基于矩形孔径微透镜阵列的红外焦平面集成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外探测器是将入射的红外辐射信号通过光电效应转变成电信号的一种器件,一个国家红外探测器的技术水平可以代表其红外技术的发展水平。随着红外技术的不断发展,焦平面阵列探测技术应运而生,它代表了红外探测技术发展的一个里程碑。红外焦平面探测技术使红外探测系统在民用行业、军事领域以及空间技术中都得到广泛的应用。军事领域和空间技术中对红外探测器小型化提出更高的要求,即在保证红外焦平面探测器的灵敏度和分辨率尽量高的条件下,又要求红外焦平面尺寸尽量小,这一矛盾是红外探测器微小型化发展中必须攻克的一个难题。本文针对这一问题,设计了一种可用于红外焦平面阵列的矩形孔径球面微透镜阵列,开展矩形、六边形等特殊孔径形状微透镜阵列的制作、测试及其与红外焦平面集成技术研究,通过高填充系数矩形孔径球面微透镜阵列对光能的汇聚作用来解决由于焦平面尺寸减小而影响探测器灵敏度和分辨率的问题,促进红外探测器的微小型化发展。
     论文从理论上对微透镜阵列的光学特性进行了分析,应用几何光学理论研究微透镜阵列近轴光线传播规律,系统地分析了单层球面微透镜阵列光学成像特性及光照度特性、双层球面微透镜阵列光学成像特性及光照度特性,对比双层球面微透镜阵列与单层球面微透镜阵列在成像和光照度上的区别,分析了矩形孔径球面微透镜阵列相比于圆形孔径球面微透镜阵列在光能利用上所具备的优势。同时研究了球面微透镜阵列设计理论与方法,并针对用于3~5μm波段的HgCdTe红外焦平面阵列设计了一种矩形孔径球面微透镜阵列。
     研究激光直写变剂量曝光制作矩形孔径球面微透镜阵列的工艺原理,在掌握光致抗蚀剂感光及显影特性的基础上,建立了变剂量曝光与显影的数理模型,该模型可推广用于所有采用光致抗蚀剂的微光学器件的光刻制作中。研究了激光直写系统光功率控制、微位移驱动等关键子系统工作原理,根据建立的数理模型和微透镜阵列结构研究了激光直写变剂量曝光的控制方法。
     设计并制定矩形孔径球面微透镜阵列制作工艺流程,通过理论分析与大量实验分析各个工艺环节的影响因素,优化了相关工艺参数。采用原子力显微镜对所制作的微透镜阵列外形结构进行测试,搭建一套微透镜阵列光学性能参数测试系统,采用该系统对微透镜阵列的焦距、截距、点扩散函数等光学性能进行了测试。
     研究红外焦平面阵列工作原理与结构,分别从光折射理论和衍射理论两个方面分析微透镜阵列与红外焦平面集成的光聚能效应,提出利用分子间结合力的光胶技术将微透镜阵列与焦平面进行集成。设计并制作“栅线”和“方孔”双图形对准标记,采用衍射光栅同轴对准方法实现两种器件的高精度对准。通过对集成前、后探测器性能的测试对比,得到结论为:矩形孔径微透镜阵列的引入可将红外焦平面的光能利用率从原来的55%提高到90%以上,集成后红外焦平面的响应率、探测率、分辨率等性能都得到大幅度的提高,其它性能未受到明显影响。
Infrared detector is one of the devices that it can turn incident infrared radiation signal into electrical signal by photoelectric effect, infrared detector technology level represents a Country's level of infrared technology development level. Infrared focal plane array detection technology generatiing with the development of infrared technology development, it represents the milestone of infrared detector technology. Infrared detection system has been applied widely in civil industry, military field, and space technology. Because of the particularity in military field and space technology, sensitivity and resolution is required as high as possible, but infrared focal plane array size is required as small as possible, so this contradiction must be solved in the development process of infrared detector. We proposed that rectangular aperture spherical micro-lens arrays was manufactured by varing dose exposuring, that integrating infrared focal flane and micro-lens arrays was studied by optical cement technology, then the problems of detector sensitivity and resolution were solved.
