of complex systems is studied.
     Usually, analysts apply approaches based on branch reduction or time in attemptto calculate the failure rates of complex systems. In this work, reduction-minimal cuttechnique is proposed for the estimation of complex system failure rates. Series-paralleland complex mixed configuration system structures, comprising of non-identicalcomponents and network system structure comprising of identical components were usedto validate the proposed approach. Approximated percent error of the failure rateestimated using oversimplified approach in relation to the true failure rate based on theproposed technique were estimated and discussed for the three system structuresconsidered.
     The optimal solution of a multi-objective optimization problem (MOP)corresponds to a Pareto set that is characterized by a tradeoff between objectives. GeneticPareto Set Identification Algorithm (GPSIA) is proposed for multi-objective optimizationproblems. GPSIA is a hybrid technique which combines genetic and heuristic principlesto generate non-dominated solutions. Series–parallel system with active redundancy wasused to validate the proposed algorithm. System reliability and cost were the researchobjective functions subject to system weight constrain. The results reveal evenlydistributed non-dominated set. The distances between successive Pareto points were usedto evaluate the general performance of the method. Plots were also used to show thecomputational results for the type of system studied and the robustness of the technique is discussed in comparison with NSGA-II and SPEA-2.
     Constraints are usually prevalent in real-world optimization problems. Theoptimization strategy based on GPSIA only considered feasible solutions. That is,solutions, which satisfies all constraints conditions. Infeasible solutions could facilitatefaster convergence to the true Pareto front. In this research a biologically inspiredconstrained GPSIA called GPSIA+DS based on the previously proposed GPSIA, whichconsiders the feasible and infeasible solution in it optimization strategy is furtherproposed. Complex system comprising of mixed configuration, k-out-of-n and redundantsubsystem was used to test GPSIA+DS in comparison with GPSIA and NSGA-II. Theresult showed that GPSIA+DS is efficient.
     GSPIA+DS is applied to the multi-objective optimization of an aircraft landinggear position indication and actuation system. The efficient of the constrained GPSIA isdemonstrated through the reliability engineering application.
引文
[1] Faraci V. Calculating Failure Rates of Series-Parallel Networks, The J. of the SystemReliab. Cen.,2006;1-28
    [2] Jingqiao Z, Arthur CS. Self Adaptive Multi-Objective Differential Evolution withDirection Information Provided by Archived Inferior Solutions, IEEE Cong. on Evol.Comput.2008;2801-2810.
    [3] Rachmawati L, Srinivasan D. Multi-objective Evolutionary Algorithm with ControllableFocus on the Knees of the Pareto Front, IEEE Trans. On Evol. Comput.2009;13(4)810–824
    [4] Konak A, Coit DW, Smith AE. Multi-objective Optimization using Genetic Algorithms:A tutorial. Reliab Eng Syst Safety2006;91,992–1007
    [5] Kuo W, Prasad R. An Annotated Overview of System Reliability Optimization, IEEETrans. on Reliab.2000;49(2)176-187
    [6] Hansong X. A new Multi-objective Optimization Algorithm Based on Artificial ImmuneSystems and Its Engineering Application, Ph.D. thesis, Uni. of Toronto,2006
    [7] Cohon JL. Multi-objective Programming and Planning. Academic Press,1978
    [8] Zitzler E, Laumanns M, Thiele L. SPEA-2: Improving the Strength Pareto EvolutionaryAlgorithm. Swiss Fed. Inst. Tech.: Zurich, Switzerland;2001.
    [9] Shaffer JD. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms.Ph.D. thesis, Vanderbilt University;1984.
    [10] Schaffer JD. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms.In: Proceedings of the International Conference on Genetic Algorithm and theirApplications,1985.
    [11] Corne DW, Knowles JD, Oates MJ. The Pareto Envelop-Based Selection Algorithm forMulti-objective Optimization. In: Proc.6thinter. Conf. on parallel prob. Sol. from nat.,18-20September,2000. Paris, France: Springer;2000.
    [12] Zitzler E, Laumanns M, Thiele. SPEA-2: Improving the strength Pareto evolutionaryalgorithm. Swiss Federal Institute Technology: Zurich, Switzerland;2001
    [13] Murata T, Ishibuchi H. MOGA: Multi-objective Genetic Algorithms. In: Proc of the1995IEEE inter. Conf. on evolut. comput.,29November–1December,1995. Perth, WA,Australia: IEEE;1995.
