具有α-羟基侧链的内酯类天然产物及衍生物的合成与杀菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以天然产物为先导化合物开发新农药具有容易降解、选择性高、对环境友好等优点,因此渐渐成为新型绿色农药研发的主要途径之一。(6R)-3,7-二甲基-7-羟基-2-辛烯-1,6-内酯是从蜜蜂寄生菌Ascosphaera apis的代谢产物以及西藏荜澄茄(Litsea cubeba)果实提取物中分离得到的具有广谱杀菌活性的天然产物,Muricatacin和6-乙酰氧基十六碳烷酸-5-内酯是从番荔枝科植物刺果番荔枝(Annona Muricata)以及传播疟疾和西尼罗河病毒的淡色库蚊Culex pipiens fatigans的卵块表面的分泌物中分离出的具有昆虫拒食和产卵引诱信息素功能的天然产物。本论文围绕它们的合成及生物活性开展了以下三部分工作。
     第一部分研究了两条以甲基庚烯酮和橙花醇为原料经4-6步反应全合成消旋和光活性3,7-二甲基-7-羟基-2-辛烯-1,6-内酯的路线,总收率在6.3%-32.9%之间。与此同时首次完成了天然产物3,7-二甲基-2,6-辛二烯内酯(a-09)与(E)-6,7-二羟基-3,7-二甲基-2-辛烯酸(a-05)的全合成。在此基础上,发展了先将烯烃环氧化、而后在樟脑磺酸的催化下羧酸与环氧基团发生分子内的SN2反应关环合成七元环内酯的新策略,得到含有α-羟基侧链的七元环内酯化合物共28个,其中首次通过Sharpless不对称双羟基化为关键步骤还合成了三对光活性异构体,它们的e.e.值在88.8%-95.4%,并通过Mosher酯和X-射线衍射方法确定了它们绝对构型。
     第二部分首次以商品化的炔酸和炔醇为原料,利用Shi不对称环氧化反应和Sharpless不对称双羟基化为关键步骤同时引入两个手性中心,通过6-11步反应分别以总收率16.5%-26.9%完成了天然产物Muricatacin和6-乙酰氧基十六碳烷酸-5-内酯的四个光学纯异构体的全合成,并通过X-射线衍射方法确定了(-)-epi-Muricatacin的绝对构型。
     第三部分对合成的目标化合物进行了离体杀菌活性测定,结果表明部分化合物具有比天然产物更好的杀菌活性。如化合物d-06对棉花立枯菌、水稻纹枯菌、油菜菌核菌与黄瓜灰霉菌的ECso分别为10.684,3.693,5.094,0.455mg/L,化合物e-07对棉花立枯菌、水稻纹枯菌、小麦赤霉菌与辣椒疫霉菌的ECso分别为2.831,4.605,10.731,5.065mg/L。初步探讨了它们的结构-活性关系,发现当天然产物的烯丙位甲基被芳环取代后,化合物的杀菌活性得到显著的提高;Muricatacin的四个立体异构体中,(5R,6R)-Muricatacin,(5S,6S)-Muricatacin,(5R,6S)-Muricatacin,(5S,6R)-Muricatacin对水稻纹枯的抑制率分别为72.34%,65.23%,91.08%,84.78%,进一步精密毒力测定结果显示Muricatacin的四个异构体对水稻纹枯的EC50分别为8.818,16.665,4.602,5.253mg/L。
Pesticides based on natural products are degradable, selective and environmental friendly. Therefore, development of pesticides using natural products as lead compounds gradually becomes one of the main utilizing methods.(6R)-3,7-dimethyl-7-hydroxy-2-octen-6-olide was first isolated from the honey bee fungal entomopathogen Ascosphaera apis, as well as the fruit of plant Litsea cubeba in Tibet, and exhibited good antifungal activities. Muricatacin was first isolated from the seeds of Annona muricata which showed antifeeding activity, and6-acetoxy-5-hexadecanolide as a kind of oviposition attractant pheromones was first isolated from the apical droplets formed on the egg of the mosquito Culex pipens fatigans, which has the ability to transmit the West Nile virus. This paper can be divided into three parts based on the synthesis and bioactivity of these natural products. R-a-06a-05a-09Muricatacin6-acetoxy-5-hexadecanolide
     In the first part, racemic and chiral3,7-dimethyl-7-hydroxy-2-octen-6-olide were totally synthesized by4-6steps with overall yields of6.3%-32.9%using methyl-5-hepten-2-one and nerol as raw materials in two routes, respectively. Natural products3,7-dimethyl-2,6-octadien-1,6-olide (a-09) and (E)-6,7-dihydroxy-3,7-dimethyloct-2-enoic acid (a-05) were also synthesized for the first time. A new strategy were developed including olefin epoxidation and intramolecular SN2replacement with catalyst camphorsulfonic acid,28seven-membered lactones with hydroxyl group at side chain were prepared by this protocol. Three pairs of optical isomers have been synthesized with e.e. values of88.8%-95.4%. Their absolute configurations were determined by Mosher ester and X-ray diffraction.
     In the second part, asymmetric total synthesis of Muricatacin and6-acetoxy-5-hexadecanolide have been accomplished from the commercial4-pentynoic acid and alkynol via Shi's AE and Sharpless AD reactions as the key steps in6-11steps with an overall yields of16.5%-26.9%. The absolute configuration of (-)-epi-Muricatacin was confirmed by X-ray diffraction.
     The in vitro antifungal activities of these compounds were evaluated in the third part of this paper. The results showed that some of these derivatives exhibit good fungicidal activity, such as the EC50f compound d-06against R. solani, R. solani Kuhn, S. sclerotiorum and B. cinerea were10.684,3.693,5.094,0.455mg/L, and the EC50of compound e-07against R. solani, R. solani Kuhn, F. graminearum and P. capsici were2.831,4.605,10.731,5.065mg/L, respectively. The structure-activity relationships showed that the antifungal activity were increased significantly when the allylic methyl was replaced by aromatic groups; inhibition rates of (5R,6R)-Muricatacin,(5S,6S)-Muricatacin,(5R,6S)-Muricatacin,(5S,6R)-Muricatacin against R. solani were72.34%,65.23%,91.08%,84.78%with the EC50valus were8.818,16.665,4.602,5.253mg/L, respectively.
引文
[1]杨华铮,农药分子设计,北京:科学出版社,2003.
    [2]韩熹莱,农药概论,北京:北京农业大学出版社,1994.
    [3]刘长令,世界农药大全—杀菌剂卷,北京:化学工业出版社,2002.
    [4]张一宾,张择,世界农药新进展,北京:化学工业出版社,2006.
    [5]吴文君,从天然产物到新农药创制,北京:化学工业出版社,2006.
    [6]Brown H.C., Kulkarni S.V., Racherlalb U.S., Chiral synthesis via organoboranes 39. A facile synthesis of γ-substituted-y-butyrolactones in exceptionally high enantiomeric purity. J. Org.Chem.,1994,59,365-369.
    [7]Kataoka M., Honda K., Sakamoto K., Shimizu S., Microbial enzymes involved in lactone compound metabolism and their biotechnological applications, Appl.Microbiol. Biotechnol.2007,75,257-266.
    [8]Nagashima H., Nakamura K., Goto T., Hepatotoxin rubratoxin B induced the secretion of TNF-a, IL-8, and MCP-1 in HL60 cells, Biochem. Biophys. Res. Commun.,2001,287,829-832.