     Micro-lens arrays paraxial ray propagation law was studied by geometrical optics theory, we analysised single layer spherical micro-lens array optical imaging and illumination properties, double layer spherical micro-lens arrays optical imaging and illumination properties, the comparison study of optical imaging and illumination about single layer and double-layer spherical micro-lens arrays. Meanwhile, the advantages of light energy utilization was analysised that rectangular aperture spherical micro-lens arrays in comparison to circular aperture spherical micro-lens arrays.
     We studied the technics principle that manufactureing rectangular aperture spherical micro-lens arrays by laser direct writing varing dose exposuring, that mathematical model of varing dose exposure was established on the Basis of mastering exposure and developing properties. It was analysed the working principle of subsystem that laser direct writing optical power controlling, micro-displacement driving etc. Studied on controlling method of laser direct writing varing dose exposuring according to mathematical model and micro-lens arrays structure.
     Manufactureing technics process of rectangular aperture spherical micro-lens arrays was designed, effect factors of each technics taches were analysised by theoretics analysis and a great deal experiments, process parameter optimized. We tested micro-lens arrays structure by atom force microscope, that micro-lens arrays optical performance parameter testing system was built, optical performance of that focus, the intercept, point-spread function were tested.
     Studied on working theory and structure of infrared focal plane array, optical assembling energy assemble was analysed form light refraction theory and light diffraction theory, the technology was put forward that integrating infrared focal plane array and micro-lens arrays by optical cement method. That double marker of aimming at infrared focal plane array and micro-lens arrays were designed and manufactured, two elements were aimmed by diffraction gratting coaxial optical system. Contrasted the performance change of the front and back of integration by infrared focal plane array testing system, and analysed the testing result. The conclusion as follows:light energy utilization ratio of infrared focal plane raised to90%from55%by integrating rectangular aperture micro-lens arrays, others properties keep invariant.
引文
[1]S. John, Strong localization of photons in certain[J].Physical Review Letters.198758 (64):2485-2489
    [2]V. Bykov, Sponteneous 269-273.1972. emission in a periodic structure[J], Soviet Physics JETP.199235(98):269-273
    [3]V. Bykov, Spontaneous emission from a medium with a band spectrum[J]. Soviet Journal of Quantum Electronics,2012 4(24):861-871
    [4]P LV L, and M Y. Dry etching for silylated resist development[J]. Microelectronic Engineering,1998,13(14):469-472
    [5]A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, Design of photonic crystal optical waveguides with single mode propagation in the photonic band-gap[J], Electronics Letters; 2009 36(14):1375-1378
    [6]张玉,刘德森.六角形孔径平面微透镜阵列的制作及基本特性研究[J].光子学报,2008.37(8):1639-1641
    [7]HAN Yan-ling. LIU De-sen. JIANG Xiao-ping. Square self-focusing lens array and its image [J].Acta Photonica Sinica. 2010,36(2):221-223
    [8]A. Chutinan, S. John, and O. Toader. Diffraction-less flow of light in all-optical microchips[J], Physical Review Letters, 2003 90(23):123-128