    [14] Deb K, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist Multi-objective GeneticAlgorithm: NSGA-II. IEEE Trans Evol Comput2002;6(2):182–97.
    [15] Kuo W, Wan R. Recent Advances in Optimal Reliability Allocation, IEEE Trans. On Sys.,Man and Cyber.–part A: Sys.&Hum.2007;37(2)143-156
    [16] Marseguerra M, Zio E, Podofillini L, Coit DW. Optimal Design of Reliable NetworkSystems in Presence of Uncertainty, IEEE Trans. Rel.2005;54(2)234-253.
    [17] Mann R., Schafer RE and Singpurwalla, ND., Methods for Statistical Analysis ofReliability and Life Data. Chapter10, John Wiley and Sons,1974.
    [18] Myhre J, Rennie M.. Confidence Bound for Reliability of Coherent Systems Based on theBinomial Distributed Component Data. Reliab.&Qua. Cont., Edited by Basu, A.P., NorthHolland,1984
    [19] Tongdan J. Complex System Reliability Analysis and Optimization ConsideringComponent Reliability Estimation Uncertainty, Ph.D. thesis, Rutgers State University ofNew Jersey.2001
    [20] Guangbin Y. Life Cycle Reliability Engineering, John Wiley&Sons,2007
    [21] Erles DR. Reliability Application and Analysis Guide, The Martin Company1961.
    [22] Erles DR, Edins MF. Failure Rates, AVCO Corp.1962
    [23] Mileham AR., Currie GC, Miles AW, Bradford DT,, A Parametric Approach to CostEstimation at the Conceptual Stage of Design, Jour. Eng. Des,1993;4(2).
    [24] Rudolph FS, Handbook of Reliability, Availability, Maintainability and Safety inEngineering Design. Springer-Verlag London Limited.2009.
    [25] Roy R, Bendell D, Taylor JP, Jones P, Madariaga AP, Crossland J, Taylor IM.Identifying and Capturing the Qualitative Cost Drivers within a Concurrent EngineeringEnvironment. Adv. in Concur. Eng,1999;39-50
    [26] Hess RW, Romanoff HP, Aircraft Airframe Cost Estimating Relationships, Rand Corp.,Rept. R-3255-AF Santa Monica, CA1987
    [27] Micheal NB, Donald LT, Bruce WK, Daniel PM, Parametric Study of Transport AircraftSystems Cost and Weight. NASA, CR151970,1977
    [28] Wierda LS, Linking Design, Process Planning and Cost Information by Feature-basedModelling, Eng. Design,1991;2(1):3-19
    [29] Smith AE, Mason AK Cost Estimation Predictive Modeling: Regression versus NeuralNetwork. Eng Econ1997;42(2):137-167
    [30] Okafor EG and Sun Y-C. Multi-objective Optimization of a Series–parallel System usingGPSIA. Reliab. Eng.&Sys. Saf.2012.103:61-71
    [31] Holland JH. Adaptation in Natural and Artificial Systems. Ann Arbor: University ofMichigan Press;1975.
    [32] Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning.Reading, MA: Addison-Wesley;1989.
    [33] Jones DF, Mirrazavi SK, Tamiz M. Multi-objective Meta-heuristics: An Overview ofCurrent State-of-the-Art. Eur. J. Oper. Res.2002;137(1)1-9
    [34] Hajela P, Lin C-Y. Genetic Search Strategies in Multi-criterion Optimal Design, StructOpt.1992;4(2):99–107.
    [35] Murata T, Ishibuchi H, Tanaka H. Multi-objective Genetic Algorithm and itsApplications to Flow-shop Scheduling. Comput. Ind. Eng.1996;30(4):957–68.
    [36] Srinivas N, Deb K. Multi-objective Optimization using Non-dominated Sorting inGenetic Algorithms. J. Evol. Comput.1994;2(3):221–48.
    [37] Fonseca CM, Fleming PJ. Multi-objective Genetic Algorithms. In: IEE colloquium on‘Genetic Algorithms for Control Systems Engineering’(Digest No.1993/130),28May1993. London, UK: IEE;1993.
    [38] Zitzler E, Thiele L. Multi-objective Evolutionary Algorithms: A Comparative Case Studyand the Strength Pareto approach. IEEE Trans Evol Comput1999;3(4):257–71.