    [9]Lewy D.S., Gauss C.M.; Soenen D.R., Boger D.L., Fostriecin:chemistry and biology, Curr. Med. Chem.,2002,9, 2005-2032.
    [10]Leite L., Jansone D., Veveris M., Cirule H., Popelis Y., Melikyan G., Avetisyan A., Lukevics E., Vasodilating and antiarrhythmic activity of heteryl lactones, Eur. J. Med. Chem.,1999,34,859-865.
    [11]Heinrich M., Inhibition of the transcription factor NF-KB, Phytother. Res.,2000,14,479-488-
    [12]Tian Z., Chen S., Zhang Y., Huang M., Shi L., Huang F., Fong C., Yang M., Xiao P., The cytotoxicity of naturally occurring styryl lactones. Phytomedicine,2006,13,181-186.
    [13]Chrusciel R.A., Strohbach J.W., Non-peptidic HIV protease inhibitors, Curr. Top. Med. Chem.,2004,4,1097-1114.
    [14]Chan K.M., Rajab N.F., Ishak M.H.A., Ali A.M., Yusoff K., Din L.B., Inayat-Hussain S.H. Goniothalamin induces apoptosis in vascular smooth muscle cells, Chem. Biol. Interact.,2006,159,129-140.
    [15]Kikuchi H., Sasaki K., Sekiya J., Maeda Y, Amagai A., Kubohara Y, Ohsima Y, Structural requirements of dictyopyrones isolated from Dictyostelium spp. in the regulation of Dictyostelium development and in anti-leukemic activity, Bioorg. Med. Chem.2004,12,3203-3214.
    [16]Shaw S.J., Sundermann K.F., Burlingame M.A., Myles D.C., Freeze B.S., Xian M., Brouard I., Smith A.B., Toward understanding how the lactone moiety of discodermolide affects activity, J. Am. Chem. Soc.2005,127,6532-6533.
    [17]Gallardo GL., Pena N.I., Cabrera GM., Neric acid derivatives produced by the honey bee fungal entomopathogen Ascosphaera apis, Phytochemistry Lett.,2008,1,155-158.
    [18]Yang Y., Jiang J.Z., Yan X.J., Zhao J.X., Yuan H.Z., Qin Z.H., Wang M.A., The fungicidal terpenoids and essential oil from Litsea cubeba in Tibet, Molecules,2010,15,7075-7082.
    [19]Ferraz H.M.C., Bombonato F.I., Longo L.S.J., Synthetic approaches to naturally occurring ten-membered-ring lactones, Synthesis,2007,21,3261-3285.
    [20]Valerie B., Garance B., Jean M.C., Synthetic approaches to α,β-unsaturated δ-lactones and lactols, Eur. J. Org. Chem.,2007,225-236.
    [21]Shiina I., Total Synthesis of Natural 8- and 9-Membered Lactones:Recent Advancements in Medium-Sized Ring Formation, Chem. Rev.,2007,107,239-273.
    [22]Helena M.C.F., Fernanda I.B., Natural occurrence, biological, activities and synthesi of eight-, nine-, and eleven-membered ring lactones, Quim. Nova,2008,31,885-900.
    [23]Rousseau, G., Medium ring lactones, Tetrahedron,1995,51,2777-2849.
    [24]Lou X.D., Detrembleur C., Lecomte P., Jerome R., Controlled synthesis and chemical modification of unsaturated aliphatic (Co)polyesters based on 6,7-dihydro-2(3H)-oxepinone, Journal of Polymer Science Part A:Polymer Chemistry,2002,40,2286-2297.
    [25]Rossella M, Andrea O, Javier P.C., Maria E.G., Gregorio A., Baeyer-Villiger oxidation of ketones with a silica-supported peracid in supercritical carbon dioxide under flow conditions, Green. Chem.,2009,11,994-999.
    [26]Maria E., Gonzalez N., Rossella M., Andrea O., Gregorio A., Baeyer-Villiger oxidation in supercritical CO2 with potassium peroxomonosulfate supported on acidic silica gel. J. Org. Chem.,2006,71,6432-6436.
    [27]Maria Y.R., Enrique S., Horacio F.O., Baeyer-Villiger oxidation of substituted cyclohexanones via lipasemediated perhydrolysis utilizing urea-hydrogen peroxide in ethyl acetate, Green Chem.,2007,9,459-462.
    [28]Zarrabi S., Mahmoodi N.O., Tabatabaeian K., Zanjanchi M.A. Baeyer-Villiger oxidation of cyclic ketones utilizing potassium peroxydisulfate (K2S2O8) or sodium perborate (NaBO3) in acidic media. Chin. Chem. Lett.,2009,20, 1400-1404.
    [29]Xiong Z.M., Corey E.J., Simple total synthesis of the pentacyclic Cs-symmetric structure attributed to the squalenoid glabrescol and Three Cs-symmetric diastereomers compel structural revision, J. Am. Chem. Soc.,2000,122, 4831-4832.
    [30]Dinesh K.R.,Cheng C.H., Synthesis of seven-membered lactones via nickel- and zinc-catalyzed highly regio- and stereoselective cyclization of 2-iodobenzyl alcohols with propiolates, J. Am. Chem. Soc.,2002,124,5630-5631.
    [31]Bart A.C., Chan D.K., Patrick J.J., Kivit A.R.A., Palmans E.W.M., Convenient double-enzymatic synthesis of both enantiomers of 6-methyl-e-caprolactone, Tetrahedron:Asymmetry,2007,18,787-790.
    [32]Maxime A.S., Huub K., Anthony L.S., Bis(pyridine-κN)-bis(triphenylphosphine-κP) copper(Ⅰ) tetrafluoridoborate, Acta Cryst.,2008,64,607-610.
    [33]Emily B.P., Tendai G., SonBinh T.N., Substrate encapsulation:an efficient strategy for the RCM synthesis of unsaturated E-lactones, J. Org. Chem.,2008,10,5613-5615.
    [34]Makoto E., Yuto S., Haruhiko F., Makoto S., Highly efficient synthesis of medium-sized lactones via oxidative lactonization:concise total synthesis of isolaurepan, Org. Biomol. Chem.,2010,8,39-42.
    [35]Collett L. A., Davies, M.T., Rivett D.E.A., Naturally occurring 6-substituted 5,6-dihydro-a-pyrones, Prog. Chem. Org. Nat. Prod.1998,75,181-209.
    [36]Meyer H.H., Syntheses of (+)-and (-)-goniothalamin; absolute configuration of the naturally occurring (+)-goniothalamin, Liebigs Annalen der Chemie,1979,4,484-91.
    [37]Juliawaty L.D., Kitajima M., Takayama H., Achmad S.A., Aimi N., A 6-substituted-5,6-dihydro-2-pyrone from Cryptocarya strictifolia, Phytochemistry,2000,54,989-993.
    [38]Cao S.G., Wu X.H., Sim K.Y., Tan B.K.H., Pereira J.T., Goh S.H., Domino synthesis of 3-amino-8-hydroxy-1,6-dioxo-2,7-diazaspiro[4.4]non-3-ene-4-carbonitriles, Tetrahedron,1998,54,2143-2148.
    [39]Pittler, M.H.; Ernst, E.J., Application potential of recombinant human lactoferrin in antibiotic-resistant infection control, Clin. Psycho. Pharm.,2000,20,84-89.