    [9]Boxshall K. et al. properties within a Simple surface treatments to modify protein adsorption and cell attachment poly micro-bioreactor[J]. Surface and Interface Analysis,2006.38(4):198-203
    [10]Satou I, et al. Progress in top surface imaging process[J]. JP-N. J. Appl. Phys,200639(4):6965-6971
    [11]S. G. Johnson. A. Mekis.J. Fan, arid J. D. Joannopoulos, Molding the flow of light[J]. Computing in Science and Engineering,20013(38):7-11
    [12]S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a plane-wave basis[J]. Optics Express,2001 8(12):173-180
    [13]Henke W. Czech G. Simulation of lithography images 629.and resist profiles[J]. Microelectronic Engineering, 2008(56):11-12
    [14]马宏,董连和等.精密刻划与超精密特种加工技术[M].第二版.北京.兵器工业出版社,2008(3):45-48
    [15]Helmsen J J et al.1927SAMPLE-3D benchmarking including high NA and thin film effects[J]. Proc.2010.34(12):478-480
    [16]S. G. Johnson, S. H. Fan. P R. Villeneuve. J. D. Joannopoulos. and L. A. Kolodziejski, Guided modes in photonic crystal slabs[J], Physical Review B.199960(52):5751-5758
    [17]Kim S.-K, et al. Optical lithography simulation for the whole resist process[J]. Current Applied Physics.2006.6 (1):48-53
    [18]S. Fan. P R. Villeneuve. J. D. Joannopoulos, and E. R Schubert, High extraction efficiency of spontaneous emission from slabs of photonic crystals[J], Physical Review Letters.1997,78(2):31-35
    [19]P R. Villeneuve and M. Piche, Photonic band gaps in two-dimensional square lattices:Square and circular rods, Physical Review B[J],1992 46(28):4973-4975
    [20]M. Plihal and A. A. Maradudin, Photonic band-structure of 2-dimensional systems the triangular lattice[J]. Physical Review B-Condensed Matter.2010.44(12):8565-8571
    [21]柯才军,易新建.提高CCD图像传感器填充因子的微透镜阵列的研究[J].红外与激光工程,2004.33(2):209-212
    [22]Itakura K. A I mm 50 k-pixel IT CCD image sensor for miniature camera system [J]. IEEE Trans. Electron Devices. 2009,47(1):65-69
    [23]Mason M E.et al. Process-specific tuning of lithography simulation tools[J]. Proc. SPIE.20113051:491-493
    [24]A. F. Bogenschutz. W. Krusemark. and W. Mussinger. Activation energies in the chemical etching of semiconductors in HN03-HF-CH3COOH. Journal of Electrochemical Society[J].Solid State Science.2009(114):970-973
    [25]Blaikie R J. et al. Nano-lithography using optical contact exposure in the evanescent near field Micro-electronic Engineering[J].2012.12(36)45-85
    [26]K. E. Petersen, Silicon as a mechanical material, Proceedings of the IEEE[J],1982,70(14):420-457
    [27]王喆垚,微系统设计与制造[M],第一版.北京,清华大学出版社,2008(2):68-76
    [28]曾莹,严利入等.微电子制造科学原理与工程技术[M],第二版.北京,电子工业出版社.2002(9)204-215
    [29]Barnes W L. Surface plasmon-polariton length scales:a route to sub-wavelength optics. J. Opt.A:Pure Appl[J]. Opt.,2006.8(15):S87-S93
    [30]Laser D J, Santiago J G. A review of micropumps[M]. J. Micromech. Microeng.2004,14 (5):R35
    [31]Cao E, Gavriilidis A, and Cui Z Application of microengineered reactors in chemicaleng- ineering[J]. MSTNews. 2002.3(2):14-16
    [32]WANG Feng, LIU De-sen. The analysis of optical spot size and aberration properties of selfoc lens [J].Acta Photonica Sinica,2007,36(5):830-833
    [33]史立芳,马君显等.微透镜填充因子快速检测方法[J1光电工程,2007,34(6):53-56
    [34]Becker H. Fabrication of polymer micro-fluidic devices//Cheng J. Kricka L J. Biochip Technology[M]. Harwood Academic Publishers.2001
    [35]Burns G A. Schoeffel J A. Performance evaluation of the ATEQ CORE-2000 scanning laser reticle writer. Proc[J]. SPIE,1987.772(5):55-64