    [39] Goldberg DE, Richardson J. Genetic Algorithms with Sharing for Multimodal FunctionOptimization. In: Gen. Alg. their Apps: proc of the2ndInter. Conf. on Gen Alg.s,28–31July,1987. Cambridge, MA, USA: Lawrence Erlbaum Associates;1987.
    [40] Deb K, Goldberg DE. An Investigation of Niche an Species formation in GeneticFunction Optimization. In: Proc. of the3rdInter. Conf. on Gen. Alg., George MasonUniversity,1989.
    [41] Miller BL, Shaw MJ. Genetic Algorithms with Dynamic Niche Sharing for MultimodalFunction Optimization. In: Proc. of the1996IEEE Inter. Conf. on Evol. Comput,ICEC’96, May20–22,1996, Nagoya, Japan. Piscataway, NJ, USA: IEEE;1996.
    [42] Lu H, Yen GG. Rank-Density-Based Multi-objective Genetic Algorithm and BenchmarkTest Function Study. IEEE Trans Evol Comput2003;7(4):325–43.
    [43] Yen GG, Lu H. Dynamic Multi-objective Evolutionary Algorithm: Adaptive Cell-basedRank and Density Estimation. IEEE Trans Evol Comput2003;7(3):253–74.
    [44] Jensen MT. Reducing the Run-time Complexity of Multi-objective EAs: The NSGA-IIand other algorithms. IEEE Trans Evol Comput2003;7(5):503–15.
    [45] Konak A, Smith AE. Multi-objective Optimization of Survivable Networks ConsideringReliability. In: Proceedings of the10thInter. Conf. on Tel. Sys. Monterey, CA: NavalPostgraduate School;2002.
    [46] Konak A, Smith AE. Capacitated Network Design Considering Survivability: AnEvolutionary Approach. J. Eng Optim2004;36(2):189–205.
    [47] Horn J, Nafpliotis N, Goldberg DE. A Niched Pareto Genetic Algorithm for Multi-objective Optimization. In: Proc. of the First IEEE Conf. on Evol. Comput. IEEE worldCongress on Comput. Intel.27–29June,1994. Orlando, FL, USA: IEEE;1994.
    [48] Sarker R, Liang K-H, Newton C. A New Multi-objective Evolutionary Algorithm. Eur JOper Res2002;140(1):12–23.
    [49] Fieldsend JE, Everson RM, Singh S. Using Unconstrained Elite Archives for Multi-objective Optimization. IEEE Trans. Evol. Comput.2003;7(3):305–23.
    [50] Mostaghim S, Teich J, Tyagi A. Comparison of Data Structures for Storing Pareto-sets inMOEAs. In: Proc. of the2002world Cong. on Comput. Intel.—WCCI’02,12–17May,2002. Honolulu, HI, USA: IEEE;2002.
    [51] Morse JN. Reducing the Size of the Non-dominated Set: Pruning by Clustering. Comput.Oper. Res.1980;7(1–2):55–66.
    [52] Coello CAC. A Survey of Constraint Handling Techniques used with EvolutionaryAlgorithms. Veracruz, Mexico: Laboratorio Nacional de Informtica Avanzada;1999.
    [53] Jimenez F, Gomez-Skarmeta AF, Sanchez G, Deb K. An Evolutionary Algorithm forConstrained Multi-objective Optimization. In: Proc. of the2002World cong. on comput.Intel. WCCI’02,12–17May,2002. Honolulu, HI, USA: IEEE;2002.
    [54] Jimenez F, Verdegay JL, Gomez-Skarmeta AF. Evolutionary techniques for constrainedmulti-objective optimization problems. In: Workshop on Multi-cri. Opt. using Evol.Methods GECCO-1999,1999.
    [55] Coello CAC, Montes EM. Constraint-handling in Genetic Algorithms through the use ofDominance-based Tournament Selection. Adv. Eng. Inform.2002;16(3):193–203.
    [56] Knowles JD, Corne DW. M-PAES: A Memetic Algorithm for Multi-objectiveoptimization. In: Proc. of the2000Cong. on Evol. Comput.16–19July,2000. La Jolla,CA, USA: IEEE;2000.
    [57] Paquete L, Stutzle T. A Two-phase Local Search for the Bi-objective Traveling SalesmanProblem. In: Evol. Multi-crit. Opt. Proc. of the2ndInter. Conf., EMO2003,8–11April,2003. Faro, Portugal: Springer;2003.