    [40]Smith K.K., Dharmaratne H.R.W., Feltenstein M.W., Broom S.L., Roach J.T., Nanayakkara N.P.D., Khan I.A., Sufka K.J., Effects of moclobemide on sexual performance and nocturnal erections in psychogenic erectile dysfunction, Psychopharmacology,2001,155,86-92.
    [41]Jamieson D.D., Duffield P.H., The antinociceptive actions of kava components in mice, Clin. Exp. Pharmacol. Physiol.,1990,17,495-497.
    [42]Gleitz J., Beile A., Wilkens P., Ameri A., Peters, Antithrombotic action of the kava pyrone (+)-kavain prepared from Piper methysticum on human platelets, Planta Med.,1997,63,27-30.
    [43]Schmitz D., Zhang C.L., Chatterjee S.S., Heinemann U., Flavonol tetraglycosides from the leaves of Prunus cerasus and P. avium, Arch. Pharmacol. Toxicol.,1995,351,348-357.
    [44]Mu Q., Tang W., Li C., Lu Y, Sun H., Zheng X., Wu N., Lou B., Xu B., Grindelane diterpenoids from Chrysothamnus nauseosus, Phytochemistry,1980,19,2689-2693.
    [45]Chen J., Lin G.Q., Wang Z.M., Liu H.Q., A short and general approach to the synthesis of styryllactones:(+)-Goniodiol, its acetates and P-trifluoromethyl derivative, (+)-7-epi-Goniodiol and (+)-9-deoxygoniopypyrone, Synlett.,2002,8, 1265-1268.
    [46]Priestap H.A., Bonafede J.D., Ruveda E.A., Argentilactone, a novel 5-hydroxyacid lactone from Aristolochia argentina, Phytochemistry,1977,16,1579-1582.
    [47]Waechter A.I., Ferreira M.E., Fournet A., Rojas A., Nakayama H., Torres S., Hocquemiller R., Cave A., Experimental treatment of cutaneous leishmaniasis with argentilactone isolated from Annona haematantha, Planta Med.,1997,63, 433-435.
    [48]Grove J.F., Metabolic products of Phomopsis oblonga. Part 2. Phomopsolide A and B, tiglic esters of two 6-substituted 5,6-dihydro-5-hydroxypyran-2-ones,J. Chem. Soc., Perkin Trans.1,1985,865-869.
    [49]Stierle D.B., Stierle A.A., Ganser B., New phomopsolides from a Penicillium, J. Nat. Prod.,1997,60,1207-1209.
    [50]Davies-Coleman M.T., Rivett D.E.A., Stereochemical studies on boronolide, an a-pyrone from Tetradenia barberae, Phytochemistry,1987,26,3047-3049.
    [51]Van Puyvelde L., De Kimpe N., Dube S., Chagnon D.M., Boily Y, Borremans F., Schamp N., Anteunis M.J.O. 1',2'-Dideacetylboronolide, an a-pyrone from Iboza riparia, Phytochemistry,1981,20,2753-2759
    [52]Lee M.K.S., Liu J., Microbiol C.J., Three antimicrobial metabolites from Aspergillus caespitosus, Agric. Biol. Chem., 1975,21,1781-1784.
    [53]Hirota A., A. Isogai H.S., Structure of cladospolide A, a novel macrolide from Cladosporium fulvum, Agric. Biol. Chem.,1981,45,799-800.
    [54]Fujii Y, Fukuda A., Hamasaki T., Ichimoto I., Nakajima H., Twelve-membered lactones produced by Cladosporium tenuissimum and the plant growth retardant activity of cladospolide B, Phytochemistry,1995,40,1443-1446.
    [55]Ito C., Katsuno S., Ruangrungsi N., Furukawa H., Structures of clausamine-A,-B,-C, three novel carbazole alkaloids from Clausena anisata, Chem. Pharm. Bull.,1998,46,344-349.
    [56]Smith C.J., Abbanat D., Bernan V.S., Maiese W.M., Greenstein M., Jampa J., Tahir A., Ireland C.M., Novel polyketide metabolites from a species of marine fungi, J. Nat. Prod.,2000,63,142-145.
    [57]Maneerat W., Phakhodee W., Ritthiwigron T., Cheenpracha S., Promgool T., Yossathera K., Deachathai S., Laphookhieo S., Antibacterial carbazole alkaloids from Clausena harmandiana twigs, Fitoterapia,2012,83, 1110-1114.
    [58]Benedicta C.N., Dieudonne N., Jean W., Zacharias T.F., Anti-inflammatory and analgesic effects of drypemolundein A, a sesquiterpene lactone from drypetes molunduana, Pharmaceutical Biology,2003,41,26-30.
    [59]Kamal A., Krishnaji T., Reddy P.V.A., new chemoenzymatic Baylis-Hillman approach for the synthesis of enantiomerically enriched umbelactones. Tetrahedron Lett.,2007,48,7232-7235.
    [60]David S., Rycroft W., John C., Hydroquinone derivatives and monoterpenoids from the Neotropical liverwort, Plagiochila rutilans Phytochemistry 2001,57,479-488.
    [61]Maneerat W., Laphookhieo S. Antiumoral alkaloids from Clausena lansium, Heterocycles,2010,81,1261-1269.
    [62]Kimura Y., Tamura S., Isolation and structure of pestalotin, a gibberellin synergist from Pestalotia cryptomeriaecola Agric. Biol. Chem.,1972,36,1925-1931.
    [63]Jewers K., Davis J.B., Dougan J., Manchanda A.H., Blunden G, Wetchapinan S., Goniothalamin and its distribution in four Goniothalamus species, Phytochemistry,1972,11,2025-2030.
    [64]Schlapelo B.M., Drewes S.E., Scott-Shaw R., A 6-substituted 5,6-dihydro-a-pyrone from two species of Cryptocarya, Phytochemistry,1994,37,847-849.
    [65]Schlessinger R.H., Gillman K.W., Asymmetric total synthesis of (+)-phomalactone, (+)-acetylphomalactone and (+)-asperlin utilizing a novel syn-selective C4-oxa-vinylogous urethane, Tetrahedron Lett.,1999,40,1257-1260.
    [66]Surivet, J.P., Vatele J.M. Total Synthesis of Antitumor Goniothalamus Styryllactones, Tetrahedron,1999,55, 7847-7858.
    [67]Mayer S.F., Steinreiber A., Goriup M., Saf R., Faber K., Chemoenzymatic asymmetric total syntheses of a constituent of Jamaican rum and of (+)-Pestalotin using an enantioconvergent enzyme-triggered cascade reaction, Tetrahedron:Asymmetry,2002,13,523-528.
    [68]Chandrasekhar M., Kusum L.C., Singh V. K., Total Synthesis of (+)-Boronolide, (+)-Deacetylboronolide, and (+)-Dideacetylboronolide, J. Org. Chem.,2003,68,4039-4045.
    [69]Yadav J.S., Rajaiah G., Raju A.K., A concise and stereoselective synthesis of both enantiomers of altholactone and isoaltholactone, Tetrahedron Lett.,2003,44,5831-5833.
    [70]Lycia F., Philip K., Pons J.M., The β-lactone route to α,β-unsaturated y-lactones. Total syntheses of (+)(-)-goniothalamin and (+)-massoialactone, Tetrahedron,2004,60,1659-1663.
    [71]Thomas E.S., Mabel D., Alan J.V., Downey C.W., Kathleen A.C., Sophie A., Versatile asymmetric synthesis of the kavalactones:first synthesis of (+)-kavain, Organic Lett.,2004,6,2317-2320.