    [36]Terry SC. Jerman J H. and Angell J B.A gas chromatographic air analyzer fabricated on silicon wafer. IEEE Trans[J].Electron Devices 1979.26(42):1880-1884
    [37]Braxton S.BedilionT. The integration of microarray information in the drug development process[J]. Curr. Opin. Biotechnol.1998.9(6):643
    [38]Peng Q.et al. Real-time microstructures Optical Eng[J].photolithographic technique for fabrication of arbitrarily shaped,2003.42(2):477-481
    [39]伊福廷,等.利用紫外光刻技术进行SU-8胶的研究[J].微纳米电子技术.2003,(4)126:7-8
    [40]Klosner M, Jain K. Massively parallel, large-area maskless lithography[J]. Appl. Phys. Lett.2004,84(15):2880
    [41]Hojo J. A 1/3-in 510(H)×496(V) image sensor with mirror image function [J]. IEEE Trans. Lectron Devices,1991, 38(5):954-959
    [42]Villarroya M Micromech.et al. A platform for monolithic CMOS-MEMS integration on SOI wafers[J]. J Microeng. 2006.16(12)2203-2206
    [43]Gil D.et al.research. J Parallel maskless optical lithography for prototyping[J], low-volume production, and Vac. Sci. Technol.2002, B20(6):2597-2581
    [44]Noell W,et al. Applications of SOI-based optical 1flEMS[J]. IEEE J. Selected Topics in Quantum Electronics,2002. 8(1):148-152
    [45]Yao Ming-Jiun, et al. Application of Sigma 7500 pattern generator to X architecture and 45-nm generation mask making[J]. Proc. SPIE,2007,42(56):1204-1206
    [46]Michalicek M A, Bright V M. Flip-chip fabrication of advanced micromirror arrays[J]. Sensors and Actuators. A Physical.2002.95(12):152-156
    [47]Bertsch A generator.et al. Microstereo photolithography using a liquid crystal display as dynamic mask[J]. Microsystem Technologies,1997.3(2):42-47
    [48]M. Schaepkens. I. Martini. E. A. Sanjuan. X. Li. G. S. OehrIein. W. L. Perry, and H. M.Anderson. Gas-phase studies in inductively coupled fluorocarbon plasmas[J], Journal of Vacuum Science&Technology A-Vacuum Surfaces and Films,.2001.19(12).2945-2957
    [49]Maruo S. Nakamura O. and Kawata S. Three-dimensional fabrication with two-photon-absorbed photopolymerisation[J]. Optics Lett.1997.22(2):132-136
    [50]J. W. Coburn and M. Chen. Optical-emission spectroscopy of reactive plasmas A method for correlating emission intensities to reactive particle density[J]. Journal of Applied Physics.1980,51(32):3134-3136
    [51]周海宪,程云芳等译,微光机电系统[M].第一版.北京,国防工业出版社,2010(3):117-185
    [52]杨国光等,微小光学与系统[M],第一版.杭州,浙江大学出版社,2007(5):218-228
    [53]K. M. Ho, C. T. Chan, and C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures[J], Physical Review Letters,1990,65(14),3152-3155
    [54]韩郑生等等,半导体制造技术[M],第四版.北京,电子工业出版社,2003(16):404-423
    [55]Noell W, et al. Applications of SOI-based optical 1fIEMS[J]. IEEE J. Selected Topics in Quantum Electronics, 2002,8(1):148-150
    [56]Boxshall K. et al. Simple surface treatments to modify protein adsorption and cell attachment properties within a poly micro-bioreactor[J]. Surface and Interface Analysis,2006,38(4):198-202
    [1]B. Berge, and J. Peseux, Variable focus lens controlled by an external voltage:an application of electro-wetting[J], Eur. Phys. J. E,2000,3(2):159-163
    [2]L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Adaptive liquid micro-lens activated by stimuli-responsive hydrogels[J], Nature,2006,442(7102):551-554
    [3]S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, Liquid micro-lens array activated by selective electro-wetting on lithium niobate substrates[J], Opt Express,2008,16 (11):8084-8093