    [58] Deb K, Goel T. A Hybrid Multi-objective Evolutionary Approach to Engineering ShapeDesign. In: Evol. Multi-criterion optimization. Proc. of the1stInter. Conf., EMO2001,7–9March,2001. Zurich, Switzerland: Springer;2001.
    [59] Ishibuchi H, Murata T. Multi-objective Genetic Local Search Algorithm. In: Proc. of theIEEE Inter. Conf. on Evol. Comput.,20–22May,1996. Nagoya, Japan: IEEE;1996.
    [60] Ishibuchi H, Yoshida T, Murata T. Balance Between Genetic Search and Local Search inMemetic Algorithms for Multi-objective Permutation Flowshop Scheduling. IEEE Trans.Evol. Comput.2003;7(2):204–223.
    [61] Elegbede C, Adjallah K. Availability Allocation to Repairable Systems with GeneticAlgorithms: A Multi-objective Formulation. Reliab Eng Syst Safety2003;82(3):319–30.
    [62] Deb K, Jain P, Gupta NK, Maji HK. Multi-objective Placement of ElectronicComponents using Evolutionary Algorithms. IEEE Trans. Compon. Pack. Techn.2004;27(3):480–92.
    [63] Sasaki M, Gen M. A Method of Fuzzy Multi-objective Nonlinear Programming withGUB Structure by Hybrid Genetic Algorithm. Int. J. Smart. Eng. Sys. Des.2003;5(4):281–8.
    [64] Martorell S, Sanchez A, Carlos S, Serradell V. Alternatives and Challenges in OptimizingIndustrial Safety using Genetic Algorithms. Reliab Eng Syst Safety2004;86(1):25–38.
    [65] Marseguerra M, Zio E, Podofillini L. Optimal Reliability-Availability of UncertainSystems via Multi-objective Genetic Algorithms. IEEE Trans Reliab2004;53(3):424–34.
    [66] Murphy KE, Carter CM, Brown SO. The Exponential Distribution: The good, the Badand the Ugly: A Practical Guide to its Implementation, Proc. Reliab. and Maint. Symp.2002;550–555.
    [67] Nelson WB. Applied Life Data Analysis, Wiley, Hoboken, NJ.1982.
    [68] Lawless JF. Statistical Models and Methods for Lifetime Data,2nd ed., Wiley, Hoboken,NJ.2002,
    [69] Kececioglu DB. Reliability Engineering Handbook, Vol.1, Prentice Hall, Upper SaddleRiver, NJ.1991.
    [70] Meeker WQ, Escobar LA. Statistical Methods for Reliability Data, Wiley, Hoboken, NJ.1998,
    [71] Montaser M, Sarhan AM. Reliability Equivalence of a Parallel System with Non-Identical Components, Inter. Math. Forum,2008;3(34)1693–1712
    [72] Sarhan AM., Reliability Equivalence Factors of a Parallel System, Reliab. Eng.&Sys.Saf.2005;87:405-411.
    [73] Marler RT, Arora JS. Survey of Multi-Objective Optimization Methods for Engineering,Tsrct. Multidisc Optim.,2004;26(1);369-395
    [74] Knowles J, Corne D. The Pareto archived evolution strategy: A new baseline algorithmfor Pareto multi-objective optimization. In: Proceedings of1999Cong. on Evol.Comput.-CEC99, Washington, DC, USA: IEEE;1999.
    [75] Tappeta RV, Renaud JE, Messac A, Sundararaj G. Interactive Physical Programming:Trade-off Analysis and Decision Making in Multi-criteria Optimization. AIAA J.,2003;38(5)917-926
    [76] Adra SF, Griffin I, Fleming PJ. A Comparative Study of Progressive PreferenceArticulation Techniques for Multi-objective Optimisation. Evol. Multi-crit. Opt..,2007;44(3)908-921
    [77] Sasaki M, Gen M. Fuzzy Multiple Objective Optimal System Design by Hybrid GeneticAlgorithm. Appl. of Sft. Comput.2003;2(3)189-196
    [78] Rachmawati L, Srinivasan D. A Multi-objective Evolutionary Algorithm with Weighted-Sum Niching for Convergence on Knee Regions, In Proc. IEEE Cong. Evol. Comput.2006;1916-1923
    [79] Tavakkoli–Moghaddam R, Safari J, Sassani F. Reliability Optimization of Series ParallelSystems with a Choice of Redundancy Strategies Using a Genetic Algorithm. Reliab. Eng.Syst. Saf.,2008;91(9)550-556
    [80] Shan S, Wang GG. An Efficient Pareto Set Identification Approach for Multi-ObjectiveOptimization on Black Box Function. J. Mech. Des.,2005;127(5)866-875
    [81] Hui L, Qingfu Z. Multi-objective Optimization Problems with Complicated Pareto Sets,MOEA/D and NSGA-II. IEEE Trans. Evol. Comput.,2009;13(2)284-302.
