离子束增强沉积钛合金薄膜的空蚀磨损特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子机械系统(MEMS)的迅猛发展促进了纳米金属薄膜在微电子机械系统中的广泛应用。同宏观机械系统一样,当流体通过微电子机械系统时,若满足空泡生成的流体力学条件,系统微型腔内部也会出现空蚀磨损现象。本文利用磁致伸缩超声振荡仪研究了离子束增强沉积钛合金薄膜的空蚀磨损特性,分析了沉积薄膜的空蚀磨损机理,探讨了超声发生强度对薄膜空蚀磨损性能的影响。论文的主要结论如下:
     1.空蚀实验后,钛合金薄膜试样表面出现了一些随机分布、大小不一的凹坑;随着时间的增加,试样表面凹坑的数目和尺寸均变大。这是由于空泡在表面溃灭时产生的冲击破坏作用而引起的。由于空泡大小、空间分布和溃灭时距表面的距离具有随机性,所以使表面受到的冲击破坏力不同,近而导致薄膜试样表面凹坑大小和分布的随机性。
     2.在钛合金沉积薄膜和钛合金本体的空蚀磨损过程中,薄膜试样表面未出现沿晶界的滑移和裂纹,且观察不到沉积薄膜的塑性变形;本体试样表面也没有出现明显的沿晶界的滑移和变形,但随着实验时间的增加,本体试样表面出现相对均匀的塑性变形。
     3.通过对钛合金薄膜空蚀磨损形貌特征的分析,可将其空蚀磨损过程划分为4个阶段:空蚀孕育阶段、薄膜空蚀磨损阶段、薄膜剥蚀脱落阶段、基体空蚀磨损阶段。膜层的空蚀磨损特征表现为空泡溃灭冲击作用力下的凹坑形成、凹坑周围疲劳裂纹形成和扩展、膜层表面局部断裂以及薄膜的剥落。
     4.对薄膜试样的空蚀光学显微照片进行黑白两色的分色处理,绘制的试样空蚀磨损过程曲线表明:基于两色的空蚀图像处理能够较好的反应材料空蚀磨损过程,易于对局部区域的空蚀情况进行定量描述和表征。
     5.通过对不同超声发生强度条件下薄膜试样空蚀磨损特性的研究发现,在相同的空蚀时间内,功率越大,试样空蚀破坏程度越严重,由空蚀破坏而导致的薄膜剥蚀脱落所需时间越短。因为超声波发生器输出功率的变化,改变了设备超声发生强度,而超声发生强度的变化改变了设备振动系统的振幅,进而改变了试验系统的空化强度,空化强度的大小影响了材料的空蚀破坏程度。
The metal coatings have been widely used in microelectromechanical systems with the rapid development of microelectromechanical. When the liquid is flowing through the micropumps and microvalves, there is definitely a possibility of cavitation erosion in the micro-electromechanical systems if apt hydrodynamic conditions develop, just like the cavitation erosion in the conventional scale hydraulic machinery. The cavitation erosion performance of coatings prepared by ion beam enhanced deposition were investigated on a ultrasonic magnetostrictive cavitation erosion tester. The cavitation erosion process and mechanism were analyzed, and the influence of the different power of the tester on the cavitation erosion performance was explored. The main conclusions are as follow:
     1. A lot of cavitation pits were produced on the surface of the titanium alloy films after the cavitation test, and the positions and sizes of the pits were stochastic. The number and size of the pits increased with the testing time. It was found that the pits were caused by the effect of cavitation bubbles collapsed. The size and position were decided by the distribution of cavitation bubbles on the surface of the tester.
     2. It was found that there existed different cavitation erosion behaviors by contrasting the cavitation erosion process of titanium alloy films and the titanium alloy bulk. There are no obvious slippage and deformation along the grain boundary both on the surface of the titanium alloy films and the titanium alloy bulk. There is obvious plastic deformation during the cavitation erosion process of the the titanium alloy bulk, but it is not found during the cavitation erosion process of the the titanium alloy films.
     3. The cavitation erosion progressed into incubation period, concave formation by the effect of cavitation bubbles collapsed, delamination, and localized fracture, corresponding to the four stages of the cavitation erosion.
     4. The optical microscope topographs of the samples during the stages of cavitation erosion were treated with the colors-abstraction method. The Cavitation erosion curves were drawen according the data of the colors-abstraction process. It is found that two-color image processing can exhibit the inception of cavitation erosion process well, which can be used to analyze surface changes of the materials qualitatively.