    [72]Chen J., Lin GQ., Liu H.Q., Stereoselective synthesis of the styryllactones,7-epi-goniodiol and leiocarpin A, isolated from Goniothalamus leiocarpus, Tetrahedron Lett.,2004,45,8111-8113.
    [73]Ramana C.V., Raghupathi N., Mukund K.G., Mukund S.C., A carbohydrate-based approach for the total synthesis of strictifolione, Tetrahedron Lett.,2005,46,4073-4075.
    [74]Jhillu S.Y., Saibal D., Anand K.M., Stereoselective and facile total synthesis of (+)-goniodiol, a styryllactone from carbohydrates, Tetrahedron:Asymmetry,2010,21,2443-2447.
    [75]Gowravaram S.M., Bhikshapathi N.R., Ashwini N., Jhillu S.Y., An efficient total synthesis of (+)-goniodiol, Synthesis,2011,5,821-825.
    [76]Biswanath D., Siddavatam N., Cheruku R.R., Stereoselective total synthesis of (+)-cryptofolione and (+)-goniothalamin, Tetrahedron:Asymmetry,2011,22,1249-1254
    [77]Yang Z.C., Jiang X.B., Wang Z.M., Zhou W.S., Total syntheses of (+)-asperlin, (+)-acetylphomalactone and (5S,6S,7R,8S)-asperlin based on the kinetic resolution of 2-furylmethanols, J. Chem. Soc. Perkin Trans.,1997,1, 317-321.
    [78]Chen W.P., Stanley M.R., Julia-Colonna asymmetric epoxidation of furyl styryl ketone as a route to intermediates to naturally-occurring styryl lactones,J. Chem. Soc., Perkin Trans.,1999,1,103-105.
    [79]Harris J.M., O'Doherty G. A., Enantioselective syntheses of isoaltholactone,3-epi-Altholactone, and 5-hydroxy-goniothalamin, Org. Lett.,2000,2,2983-2986.
    [80]Muhammad S., Thomas I., Miriam S., Muhammad A., Wolfgang V., Total synthesis and anti-leishmanial activity of R-(-)-argentilactone, Tetrahedron Lett.,2001,42,7401-7403.
    [81]Monika Q., Mathias C., Ulhas B., Markus K., Synthesis of unsaturated lactone moieties by asymmetric hetero Diels-Alder reactions with binaphthol-titanium complexes, Tetrahedron.2001,42,1263-1265.
    [82]Joel M.H., O'Doherty GA., An enantioselective total synthesis of phomopsolide C, Tetrahedron Lett.,2002,43, 8195-8199.
    [83]Peng X.S., Li A., Lu J.P., Wang Q.L., Pan X.F., Albert S.C., Enantioselective total synthesis of (+)-isoaltholactone, Tetrahedron,2002,58,6799-6804.
    [84]Srikanth G.S.C., Krishna, U.M., Girish K.T., Enantiospecific synthesis of [7R,6S,5S,4R]-triacetoxy-(-)- goniotriol, Tetrahedron Lett.,2002,43,5471-5473.
    [85]Gracza T, Jager V, Synthesis of natural and unnatural enantiomers of goniofufurone and its 7-epimers from D-glucose. Application of palladium(Ⅱ)-catalyzed oxycarbonylation of unsaturated polyols, Synthesis,1994, 1359-1367.
    [86]Kavirayani R.P., Pazhamalai A., Stereoselective synthesis of (+)-boronolide and (+)-5-epi-boronolide, Tetrahedron: Asymmetry,2006,17,1146-1151.
    [87]Honda T., Horiuchi S., Mizutani H., Kanai K., Enantiocontrolled Synthesis of (+)-Boronolide. J. Org. Chem.,1996, 61,4944-4946.
    [88]Michaelis S., Blechert S., Total synthesis of (+)-phomopsolide C by ringsize selective ring-closing metathesis/cross-metathesis, Org. Lett.,2005,7,5513-5516.
    [89]Kumar P., Naidu S.V., Enantio- and diastereocontrolled total synthesis of (+)-boronolide, J. Org. Chem.,2006,71, 3935-3941.
    [90]Kamal A., Krishnaji T, Reddy P.V., A new chemoenzymatic Baylis-Hillman approach for the synthesis of enantiomerically enriched umbelactones, Tetrahedron Lett.2007,48,7232-7235.
    [91]Krehl S., Geibler D., Hauke S., Kunz O., Staude L., Schmidt B., The catalytic performance of Ru-NHC alkylidene complexes:PCy3 versus pyridine as the dissociating ligand, Beilstein J. Org. Chem.,2010,6,1188-1198.
    [92]Akaike H., Horie H., Kato K., Akita H., Total synthesis of (+)-asperlin, Tetrahedron:Asymmetry,2008,19,1100-1105.
    [93]Prasad K.R., Gandi V.R., Enantioselective total synthesis of iso-cladospolide B, cladospolide C and cladospolide B from tartaric acid, Tetrahedron:Asymmetry 2011,22,499-505.
    [94]Sundby E., Perk L., Anthonsen T., Aasen A.J., Hansen T.V., Synthesis of (+)-goniothalamin and its enantiomer by combination of lipase catalyzed resolution and alkene metathesis, Tetrahedron,2004,60,521-524.
    [95]Harsh P., O'Doherty GA., De novo asymmetric synthesis of (+)-goniothalamin, (+)-goniothalamin oxide and 7,8-bis-epi-goniothalamin using asymmetric allylations, Tetrahedron,2009,65,5051-5055.
    [96]Kiran I.N.C., Reddy R.S., Suryavanshi G., Sudalai A., A concise enantioselective synthesis of (+)- goniodiol and (+)-8-methoxygoniodiol via Co-catalyzed HKR of anti-(2SR,3RS)-3-methoxy-3-phenyl-1,2-epoxypropane. Tetrahedron Lett.,2011,52,438-440.
    [97]Trost B.M., Aponick A., Palladium-catalyzed asymmetric allylic alkylation of meso- and dl-1,2-divinylethylene carbonate,J.Am. Chem. Soc.2006,128,3931-3933.
    [98]Matthew J.R., John F.K., Karl V.W., Muricatacin:a simple biologically active acetogenin derivative from the seeds of Annona muricata (Annonaceae), Tetrahedron Lett.,1991,32,1137-1140.
    [99]Almudena B., Bruno F., Maria C., Zafra P., Isabel B., Ernesto E., Diego C., Acetogenins from Annonaceae:recent progress in isolation, synthesis and mechanisms of action, Nat. Prod. Rep.,2005,22,269-303.
    [100]Makabe H., Synthesis of annonaceous acetogenins from muricatacin, Biosci. Biotech. Biochem.2007,71, 2367-2374.
    [101]Rieser M.J., Kozlowski J.F., Wood K.V., McLaughlin J.L., Muricatacin:a simple biologically active acetogenin derivative from the seeds of annona muricata (annonaceae), Tetrahedron Lett.,1991,32,1137-1140.
    [102]Liaw C.C., Chang F.R., Chen S.L., Wu C.C., Lee K.H., Wu Y.C., Novel cytotoxic monotetrahydrofuranic annonaceous acetogenins from annona montana, Bioorg. Med. Chem.,2005,13,4767-4776.