    [82] Oliver K. A Review of Constraint-Handling Techniques for Evolution Strategies, App.Comput. Intel. and Sft. Comput.2010;1-11.
    [83] Bean JC, Hadj-Alouane AB. A Dual Genetic Algorithm for Bounded Integer Programs,Tech. Rep., University of Michigan, Kalamazoo, Mich, USA,1992.
    [84] Fiacco A, McCormick G. The Sequential Unconstrained Minimization Technique forNonlinear Programming-A Primal-Dual Method,” Manag. Sci.1964;10:360–366,
    [85] Homaifar A, Lai SHY, Qi X. Constrained Optimization via Genetic Algorithms,”Simulation,1994;62(4):242–254,
    [86] Kuri-Morales A, Quezada CV, A Universal Eclectic Genetic Algorithm for ConstrainedOptimization In Proc.6thEuro. Cong. on Intel. Tech.&Sft Comput.(EUFIT’98),1998;518–522.
    [87] Kramer O, Schwefel H-P. On Three New Approaches to Handle Constraints withinEvolution Strategies, Nat. Comput.,2006;5(4):363–385.
    [88] Kramer O, Schwefel H-P. On Three New Approaches to Handle Constraints withinEvolution Strategies, Nat. Comput.,2006;5(4):363–385.
    [89] Coello CAC. Use of a Self-adaptive Penalty Approach for Engineering OptimizationProblems, Comp. in Ind.2000;41(2):113–127.
    [90] Deb K. An Efficient Constraint Handling Method for Genetic Algorithms,” Comp.Methods in App. Mech. and Eng.2001;971–978.
    [91] Powell D, Skolnick MM. Using Genetic Algorithms in Engineering Design Optimizationwith Non-linear Constraints, In Proc. of the5thInter. Conf. on Gen. Alg.(ICGA’93), S.Forrest, Ed., University of Illinois at Urbana-Champaign, Morgan Kaufmann, SanFrancisco, Calif, USA, July1993:424–431,
    [92] Hoffmeister F, Sprave J. Problem-Independent Handling of Constraints by use of MetricPenalty Functions, In Proceedings of the5thConference on Evol. Prog.(EP’96), L. J.Fogel, P. J. Angeline, and T. B¨ack, EdsMIT Press, Cambridge, UK, February1996;289–294.
    [93] Oyman, AI, Deb K, Beyer H-G.,“An Alternative Constraint Handling Method forEvolution strategies, In Proc. of the Cong. on Evol. Comput.(CEC’99), IEEE ServiceCenter, Piscataway, NJ, USA, July1999;1:612–619,
    [94] Belur SV. CORE: Constrained Optimization by Random Evolution, In: Proc. of the LateBreaking Papers at the Gen. Prog. Conf., J. R. Koza, Ed.,, Stanford University, Stanford,Calif, USA, July1997;280–286
    [95] Coello CAC, Theoretical and Numerical Constraint Handling Techniques used withEvolutionary Algorithms: a survey of the state of the art, Computer Methods in AppliedMech.&Eng.,2002;191(11-12):1245–1287.
    [96] Paredis J. Co-evolutionary Constraint Satisfaction. In Proc. of the3rdConf. on ParallelProb. Solv.g from Nat.(PPSN’94), Springer, Jerusalem, Israel, October1994;46–55.
    [97] Schoenauer M, Michalewicz Z. Evolutionary Computation at the Edge of Feasibility, InProc. of the4thConf. on Para. Prob. Solv. from Nat.(PPSN’96), H.-M. Voigt, W.Ebeling, I. Rechenberg, and H.-P. Schwefel, Eds., Berlin, Germany, September1996;245–254.
    [98] Michalewicz Z, Fogel, DB, How to Solve It: Modern Heuristics, Springer, Berlin,Germany,2000.