    [4]刘德森等.变折射率介质理论及其技术实践,第一版,重庆,西南大学出版社,2005,20(6):210-249
    [5]T. Krupenkin, S. Yang, and P. Mach, Tunable liquid micro-lens[J], Appl. Phys. Lett.2003,82 (3):316-318
    [6]J. Duparre, D. Radtke, and P. Dannberg, mplementation of Field Lens Arrays in Beam-Deflecting Micro-lens Array Telescopes[J], Appl. Opt.2004.43(10):4854-4861
    [7]C. C. Cheng, C. A. Chang, and J. A. Yeh, Variable focus dielectric liquid droplet lens[J], Opt. Express,2006,11 (9):4101-4106
    [8]H. Urey, N. Nestorovic, B. Ng, and A. Gross, Optics Designs and System MTF for Laser Scanning Displays[J], Proc. SPIE 1999,26(91):238-248
    [9]M.-H. Lu and J. C. Sturm, Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment[J], J. Appl. Phys.2002(91):595-604
    [10]S. Xu, Y. J. Lin, and S. T. Wu, Dielectric liquid micro-lens with well-shaped electrode[J], Opt. Express.2009.17(13):10499-10505
    [11]C. A. Lopez, and A. H. Hirsa, Fast focusing using a pinned-contact oscillating liquid lens[J], Nat Photonics.2008,2(10):610-613
    [12]L. Lin, T. K. Shia, and C.-J. Chiu, Silicon-processed plastic micropyramids for brightness enhancement applications [J], J. Micromech.2000,13(10):395-400
    [13]S. Xu, H. Ren, Y. J. Lin, M. G. J. Moharam, S. T. Wu, and N. Tabiryan, Adaptive liquid lens actuated by photo-polymer[J], Opt. Express.2009.17(20):90-95
    [14]H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, Coupling efficiency enhancement in organic light-emitting devices using micro-lens array-theory and experiment[J], J. Display Technol.2005,12(1):278-282
    [15]J. S. Patel, and K. Rastani, Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays [J], Opt. Lett.1991,16(7):532-534
    [16]M.-K. Wei, I-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, The influence of a micro-lens array on planar organic light-emitting devices[J],J. Micromech. Microeng.2006,24(16):368-374
    [17]H. Ren, and S. T. Wu, Adaptive liquid crystal lens with large focal length tenability [J], Opt. Express.2006,14(23): 292-298
    [18]A.W. Lohmann, Image formation of dilute arrays for optical information processing [J], Opt. Commun.1991(86): 365-370
    [19]L. Lin, T. Shia, and C. Chiu, Silicon-processed plastic micropyramids for brightness enhancement applications [J], J. Micromech. Microeng.2000,10(3):395-400
    [20]S. Sinzinger, J. Jahns, Variations of hybrid imaging concept for optical computing applications[J],Optical Computing in Vol.10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C.1995,12(6):183-185
    [21]H. Peng, Y. Ho, X. Yu, M. Wong, and H. Kwok, Coupling efficiency enhancement in organic light-emitting devices using micro-lens array-theory and experiment [J], J. Display Technol.2005,1(2):278-282
    [22]Y. Ishihara, and K. Tanigaki, A high sensitivity IL-CCD image sensor with monolithic resin lens array [J], In Proceedings of IEEE IEDM. Tech. Dig.1983,14(6):497-500
    [23]唐天同.王兆宏等.微纳加工科学原理[M],第一版.北京.电子工业出版社.2010(5).120-126
    [24]M. J. Aernecke, and D. R. Walt. Optical-fiber arrays for vapor sensing [J]. Sens. Actuators B 2009.142(2):464-469
    [1]S. Maruo, and S. Kawata, Two-photon-absorbed near-infrared photopolymerization for three dimensional mi-crofabrication [J], JMEMS,1998.7(12):411-415
    [2]S. Wong, M. Deubel, F. Prez-Willard, S. John. G. A. Ozin, M. Wegener. and G. von Freymann. Direct Laser Writing of Three-Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses[J].Adv. Mater. 2006.18(14):265-269