    [103]Yoon S.H., Moon H.S., Hwang S.K., Choi S.R., Kang S.K., Syntheses and cytotoxicities of four stereoisomers of muricatacin from D-Glucose, Biorg. Med. Chem.,1998,6,1043-1049.
    [104]Figadere B., Harmange J.C., Laurens A., Cave A., Stereospecific synthesis of (+)-muricatacin:A biologically active acetogenin derivative, Tetrahedron Lett.,1991,32,7539-7542.
    [105]Marshall J.A., Welmaker GS., Enantioselective synthesis of (+)- and (-)-muricatacin through SE2'addition of nonracemic y-silyloxy allylic stannanes to aldehydes, J. Org. Chem.,1994,59,4122-4125.
    [106]Cave A., Chaboche C., Figadere B., Harmange J.C., Laurens A., Peyrat J.F., Pichon M., Szlosek M., Cotte-Lafitte J., Quero A.M., Study of the structure-activity relationships of the acetogenin of annonaceae, muricatacin and analogues, Eur. J. Med. Chem.,1997,32,617-623.
    [107]Baussanne I., Schwardt O., Royer J., Pichon M., Figadere B., Cave A., Synthesis of (+)-Muricatacin:an analogue of the bioactive muricatacin an acetogenin of annonaceae, Tetrahedron Lett.,1997,38,2259-2262.
    [108]Larcheveque M., Lalande J., Les aminoacides precurseurs de synthons chiraux (IV). Syntheses diastereoselective dex-diols enantiomeriquement purs; preparation de la (+)-exobrevicomine. Bull. Soc. Chim. Fr.1987,1,116-121.
    [109]Le M.Y., Gravier P.J., Dumas J., Depezay J.C., Chiral a-hydroxy- and α,β-dihydroxy-aldehydes from D-isoascorbic and L-ascorbic acids. Useful precursors for the synthesis of fatty acid metabolites, Tetrahedron Lett. 1990,31,1003-1006.
    [110]Dhotare B., Chattopadhyay A., (R)-2,3-Cyclohexylideneglyceraldehyde, a novel template for facile and simple entry into chiral hydroxy α, β-lactones:synthesis of (-)-muricatacin, Tetrahedron Lett.,2005,46,3103-3105.
    [111]Gypser A., Peterk M., Scharf H.D., D-Erythronolactone as a C4 building unit. Part 2. A short and efficient synthesis of both enantiomers of epimuricatacin, a diastereoisomer of the native acetogenin from annona muricata, J. Chem. Soc, Perkin Trans.1,1997,1,1013-1016.
    [112]Braun R.A., Preparation of 4,5-dihydrooxepine and 1,2-divinylethylene oxide. J. Org. Chem.1963,28,1383-1384.
    [113]Gravier P.C., Dumas J., Le M.Y., Depezay J.C., A general way, from L-ascorbic and D-isoascorbic acids, to homochiral α-hydroxy- and α, β-dihydroxy-aldehydes useful building blocks for the synthesis of linear oxygenated fatty acid metabolites, J. Carbohydr. Chem.,1992,11,969-998.
    [114]Crombez R.C., Benazza M., Frechou C, Demailly G., Efficient synthesis of α, β-dibromodideoxyalditols as precursors for α, β-dithioalkylalditols, Carbohydr. Res.,1997,303,359-365.
    [115]Somfai P., An enantiospecific total synthesis of (+)-muricatacin,J. Chem. Soc., Perkin Trans.,1995,1,817-819.
    [116]Hekmatshoar R., Yavari Y., Beheshtiha Y.S., Heravi M.M., Reductive coupling of carbonyl compounds to pinacols with zinc in THF-saturated aqueous ammonium chloride, Monatsh. Chem.,2001,132,689-691.
    [117]Prasad K.R., Anbarasan P., Enantiospecific synthesis of (-)-muricatacin from L-(+)-tartaric acid, Tetrahedron: Asymmetry,2006,17,2465-2467.
    [118]Chandrasekhar M., Chandra K.L., Singh V.K., An efficient strategy for the synthesis of 5-hydroxyalkylbutan-4-olides from D-mannitol:Total synthesis of (-)-muricatacin, Tetrahedron Lett.2002,43,2773-2775.
    [119]Chandrasekhar M., Chandra K.L., Singh V.K., An approach towards chiral 5-hydroxyalkyl butan-4-olides:total synthesis of (-)-muricatacin and related natural products, Arkivoc,2002,7,34-45.
    [120]Rassu G., Pinna L., Spanu P., Zanardi F., Battistini L., Casiraghi GP., Stereoselective syntheses of both enantiomers of muricatacin and their sulfur and nitrogen relatives using the silyloxy diene-based methodology, J. Org. Chem., 1997,62,4513-4517.
    [121]Bernard A.M., Floris C., Frongia A., Piras P.P., Synthesis of tertiary cyclobutanols through stereoselective ring expansion of oxaspiropentanes induced by Grignard reagents, Tetrahedron,2000,56,4555-4563.
    [122]Dhotare B., Chattopadhyay A., (R)-2,3-Cyclohexylideneglyceraldehyde, a novel template for facile and simple entry into chiral hydroxy y-lactones:synthesis of (-)-muricatacin, Tetrahedron Lett.,2005,46,3103-3105.
    [123]Jurczak I., Bauer T., Chimielewski M., A general approach to the synthesis of 2,3-di-O-protected derivatives of D-glyceraldehyde, Carbohydr. Res.,1987,164,493-498.
    [124]Carda M., Castillo E., Rodriguez S., Marco J.A., A stereoselective synthesis of (+)-malyngolide via a ring-closing olefin metathesis, Tetrahedron Lett.,2000,41,5511-5513.
    [125]Quinn K.J., Isaacs A.K., Arvary R.A., Concise total synthesis of (-)-muricatacin by tandem ring-closing/cross metathesis, Org. Lett.,2004,6,4143-4145.
    [126]Barros M.T., Januario M.A.J., Maycock C.D., Michaud T., Synthesis of γ-lactones by desymmetrization. A synthesis of (-)-muricatacin. Tetrahedron,2008,65,396-399.
    [127]Chandrasekhar M.; Chandra K.L., Singh V.K., An efficient strategy for the synthesis of 5-hydroxyalkylbutan-4-olides from D-mannitol:Total synthesis of (-)-muricatacin, Tetrahedron Lett.,2002,43, 2773-2775.
    [128]Barros M.T., Januario-Charmier M.A.J., Maycock C.D., Michaud T., Synthesis of y-lactones by desymmetrization. A synthesis of (-)-muricatacin, Tetrahedron,2008,65,396-399.
    [129]Kang S.K., Cho H.S., Sim H.S., Kim B.K., Synthesis of (4R,5S)-(-)- and (4S,5S)-(+)-L-factors and muricatacin from D-glucose. J. Carbohydr. Chem.,1992,11,807-812.
    [130]Popsavin M., Popsavin V., Vukojevic N., Miljkovic D., Direct preparation of 1,2,3,5-di-O-cyclohexylidene-D-xylofuranose from corncobs and its conversion to 1-O-acetyl-2,3,5-tri-Obenzoyl-D-ribofuranose, Collect. Czech, Chem. Commun.,1994,59,1884-1888.
    [131]Maria G., Zoila G., Berta C., Generosa G, Yagamare F., Total synthesis of (-)-muricatacin, Tetrahedron Lett.,2011, 52,5983-5986.