    [99] Eiben AE, Smith JE. Introduction to Evolutionary Computing, Springer, Berlin,Germany,2003.
    [100] Coello CAC. Constraint Handling Through a Multi-objective Optimization Technique. InProc. of the Gen. Evol. Comput. Conf. A. S. Wu, Ed., Orlando, Fla, USA, July1999;117–118.
    [101] Coello CAC. Treating Constraints as Objectives for Single-objective EvolutionaryOptimization,” Eng. Opt.,2000;32(3):275–308,.
    [102] Mezura-Montes E, Coello CAC. Constrained Optimization via Multi-objectiveEvolutionary Algorithms, Multi-Obj. Prob. Solv. from Nat.: From Concs to Apps.,2008;53–75.
    [103] Montes EM, Coello CAC. A Simple Multi-membered Evolution Strategy to SolveConstrained Optimization Problems..IEEE Trans. on Evol. Comput.2005;9(1):1–17.
    [104] Surry PD, Radcliffe NJ, Boyd ID. A Multi-objective Approach to ConstrainedOptimisation of Gas Supply Networks: The COMOGA Method, In Proc. of the Evol.Comput., AISB Workshop, T. C. Fogarty, Ed., Lecture Notes in Computer ScienceSpringer, Sheffield, UK, April1995;166–180.
    [105] Jimenez F, Verdegay JL. Evolutionary Techniques for Constrained Optimization Problem,In Proc. of the7th Euro. Cong. on Intel. Tech. Sft Comput.(EUFIT’99), H.-J.Zimmermann, Ed., Mainz, Aachen, Germany, September1999.
    [106] Schoenauer M, Xanthakis S. Constrained GA Optimization,” in Proc. of the5thInter.Conf. on Gen. Alg.(ICGA’93), S. Forrest, Ed., Morgan Kaufman, San Francisco, Calif,USA, July1993;573–580.
    [107] Takahama T, Sakai S. Constrained Optimization by the e-constrained DifferentialEvolution with Gradient-Based Mutation and Feasible Elites, In Proc. of the IEEE Cong.on Evol. Comput.(CEC’06), G. G. Yen, S. M. Lucas, G. Fogel, et al., Eds., IEEE Press,Vancouver, Canada, July2006;1–8.
    [108] Liang J, Suganthan P. Dynamic Multi-swarm Particle Swarm Optimizer with a NovelConstraint-handling Mechanism, In Proc. of the IEEE Cong. on Evol. Computation, G. G.Yen, S. M. Lucas, G. Fogel, et al., Eds., IEEE Press, Vancouver, Canada, July2006;9–16.
    [109] Mezura-Montes E, Velazquez-Reyes J, Coello CAC, Modified Differential Evolution forConstrained Optimization, In Proc. of the IEEE Cong. on Evol. Comput,.G. G. Yen, S. M.Lucas, G. Fogel, et al., Eds., Vancouver, Canada, July2006;25–32.
    [110] Mezura-Montes E. Constraint-Handling in Evolutionary Computation, Stu. in Comput.Intel. Springer, Berlin, Germany,2009;198.
    [111] Norman S. Currey, Aircraft Landing Gear Design: Principles and Practices, AIAA,1988
    [112] Raymer DP, Aircraft design: A conceptual approach, AIAA,2ndEd.,1992
    [113] Kritzinger D, Aircraft system safety: Military and civil aeronautical applications,Woodhead publishing limited.1stEd.,2006
    [114] Padula SL, Kincaid RK, Optimization Strategies for Sensor and Actuator Placement1999NASA/TM-209126p.1–12
    [115] Oude Nijhuis MHH. Analysis tools for the design of active structural acoustic controlsystems. PhD thesis, University of Twente, Netherlands.2003
    [116] Andersson J. Krus P, Wallace D. Multi-objective optimization of hydraulic actuationsystems”, Proceedings of the ASME Design Automation Conferences, DETC2000/DAC-14512, Baltimore, MD, USA2000.
    [117] Manfred G, Raoul P, Hinnerk H. Multi-objective optimization of actuator system designfor laser micro-adjustment Prod. Eng.,2009;181–188
    [118] ARP4761, Guidelines and methods for conducting the safety assessment process on civilairborne systems and equipment
    [119] Beltramo MN, Trapp DL, Kimoto BW, March DP. Parametric study of transport aircraftsystems cost and weight, NASA-CR151970, California.1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700