    [3]M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nat. Mater.2004.3(6):444-447
    [4]T. N. Kim. K. Campbell. A. Groisman, D. Kleinfeld. and C. B. Schaffera, Femtosecond laser-drilled capillary integrated into a microfluidic device[J]. Appl. Phys. Lett.2005.86(20):201-216
    [5]F. Klein. T. Striebel, J. Fischer, Z. Jiang, C.M. Franz. G. von Freymann, M. Wegener, andM. Bastmeyer, Elasticfully three-dimensional microstructure scaffolds for cell force measurements [J],Adv. Mater.2010.22(44):868-871
    [6]孙艳军等.用于红外焦平面的正方形孔径球面微透镜阵列研究[J].光子学报,2012,36(4):44-47
    [7]T. Ergin. N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, Three-dimensional invisibility cloak at optical wavelengths [J]. Science 2010.328(64):337-339
    [8]M. S. Rill, C. Plet. M. Thiel, I. Staude, G. Freymann, S. Linden, and M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition [J], Nature Materials.2009.17(36):543-546
    [9]N. Liu, H. Guo. L. Fu. S. Kaiser, H. Schweizer. and H. Giessen, Three-dimensional photonic metamaterials at optical frequencies [J], Nat. Mater.2008.7(18):31-37
    [10]刘恩科,朱秉升等.半导体物理学[M].电子工业出版社,2003.12(16):45-48
    [11]J. K. Gansel. M. Thiel. M. S. Rill, M. Decker. K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer [J], Science 2009.325(24):1513-1515
    [12]M. Thiel, M. S. Rill. G. von Freymann, and M. Wegener, Three-dimensional bi-chiral photonic crystals [J], Adv.Mater. 2009.21(52):4680-4682
    [13]C. N. LaFratta. J. T. Fourkas. T. Baldacchini. and R. A. Farrer, Multiphoton Fabrication [J], Angew. Chem. Int.Ed. 2007.46(36):6238-6258
    [14]M. J. Booth. Adaptive optics in microscopy [J]. Phil. Trans. R. Soc. A.2007.365(46):2829-2843 [15] H. Schmidt and A. R. Hawkins. The photonic integration of non-solid media using optofluidics[J]. Nat. Photonics 2011.5(10):598-604
    [16]T. Erdogan, V. Mizrahi. P. J. Lemaire, and D. Monroe, Decay of ultraviolet-induced fiber Bragg gratings[J].J. Appl. Phys.1994.76(18):73-80
    [17]X. Fan and I. M. White, Optofluidic microsystems for chemical and biological analysis [J]. Nat. Photonics.2011.5(10): 591-597
    [18]M. Mancuso, J. M. Goddard, and D. Erickson. Nanoporous polymer ring resonators for biosensing [J], Opt. Express 2012.20(1):245-255
    [19]Q. Sun, H. Jiang. Y. Liu. Y. Zhou. H. Yang, and Q. Gong. Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica [J]. J. Opt. A. Pure Appl. Opt.2005.7(11):655-659
    [20]余怀之.红外光学材料[M].国防工业出版社.2006:43-44
    [21]S. N. S. Reihani. H. R. Khalesifard, and R. Golestanian, Measuring lateral efficiency of optical traps:The effect of tube length [J]. Opt. Commun.2006.259(1):204-211
    [22]T. Dallas and P. K. Dasgupta. Light at the end of the tunnel:recent analytical applications of liquid-core waveguides [J]. TRAC-Trend. Anal. Chem.2004.23(15):385-392
    [23]L. He. S. K. Ozdemir, J. Zhu, W. Kim. and L. Yang. Detecting single viruses and nanoparticles using whispering gallery micro lasers [J], Nat. Nanotechnol.2011.6(7):428-432
    [24]A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii Femtosecond laser-assisted three-dimensional microfabrication in silica [J], Opt. Lett.2001.26(5):277-279
    [25]Y. Sun and X. Fan, Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers [J], Angew. Chem.2012.124(5):1262-1265
    [26]G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, Three-dimensional nanostructures for photonics [J], Adv. Funct. Mater.2010.20(7):1038-1052