    [132]Maria G, Zoila G, Gonzalo P., Generosa G, Yagamare F., Synthesis of (-)-Muricatacin from Tri-O-acetyl-D-glucal, Synthesis,2013,45,625-632.
    [133]Teijeira M., Fall Y, Francisco S., Tojo E., Efficient and rapid experimental procedure for the synthesis of furan diol from D-glucal using ionic liquid, Tetrahedron Lett.,2007,48,7926-7928.
    [134]Wang Z.M., Zhang X.L., Sharpless K.B., Sinha S.C., Sinha-Bagchi A., Keinan E., A general approach to y-lactones via osmium-catalyzed asymmetric dihydroxylation. Synthesis of (-)- and (+)-muricatacin, Tetrahedron Lett.,1992, 33,6407-6410.
    [135]Saito S., Morikawa Y, Moriwake T., High diastereofacial differentiation in osmium tetraoxide catalyzed dihydroxylation of acyclic bis-allylic compounds, J. Org. Chem.,1990,55,5424-5426.
    [136]Ito M., Osaku A., Shiibashi A., Ikariya T., An efficient oxidative lactonization of 1,4-diols catalyzed by Cp*Ru(PN) Complexes, Org. Lett.,2007,9,1821-1824.
    [137]Ahmed M.M., Cui H., O'Doherty GA., De novo asymmetric syntheses of muricatacin and its analogues via dihydroxylation of dienoates,J. Org. Chem.,2006,71,6686-6689.
    [138]Popsavin V., Grabez S., Krstic I., Popsavin M., Djokovic D., A formal synthesis of (+)-muricatacin from D-xylose, J. Serbian Chem. Soc.,2003,69,795-804.
    [139]Saiah M., Bessodes M., Antonakis K., Regioselective opening of chiral hydroxy epoxides:a short route to muricatacin and its diastereomer epi-muricatacin, Tetrahedron Lett.,1993,34,1597-1598.
    [140]Popsavin V, Krstic I., Popsavin M., Enantiopure hydroxylactones from D-xylose. A novel approach to the enantiodivergent synthesis of (+)- and (-)-muricatacin suitable for the preparation of 7-oxa analogues, Tetrahedron Lett.,2003,44,8897-8900.
    [141]Makabe H., Tanaka A., Oritani T., Synthesis of (-)-muricatacin, Biosci. Biotech Biochem.,1993,57,1028-1029.
    [142]Bonini C., Federici C., Rossi L., Righi J., C-1 Reactivity of 2,3-epoxy alcohols via oxirane opening with metal halides:applications and synthesis of naturally occurring 2,3-octanediol, muricatacin,3-octanol, and 4-dodecanolide,J. Org. Chem.,1995,60,4803-4812.
    [143]Prestat G., Baylon C., Heck M.P., Mioskowski C., Lewis acid-catalyzed regiospecific opening of vinyl epoxides by alcohols, Tetrahedron Lett.,2000,41,3829-3831.
    [144]Bonini C., Giuliano C., Righi G., Rossi L., A new unusual C-1 substitution of 2,3 epoxy alcohols with Lil:regio and stereoselective obtaining of 1-iodo 2,3 diols and 2,3-diols, Tetrahedron Lett.1992,33,7429-7432.
    [145]Van Haard P.M.M., Thijs L., Zwanenburg B., Photoinduced rearrangements of α,β-epoxy diazomethyl ketones, Tetrahedron Lett.,1975,16,803-806.
    [146]Aar M.P.R., Thijs L., Zwanenburg B., Synthesis of (4R,5R)-muricatacin and its (4R,5S)-analog by sequential use of the photo-induced rearrangement of epoxy diazomethyl ketones, Tetrahedron,1995,51,11223-11224.
    [147]Marshall J.A., Welmaker G.S., Enantioselective synthesis of (+)- and (-)-muricatacin through SE2 addition of nonracemic α,β-silyloxy allylic stannanes to aldehydes, J. Org. Chem.,1994,59,4122-4125.
    [148]Marshall J.A., Welmaker G.S., Stereoselective synthesis of the cytotoxic acetogenins (+)- and (-)-muricatacin. Synlett. 1992,13,537-538.
    [149]陈万义,王龙根,李钟华,新农药的研发,北京:化学工业出版社2007.
    [150]Sakakibara M., Ikeshoji T., Machiya K., Ichimoto I., Activity of four stereoisomers of 6-acetoxy-5-hexadecanolide, the oviposition pheromone of culicine mosquitoes, Eisei Dobutsu,1984,35,401-403.
    [151]Timothy O.O., Michael A.B., Jennifer M., Pickett J.A., Production of (5R,6S)-6-Acetoxy-5-hexadecanolide, the Mosquito Oviposition Pheromone, from the Seed Oil of the Summer Cypress Plant, Kochia scoparia (Chenopodiaceae), J. Agric. Food Chem.1999,47,3411-3415.
    [152]Zainulabeuddin S., Walter S.L., Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant, Proc. Natl. Acad. Sci. U.S.A.,2009,106,18803-18808.
    [153]Yang M., Xu X.Z., Wei X., Yuko I., Walter S. L., James B. A., Jon C. Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone, Proc. Natl. Acad. Sci. U.S.A.,2010,107,19102-19107.
    [154]Yu H., Zhao X., Feng X.L., Chen X.C., Palen E.B., Huang X.R., Molecular simulations study of ligand-release mechanism in an odorant-binding protein from the southern house mosquito, J. Biomol. Struct. Dyn.,2013,31, 485-494.
    [155]Chu W.T., Zhang J.L., Zheng Q.C., Chen L., Wu Y.Ji., Xue Q., Zhang H.X., Constant pH molecular dynamics (CpHMD) and molecular docking studies of CquiOBPl pH-induced ligand releasing mechanism, J. Mol. Model, 2013,19,1301-1309.
    [156]Claudio F., Piero G, Stefan S., Synthesis of the two enantiomeric forms of erythro-6-Acetoxy-5-hexadecanolide, the major component of a mosquito oviposition, attractant pheromone, J. Chem. Soc. Chem. Commun.,1982,22, 1285-1286.
    [157]Lin GQ., Xu H.J., Wu B.C., Guo GZ, Zhou W.S., Studies on the identification and syntheses of insect pheromones. XXI. Stereoselective synthesis of all the possible optical isomers of the mosquito oviposition attractant pheromone, Tetrahedron Lett.,1985,26,1233-1236.
    [158]Glenn W.D., Alan L.M., Pickett J.A., Convenient synthesis of mosquito oviposition pheromone and a highly fluorinated analog retaining biological activity,J.Chem. Ecol.,1990,16,1780-1789.
    [159]Wang Z.M., Qian X.H., Zhou W.S., Stereoselective synthesis of (-)-(5R,6R)-6-acetoxy-5- hexadecanolide, the mosquito oviposition attractant pheromone, Tetrahedron,1990,46,1191-1198.
    [160]Henkel B., Kunath A., Schick H., Chemo-Enzymatic synthesis of (5R,6S)-6-acetoxyhexadecan-5-olide. The major component of the mosquito oviposition attractant pheromone, Liebigs Annalen.,1995,5,921-923.
    [161]Lohray B.B., Venkateswarlu S., Intramolecular SN2 ring opening of a cyclic sulfate:synthesis of erythro-(-)-6-acetoxy-5.hexadecanolide, a major component of mosquito oviposition attractant pheromone, Tetrahedron:Asymmetry,1997,8,633-638.