     5. After the cavitation erosion test with different powers, it was found that the damaged area of samples increased with the power in the same testing time, and it was easy to get the stage of coating's desquamation. Because the cavitation intensity was altered with the change of the ultrasonic intensity of the device, and the ultrasonic intensity was decided by the power of the device.
引文
[1]柳伟,郑玉贵,姚治铭,柯伟.金属材料的空蚀研究进展[J].中国腐蚀与防护学报,2000,21(4):251-253.
    [2]Fu W T,Yang Y B,Jing T F.Resistance to cavitation erosion of CrMnN stainless steels[J].Journal of Materials Engineering and Performance,1998,7:801-804.
    [3]Vencovsky P K,Sanchez R,Branco J R T,etal.Enhancing corrosion resistance of PVD-coated tools[J].SurfCoat Technol,1998,108-109:599-603.
    [4]Hans M,Bergman E.Corrosion behaviour of steel coated with a Ni-P/PVD hybrid layer[J].Surf Coat Technol,1993,62:626-629.
    [5]黄继汤.空化与空蚀的原理及应用.清华大学出版社,1989年12月.
    [6]严立,黑祖昆,孙俊才.金属表面性质与表面改性.大连海事大学出版社,1998年12月.
    [7]左东启.模型试验的理论和方法[M].北京:水利电力出版社,1983.
    [8]Knapp R T,Daily J W,Hammit F G.Cavitation[M].NewYork:McGraw-Hill,1970.
    [9]Arakeri V.H.,A note on the transition observations on an axisymmetric body and some related fluctuating wall pressure measurements[J].Fluid Eng.,Trans.ASME,1975,97:82-86.
    [10]高秋生.对液体空化机理的进一步探讨[J].河海大学学报(自然科学版),1999,27(5):63-67.
    [11]杨庆,张建民,戴光清等.空化形成机理和比尺效应[J].水力发电,2004,24(2):58-60.
    [12]刘小兵,程良骏.空泡在任意流场中的运动研究[J].水动力学研究与进展,1994,9(2):150-62.
    [13]Hammit,F.G.,Cavitation and Multiphase Flow Phenomena,McGraw-Hill,New York,1980.
    [14]张涛,陈次昌,陈丰.空蚀、磨损及其联合作用研究进展[J].排灌机械,2006,24(4):47-53.
    [15]王国刚,孙冬柏,张秀丽等.空泡溃灭过程中力学损伤行为[J].北京科技大学学报,2007,29(5):483-485.
    [16]王者昌等,张毅,张晓强.空蚀过程中的热效应[J].材料研究学报,2001,15(3):287-290.
    [17]陈昭运.空蚀破坏的微观氧化过程[J].哈尔滨工程大学学报,2007,28(9):1056-1058.
    [18]Christian Pflitsch,Benjamin Curdts,Volker Buck et al.Wear properties of MOCVD-grown aluminium oxide films studied by cavitation erosion experiments,Surface and Coatings Technology,2007,22:9299-9303.
    [19]Hattori Shuji,Nakao Eisaku.Cavitation erosion mechanism and quantitative evaluation based on erosion particles,Wear,2002,249:839-845.
    [20]薛伟,陈昭运.空蚀破坏的微观过程研究[J].机械工程材料,2005,29(2):59-62.
    [21]刘俊英,王义民,任玉锁等.冷阴极离子镀TiN薄膜的空蚀磨损特性研究[J].摩擦学学报,2004,24(4):322-325.
    [22]潘国顺,杨文言,邵天敏,王义民.多弧离子镀硬质膜的抗空蚀性能研究[J].摩擦学学报,2001,21(1):15-18.
    [23]蒋娜娜,徐臻,周刚等.加工方法和材料种类对空蚀结果的影响[J].润滑与密封,2007,32(5):12-15.
    [24]Chen Haosheng,Li Jiang,Liu Fengbin et al.Experimental study of cavitation damage on hydrogen-terminated and oxygen-terminated diamond film surfaces,Wear,2007,264:146-151.
    [25]Gadel Hak M.The Fluid Mechanics of Microdevices the Freeman Scholar Lecture[J].Journal of Fluids Engineering,1999,121:5-33.
    [26]S.D.Chambers,R.H.Bartlett,and S.L.Ceccio,"Determination of the invivo cavitation nuclei characteristics of blood," J.ASAIO,1999,45:541-549.
    [27]A.Marshall and J.Hodgson,"DNA chips:An array of possibilities,"Nature Biotech,1998,16:27-27.