    [1]R. M. Guijt. and M. C. Breadmore. Maskless photolithography using UV LEDs [J], Lab Chip 2008.8(8):1402-1404
    [2]P. Mouroulis and M. McKerns, Pushbroom imaging spectrometer with high spectroscopic data fidelity:experimental demonstration [J]. Opt. Eng.2000.39(42):808-816
    [3]T. L. Andrew. H. Y. Tsai, and R. Menon, Confining light to deep subwavelength dimensions to enable optical nanopatterning [J]. Science 2009.324(599):917-921
    [4]周海宪等译,微光学元件、系统和应用[M].北京:国防工业出版社.2002
    [5]P. Mouroulis, R. O. Green, and T. G. Chrien, Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information [J].Appl. Opt.2000.39(12):2210-2220
    [6]R. Falcone, C. Jacobsen. J. Kirz. S. Marchesini, D. Shapiro, and J. Spence, New directions in X-ray microscopy [J]. Contemp. Phys.2011.52(4):293-318
    [7]T. Nisisako, and T. Torii, Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of Shape controlled polymer microparticles [J]. Adv. Mater.2007.19(11):1489-1493
    [8]M. A. Folkman, J. Pearlman, L. B. Liao. and P. J. Jarecke, EO1/Hyperion hyperspectral imager design, development, characterization and calibration [J]. SPIE Proc.2001.41(51):40-51
    [9]张殿文,卢振武.曹召良等.蚀刻表面面形分析[J].光子学报.2002.31(7):88-93
    [10]J. Gelb, Functionality to failure:Materials Reegineering in the 4th dimension [J], Adv. Mater. Process, 2012.170(5):14-18
    [11]F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale. R. K. Watt, M. C. Asplund, and M. R. Linford, Direct adsorption and detection of proteins, including ferritin, onto micro-lens array patterned bioarrays [J], J. Am. Chem. Soc.2007.129(30):9252-9253
    [12]M. A. Folkman, J. Pearlman, L. B. Liao, and P. J. Jarecke, EO1/Hyperion hyperspectral imager design, development, characterization and calibration [J], in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith and Y. Yasuoka Eds., SPIE Proc.2001.4151(62):40-51
    [13]M. C. George, A. Mohroz, M. Piech, N. S. Bell. J. A. Lewis, and P. V. Braun. Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures [J], Adv. Mater.2009.21(1):65-70
    [14]J. Homola, S. S. Yee. and G. Gauglitz, Surface plasmon resonance sensors:review [J]. Sensors and Actuators 1999.54(10):3-15
    [15]M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography [J]. Nature 2000.404(673):53-56
    [16]A. G. Brolo. R. Gordon, B. Leathern, and K. L. Kavanagh, Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays ofNanoholes in Gold Films [J], Langmuir 2004.20(12):4813-4815
    [17]S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step [J], Opt. Express2006.14(6):2300-2308
    [18]S. Chou. Nanoimprint lithography and lithographically induced self-assembly [J]. MRS Bulletin 2001.26(7):512-518
    [19]D. J. Resnick, S. V. Sreenivasan. and C. G. Willson. Step & flash imprint lithography [J], Materials Today 2005.8(2):34-42
    [20]K. Itoga. J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns [J]. Biomaterials 2006.27(15):3005-3009
    [21]T. Naiser. T. Mai. W. Michael, and A. Ott. Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays [J]. Rev. Sci. Instrum.2006.77(6):063711
    [22]M. Fuchs. R. Weingartner. A. Popp. Z. Major. S. Becker, J. Osterhoff. I. Cortrie. B. Zeitler. R. Horlein. G. D. Tsakiris. U. Schramm. T. P. Rowlands-Rees, S. M. Hooker. D. Habs. F. Krausz, S. Karsch. and F. Gruner. Laser-driven soft-X-ray undulator source [J], Nat. Phys.2009.5(11):826-829
    [23]N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett. D. G. Cole, and R. L. Clark. "Three-dimensional parallel holographic micropatterning using a spatial light modulator [J]. Opt. Express 2008.16(20):15942-15948