    [162]Couladouros E. A., Mihou A. P., A general synthetic route towards 7- and 8-lactones. Total asymmetric synthesis of (-)-muricatacin and the mosquito oviposition pheromone (5R,6S)-6-Acetoxy-hexadecanolide, Tetrahedron Lett., 1999,40,4861-4862.
    [163]Gao X., Hall D.G.,3-Boronoacrolein as an Exceptional Heterodiene in the Highly Enantio- and Diastereoselective Cr(Ⅲ)-Catalyzed Three-Component [4+2]/Allylboration, J. Am. Chem. Soc.,2003,125,9308-9309.
    [164]Sun B., Peng L., Chen X., Li Y, Li Y, Yamasakic, K., Synthesis of (+)-(5R,6S)-6-acetoxyhexadecan-5-olide by L-proline-catalyzed asymmetric aldol reactions, Tetrahedron:Asymmetry,2005,16,1305-1307.
    [165]Singh S., Patrick J.G., A facile synthesis of both enantiomers of 6-acetoxy-5-hexadecanolide, a major component of mosquito oviposition attractant pheromones, Eur. J. Org. Chem.,2009,12,1896-1901.
    [166]Youngju P., Jinsung T., Facile Synthesis of (-)-6-Acetoxy-5-hexadecanolide by Organocatalytic a-Oxygenation-Allylation-RCM Strategy, Synthesis,2010,21,3627-3630.
    [167]Kozo M., Itsuo 1., Mitsunori K., Hiroo U., A convenient synthesis of four stereoisomers of 6-acetoxy-5-hexadecanolide, the major component of the mosquito oviposition attractant pheromone, Agric. Biol Chem.,1985,49,643-649.
    [168]Kwang Y.K., Ernest L.E., Asymmetric synthesis of (5R,6S)-6-acetoxy-5-hexadecanolidteh, a major component of the oviposition attractant pheromone of the mosquito culex pipens fatigans, and two of its stereoisomers, J. Org. Chem.,1986,51,5353-5362.
    [169]Hiyoshizo K., Isao K., Masamitsu O., A novel carbon-carbon bond-forming reaction of triflates with copper(1)-catalyzed Grignard reagents. A new concise and enantiospecific synthesis of (+)-exo-brevicomin, (5R,6S)-(-)-6-acetoxy-5-hexadecanolidea,J. Org. Chem.,1990,55,4417-4422.
    [170]Christine GP., Yves L.M., Depezay J.C., Enantiopure hydroxylactones from L-ascorbic and D-isoascorbic Acids. Part III Synthesis of(-)-(5R,6S)-6-Acetoxy-5-Hexadecanolide and its diastereomers, Tetrahedron,1995,51, 1663-1674.
    [171]Bhaskar D., Dibakar G., Angshuman C., (R)-2,3-Cyclohexylideneglyceraldehyde, a novel template for stereoselective preparation of functionalized y-lactones:synthesis of mosquito oviposition pheromone, Tetrahedron Lett.,2005,46,6219-6221.
    [172]Prasad R.K., Anbarasan P., Stereoselective synthesis of (-)-6-acetoxyhexadecanolide:a mosquito oviposition attractant pheromone, Tetrahedron:Asymmetry,2007,18,2479-2483.
    [173]Kevin J.Q., John M.C., Kevin P.M., Neal A.B., Facile synthesis of (-)-6-acetoxy-5-hexadecanolide by size-selective ring-closing/cross metathesis, Tetrahedron Lett.,2009,50,7121-7123.
    [174]Saibal D., Anand K.M., Ashish K., Ahamad A.K.A.G, Jhillu S. Y, Facile total synthesis of (-)-(5R,6S)-6-acetoxy-5-hexadecanolide from carbohydrate, a mosquito oviposition attractant pheromone, Carbohyd. Res.,2012,358,7-11.
    [175]Da S., Erica B.P., Soares M.G., Mariane B., Vallim M.A., Pascon R.C., Sartorelli P., Lago J.H.G., The seasonal variation of the chemical composition of essential oils from Porcelia macrocarpa R.E. Fries (Annonaceae) and their antimicrobial activity, Molecules,2013,18,13574-13587.
    [176]Gonzalez A.M., Gonzalez B.C., Cancho G.B., Simal G.J., Impact of phytosanitary treatments with fungicides (cyazofamid, famoxadone, mandipropamid and valifenalate) on aroma compounds of Godello white wines, Food Chemistry,2012,131,826-836.
    [177]Esumi T., Yamamoto C., Fukuyama Y., A short synthesis of (+)-bakuchiol, Synlett.,2013,24,1845-1847.
    [178]陈佳,朱超兰,许海燕,倪翔,杨培明,豆豉姜的化学成分研究.Ⅱ.甲醇提取物的氯仿部位和乙酸乙酯部位,中国医药工业杂志,2010,41,504-508.
    [179]Ren K., Hu B., Zhao M.M., Tu Y.H., Xie X.M., Zhang Z.G., Ruthenium-Catalyzed Oxidation of Allyl Alcohols with Intermolecular Hydrogen Transfer:Synthesis of α,β-Unsaturated Carbonyl Compounds, J. Org. Chem.,2014,79, 2170-2177.
    [180]Gonzalez-Alvarez M., Gonzalez-Barreiro C., Cancho-Grande B., Simal-Gandara J., Impact of phytosanitary treatments with fungicides (cyazofamid, famoxadone, mandipropamid and valifenalate) on aroma compounds of Godello white wines, Food Chem.,2012,131,826-836.
    [181]Rycroft D.S., Cole W.J., Hydroquinone derivatives and monoterpenoids from the Neotropical liverwort Plagiochila rutilans, Phytochemistry,2001,57,479-488.
    [182]Wang Z.X., Tu Y., Frohn M., Zhang J.R., Shi Y.A., An efficient catalytic asymmetric epoxidation method, J. Am. Chem.Soc.,1997,119,11224-11235.
    [183]Ho C.L., Ou J.P., Liu Y.C., Hung C.P., Tsai M.C., Liao P.C., Wang E.I.C., Chen Y.L., Su Y.C., Compositions and in vitro anticancer activities of the leaf and fruit oils of Litsea cubeba from Taiwan, Nat. Prod. Commun.,2010,5, 617-620.
    [184]Maxwell R.A., Welch W.H., Schooley D.A., Juvenile hormone diol kinase. Ⅰ. Purification, characterization, and substrate specificity of juvenile hormone-selective diol kinase from Manduca sexta, J. Biol. Chem.,2002,277, 21874-21881.
    [185]Brett D.S, David P.T, Ralf H., Stefan W., Craig M.W., Paul V.B., Towards the total synthesis of vibsanin E, 15-O-methylcyclovibsanin B,3-hydroxyvibsanin E, furanovibsanin A, and 3-O-methylfuranovibsanin A, Eur. J. Org. Chem.,2006,3181-3192.
    [186]Louis A.C., Chao H.G., Shahnaz G.E.M.E., Mansour C.R., Ralf W., Dean S.A., George A.T., Hideko I., Ayman E.F, Dumitru I., Ismail S.M., Thadeus L.K., Chung H.H., Novel carboxylic acid and carboxamide protective groups Based on the exceptional stabilization of the cyclopropylmethyl cation, J. Org. Chem.,2003,60,7718-7719.
    [187]Yanchang Shen and Shu Gao Stereoselective synthesis of trifluoromethylated α-chloro-α,β unsaturated esters and nitriles, J. Chem. Soc. Perkin Trans.1,1996,13,2531-2533.