    [28]T.Ohori,S.Shoji,K.Miura,and A.Yotsumoto,"Partly disposablethree-way microvalve for a medical micro total analysis system(μTAS)," Sens.Actuators A:Phys,1998,A64:57-62.
    [29]B.Husband,M.Bu,A.G.R.Evans,and T.Melvin,"Investigation forthe operation of an integrated peristaltic micropump," J.Micromech.Microeng.,2004,14:S64-S69.
    [30]T.Vilkner,D.Janasek,and A.Manz,"Micro total analysis systems:Recent developments," Anal.Chem.,2004,76:3373-3386.
    [31]P.Woias,"Micropumps-Summarizing the first two decades," Proc.SPIE,2001,4560:39-52.
    [32]S.Pennathur,"Micro-Scale Turbopump Blade Cavitation," M.S.thesis,Mass.Inst.Technol.,Cambridge,MA,2001.
    [33]骆超,吴建华,吴瑜.金属材料空蚀试验方法研究进展[J].水利水电科技进展,2007,27(5):90-94.
    [34]Sugiyama K,Hayashi K and Sasaki J.Microstructure and wear behavior of chromium nitride films formed by ion beam enhanced deposition[J].Surfcoat Technol,1994,66:505-508.
    [35]尤大纬,李文治.离子束增强沉积技术新进展[J].真空科学与技术,1994,14(4):280-283.
    [36]Fu W T,Yang Y B,Jing T F,etal.Resistance to cavitation erosion of CrMnN stainless steels[J].Journal of Materials Engineering and Performance,1998,7:801-804.
    [37]Tom linson W J,Bransden A S.Cavitation erosion of laser surface alloyed coatings on Al-12%Si[J].Wear,1995,185:59-65.
    [38]Wang B Q,Hernert H.Cavitation erosion of TiN films produced by ion-beam-enhanced deposition at room temperature[J].Wear,1989,134:311-319.
    [39]Vencovsky P K,Sanchez R,Branco J R T,etal.Enhancing corrosion resistance of PVD-coated tools[J].SurfCoatTechnol,1998,108-109:599-603.
    [40]Maria N,Mats L.Deposition and characterization of multi-lay-ered PVD TiN/CrN coatings on cemented carbide[J].Surf Coat Technol,1999,116-119:108-115.
    [41]Hans M,Bergmann E.Corrosion behaviour of steel coated with a Ni-P/PVD hybrid layer[J].Surf Coat Technich,1993,62:626-629.
    [42]李亚斌.自组装分子膜的制备及其摩擦学特性研究.大连海事大学硕士论文,2003年2月.
    [43]戴达煌,周克崧,袁镇海等.现代材料表面技术科学.冶金工业出版社,2003年4月.
    [44]黄磊,陈四海,何少伟等.蒸发制备金属薄膜实现MEMS工艺中电互连[J].半导体技术,2005,30(12):12-18.
    [45]季航,赵特秀,王晓平等.磁控溅射Mo薄膜电阻率的原位研究[J].物理学报,1993,42(8):1340-1345.
    [46]夏冬生,张会臣,孙昌国等.离子束增强沉积Ni、Ti纳米金属薄膜的表面形貌与摩擦特性研究[J].润滑与密封,2007,32(4):97-101.
    [47]傅永庆,徐可为,何家文.离子束增强沉积技术在制备优良抗蚀膜层方面的研究进展[J].表面技术,1997,26(1):2-4.
    [48]王再友,龙霓东,朱金华.抗空蚀材料研究应用进展.材料开发与应用,2001,6:34-38.
    [49]Janusz Steller.International Cavitation Erosion Test and Quantitative Assessment of Material Resistance to Cavitation.Wear.1999:51-64.
    [49]Kwok C T,Man H C,Leung L K et al.Effect of temperature,pH and sulphide on the cavitation,Wear,1997,211:84-93.
    [50]Howard R L,Ball A.The solid particle and cavitation erosion of titanium aluminized intermetallic alloys,Wear,1995,186:123-128.
    [51]吴建华,陈宇.动态离子束混合对水轮机材料空蚀改性的研究[J].水力发电,1999(2):23-26.
    [52]骆超,吴建华,吴瑜.金属材料空蚀试验方法研究进展[J].水利水电科技进展,2007,10,27(5):90-94.
    [53]M.Szkodo.Relationship between microstructure of laser alloyed C45 steel and its cavitation resistance,Journal of Materials Processing Technology,2005,162:410-415.
    [54]P.Diodati,F.Marchesoni.Time-evolving statistics of cavitation damage on metallic surfaces,Ultrasonics Sonochemistry,2002,9:325-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700