    [24]T. Ito, T. Yamada, Y. Inao, T. Yamaguchi. N. Mizutani, and R. Kuroda. Fabrication of half-pitch 32 nm resist pattern using near-field lithography with a-Si mask [J]. Appl. Phys. Lett.2006.89(3):033113
    [25]S. Hasegawa. Y. Hayasaki. and N. Nishida. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses [J]. Opt. Lett.2006.31 (11):1705-1707
    [1]Alexander Toet, Lodewik J, Van Ruyven. Alerging thermal and visual image by a contrast pyramid[J]. Opt. Eng.1992,28 (14):789-792
    [2]Wilson Tery A. Rogers Steven K. Myers. Lemuel R. Perceptual based hyperspectral image fusion using multiresolution analysis[J].Opt.Eng.1995,34 (12):3154-3164
    [3]Deepa Kundur,Dimitrios Hatzinakos. A novel approach to mulitispectral blind image fusion[C].Proc. SP1E.1997,3067 (28):83-93
    [4]Smart Smith, Lawrence A. Scarff. Combining visual and IR images for sensor fusion two approaches[C] Proc. SPIE.1992,16 (14):102-112
    [5]Lowney J R, Seiler D G, Littler C L,dependence,et al. Intrinsic carrier concentration of narrow-gap mercury cadmium telluride base the nonlinear temperature dependence of the band gaps [J]. Appl. Phvs 1992.71 (22):1253-1258
    [6]褚君浩.窄禁带半导体物理学[M].第一版.北京:科学出版社,2005
    [7]Wenus J, Rutkowski J, Rogalski A. Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes[J].IEEE Transactions on Electron Devices,2001,48 (23):1326-1329
    [8]Velicu S,Ashokan R,Sivananthan S. A model for dark current and multiplication in HgCdTe avalanche photodiodes[J] Electron,Mater.2000,29 (18):823-827
    [9]Quan Z, J, Chen G B, Sun L Z, et al. Effects of carrier degeneracy and conduction band non parabolicity on the simulation of HgCdTe photovoltaic devices[J].Infrared Phys.&technology,2006,50 (6):1-8
    [10]刘恩科,朱秉升,罗晋生.半导体物理学[M].第6版.北京:电子工业出版社,2003
    [11]R.M. A. Azzam, "Division-of-amplitude photopolarimeter (DOAP) for the simultaneous measurement of all four Stokes parameters of light,",Opt. Acta(Lond.) 1982.29(16):685-689
    [12]Weiler M H, Reine M B. Effect of a Valence-Band barrier on the quantum efficiency and background limited dynamic resistance of compositionally graded HgCdTe p-on-n heterojunction photodiodes [J]. J.Electr. Mater. 1995,24(32):1329-1339
    [13]H. Tsuda, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi and T. Kurokawa, Second- and Third-order Dispersion Compensator Using a High-Resolution Arrayed-Waveguide Grating [J], IEEE Photon.Technol. Lett.1999.11, 569-571
    [14]M. Momeni, and A. H. Titus, An analog VLSI chip emulating polarization vision of Octopus retina [J], IEEE Trans. Neural Netw.2006.17(1):222-232
    [15]Lueftner T, Kroepl C, Huemer M. Edge-position modulation for high speed wireless infrared communications[J].IEEE Proc,Optoelectron,2003,150 (5):427-437
    [16]P. K. Swain, D. J. Channin, G. C. Taylor, S. A. Lipp and D. S. Mark, Curved CCDs and their application with astronomical telescopes and stereo panoramic cameras [J], Proc. SPIE 2004,530(12):109-129
    [17]郭京平,分步重复投影光刻机同轴对准系统[J].光电工程.1998(25):2-6
    [18]全知觉,孙立忠,叶振华,等.碲镉汞异质结能带结构的优化设计[J].物理学报.2002(3):45-48
    [19]A. El Gamal and H. Eltoukhy, CMOS image sensors," IEEE Circuits and Devices Magazine 2005.21 (5):5-20
    [20]]M. Hain, W. von Spiegel, M. Schmiedchen, T. Tschudi, and B. Javidi,3D integral imaging using diffractive Fresnel lens arrays [J], Opt. Express 2005.13(14):315-326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700