    [188]Dale P., Paul L.W., Thomas L.P., Synthesis of fluorinated analogues of geraniol, J. Org. Chem.,1981,46, 1532-1538.
    [189]Narender T., Sarkar S., Rajendar K., Tiwari S., Synthesis of biaryls via AICl3 catalyzed domino reaction involving cyclization, dehydration, and oxidation, Org. Lett.,2011,13,6140-6143.
    [190]Nagano T., Pospisil J., Chollet G., Schulthoff S., Hickmann V., Moulin E., Herrmann J., Mueller R., Fuerstner A., Total synthesis and biological evaluation of the cytotoxic resin glycosides ipomoeassin A-F and analogues, Chem.-Eur. J.,2009,15,9697-9706.
    [191]Zhang Z.J, Biao Y, Total synthesis of the antiallergic naphtho-r-pyrone tetraglucoside, cassiaside C2, isolated from Cassia seeds,J.Org. Chem.,2003,68,6309-6313.
    [192]Komine Y., Akiyoshi K., Ken T., Flexible synthesis of fused benzofuran derivatives by rhodium-catalyzed [2+2+2] cycloaddition with phenol-linked 1,6-Diynes, Org. Lett.,2009,11,2361-2364.
    [193]Prowotorow I, Stepanenko W., Wicha J., Diastereoselective approaches to trans-hydrindane derivatives-total synthesis of 8-(phenylsulfonyl)de-A,B-cholestane precursors to 25-hydroxyvitamin D3, Eur. J. Org. Chem.,2002, 16,2727-2735.
    [194]Gorobets E., Stepanenko V., Wicha J., Enantioselective total synthesis of a trans-hydrindane rings/side-chain building-block of vitamin D-asymmetric induction in an acid-catalyzed conjugate-addition reaction, Eur. J. Org. Chem.,2004,4,783-799.
    [195]Marschall H., Penninger J., Weyerstahl P., Synthesis of hydroxy-y-lactones from α,β-unsaturated aldehydes, Liebigs Annalen der Chemie,1982,1,49-67.
    [196]Shen Y.C., Shu G., A stereoselective synthesis of (Z)-and (E)-trifluoromethylated α,β-unsaturated esters via intramolecular wittig reaction, J. Org. Chem.,1993,58,4564-4566.
    [197]Ayano T., Toyonobu U., Synthesis of the peptide moiety of the jamaicamides, Tetrahedron Lett.,2011,52, 5036-5038.
    [198]Vishwakarma S., Singh V., IBX, an excellent reagent for oxidation for oxidation of 2-furyl carbinols:a new and general method for preparation of furyl ketones, Syn. Comm.,2010,40,1280-1291.
    [199]Zhao J., Dong H.B., Yang M.Y., Du J., Jiang J.Z., Wang M.A., Synthesis and antifungal activity of 7-methyl-7-hydroxy-2,3-benzo[c]octa-1,6-olide, J. Asian Nat. Prod. Res.,2014,16,312-317.
    [200]Still, W.C., Gennari C., Direct synthesis of Z-unsaturated esters. A useful modification of the Horner-Emmons olefination, Tetrahedron Lett.,1983,24,4405-4408.
    [201]Francois P.T., New and efficient conditions for the Z-selective synthesis of unsaturated esters by the Horner-Wadsworth-Emmons olefination, Tetrahedron Lett.,2004,45,5519-5523.
    [202]Kaori A., Z-Selective Horner-Wadsworth-Emmons reaction of ethyl (diarylphosphono) acetates using sodium iodide and DBU, J. Org. Chem.,2000,65,4745-4749.
    [203]Francois P.T., Phosphonate modification for a highly (Z)-selective synthesis of unsaturated esters by Horner-Wadsworth-Emmons olefination, Eur. J. Org. Chem.2005,1790-1794.
    [204]Ikuko O., Takenori K., Yoel K., Hiroshi K., High-Field FT NMR application of Mosher's method:The absolute configurations of marine terpenoids, J. Am. Chem. Soc.,1991,113,4092-4096.
    [205]Kenji K., Koji K., Hideo H., (Z)-N-(4-Decenoyl) homoserine lactone, a new quorum-sensing molecule,produced by endobacteria associated with Mortierella alpina A-178, Tetrahedron Lett.,2012,53,5441-5444.
    [206]Stefan R., Thomas F.K., Erick M.C., Enantioselective total synthesis of (R)-strongylodiols A and B, Tetrahedron, 2003,59,6813-6817.
    [207]Lourdusamy E., Arumugam S., A short enantioselective synthesis of (+)-L-733,060 via Shi epoxidation of a homoallylic carboxylate, Tetrahedron Lett.,2008,49,5736-5738.
    [208]Md. Moinuddin A., Hu C., O'Doherty GA., De Novo asymmetric syntheses of muricatacin and its analogues via dihydroxylation of dienoates, J. Org. Chem.,2006,71,6686-6689.
    [209]Keri A.T., Christopher L.R., Ned A.P., Substituent effects on regioselectivity in the autoxidation of nonconjugated dienes,J. Am. Chem. Soc.,2009,131,5635-5641.
    [210]Yasunao H., Yuka K., Aki M., Hiroyuki K., Masato A.,Hideto M., Tetsuhisa G., Hidefumi M., Synthesis of Murisolin, (15R,16R,19R,20S)-Murisolin A, and (15R,16R,19S,20S)-16,19-cis-Murisolin and their inhibitory action with bovine heart mitochondrial complex I, Chem.-Asian J.,2006,1,894-904.
    [211]Sylvie M., Gilles N., Magali B., Ian E., Patrick J., Total synthesis of dolatrienoic acid:a subunit of dolastatin 14, J. Org. Chem.,1997,62,3332-3339.
    [212]Sandra P., Uwe T.B., Hartmut H.M., Rolf D.S., Properties of Unusual Phospholipids Ⅳ:Chemoenzymatic Synthesis of Phospholipids Bearing Acetylenic Fatty Acids, Tetrahedron,1997,53,14627-14634.
    [213]Abad J.L., Sergio R., Francisco C, Gemma F., Synthesis and use of probes to investigate the cryptoregio-chemistry of the first animal acetylenase, J. Org. Chem.,2006,71,7558-7564.
    [214]林国强,徐海剑,吴碧琪,郭广忠,周维善,昆虫信息素结构鉴定与合成ⅩⅪ:淡色库蚊产卵引诱信息素四个光学异构体的立体选择性合成,化学学报,1986,44,597-603。
    [215]Seo S.M., Kim J.,Kim E., Park H.M., Kim Y.J., Park I.K., Structure-Activity Relationship of Aliphatic Compounds for Nematicidal Activity against Pine Wood Nematode (Bursaphelenchus xylophilus), J. Agric. Food Chem.,2010, 58,1823-1827.
    [216]Nestor M.C., Jose E.B., Elsie A.O., Fernando A.G., Total synthesis and biological evaluation of (5Z,9Z)-5,9-hexadecadienoic acid, an inhibitor of human topoisomerase I, J. Nat. Prod.,2002,65,1715-1718.
    [217]Nestor M.C., Nashbly M., Rosa M.R., Rafael B., The first total synthesis of the (±)-17-methyl-trans-4,5-methylene-octadecanoic acid and related analogs with antileishmanial activity, Tetrahedron Lett.,2010,51,6153-6155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700