HastelloyX合金的添加对Ti(C,N)基金属陶瓷组织和高温抗氧化性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对金属陶瓷特别是Ti(C,N)基金属陶瓷的研究进展进行了综述,主要研究了粘结相中加入Hastelloy X合金粉(HXP)对材料组织和氧化性的影响,制备了成分为32%(Ni+HXP)-36.5%TiC-10%TiN-12.5%Mo-7.2%WC-1%Cr3C2-0.8%C的金属陶瓷,采用金相显微镜(OM)、X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)等手段、三点弯曲和高温氧化实验,探讨了Ti(C,N)基金属陶瓷微观组织及氧化膜的微观特性、力学性能和高温抗氧化性能。
     每种成分的Ti(C,N)基金属陶瓷的致密度和抗弯强度规律大体一致,都随烧结工艺的不同呈显出先增大后减小的趋势,且二者的最大值均在最佳烧结温度处,HXP含量为5﹪的材料致密度最大值接近98﹪,高于不添加HXP的材料致密度最大值,且前者的抗弯最大值接近于2000MPa,高于后者的最高抗弯1848 MPa,而其它成分材料两性能最大值均低于此值并随着HXP含量的增高依次降低;HXP含量的多少对Ti(C,N)基金属陶瓷材料的硬度影响并不大,一般在89.5-90.5HRA之间。
     添加HXP的Ti(C,N)基金属陶瓷中出现了Ni-Cr-Fe固溶体,且固溶体生成量及其成分随着HXP的添加量的增加略有不同。每种成分的Ti(C,N)基金属陶瓷基本上都能形成芯-环结构,而且大部分芯-环结构都具有过渡层rim相。含有0-16% HXP的材料组织结构属于正常的金属陶瓷组织,其中含有5% HXP和0% HXP的材料几乎所有的相为完整的芯-环结构,且rim相的厚度略小于0.5μm,前者的组织分布比后者均匀;HXP的含量为22%时,材料的部分组织结构不完整,且rim相的厚度很多都超过了0.5μm;HXP的量为32%时,材料表面有很多孔洞,致密度低,组织结构大部分都不完整且分布不均匀。
     Ti(C,N)基金属陶瓷材料氧化膜生长速度遵守抛物线定律。对氧化增重数据进行动力学方程模拟,当粘结相中HXP的含量为0%-10%时,氧化膜比较致密,高温抗氧化能力较好,其中HXP的含量为5%时材料氧化膜比不含HXP的材料氧化膜致密化程度好,加之前者比后者的烧结致密度大,所以前都比后者的高温抗氧化性好;当HXP的含量超过16%时,生成的氧化膜比较疏松,材料高温抗氧化能力低。
     Ti(C,N)基金属陶瓷的高温抗氧化性应是随着HXP的含量的增加而提高的,但HXP的含量高时,材料的致密度低,材料的高温抗氧化性低。综合分析知HXP的含量为5%左右时,Ti(C,N)基金属陶瓷材料高温抗氧化性最好。
In this paper, Cermets especially Ti (C, N)-based cermets were reviewed, mainly study the effects of Hastelloy X powder (HXP) on the microstructure and oxidation of Ti (C, N)-based cermets, whose components is 32 % (Ni + HXP) -36.5% TiC-10% TiN-12.5% Mo-7.2% WC-1% Cr3C2-0.8% C. Use the optical microscope (OM), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and so on, three-point bending tests and high-temperature oxidation experiments to study the microcharacteristics and the microstructure of oxide film, mechanical properties and high temperature oxidation resistance of Ti (C, N)-based cermets.
     Both the relative density and the bending strength of Ti (C, N) -based cermets which have the same law follow parabolic law in line with the sintering temperature, and the two kinds of peaks are both at the best sintering temperature. The relative density of cermets with 5% HXP close to 98%, higher than that of cermets with 0% HXP, and the maximum bending strength of the former is closer to 2000MPa, which is higher than that of the latter, whose is 1848MPa, while the other cermets are lower, and the higher content of HXP, the lower peaks; The effect of HXP on hardness of Ti (C, N)-based cermets which are between 89.5-90.5HRA is not obvious.
     Ni-Cr-Fe solid solutions were found in the Ti (C, N)-based cermets with HXP, and the solid solution and its components are slightly different with the addition of HXP increase. All the Ti (C, N)-based cermets can basically form a core-shell structure, and most of the core-shell structures have the rim-phase. The microstructure of the Ti (C, N)-based cermets containing 0-16% HXP belong to the classical ceramic structure. The cermets containing 5% HXP and 0% HXP are almost with complete core-shell structure, and the thickness of rim-phase is slightly less than 0.5μm. Part of the microstructures of Ti (C, N)-based cermets contenting of 22% HXP are incomplete, and the thickness of a lot of the rim are more than 0.5μm. For 32% HXP, there are many holes in the material surface, and most of the microstructure is not complete and uneven.
     Oxide film growth rate of Ti (C, N)-based cermets follow the parabolic law. The kinetic equations of oxidation weight gain of were simulated. when the cermets content of 0% -10% HXP, the oxide films are relatively dense, a good high-temperature anti-oxidation, and while the oxide film of materials which content 5%HXP is more dense than non-HXP material, and combined with that the relative density of the former is higher than the latter, so the high-temperature oxidation resistance of the former is better than the latter; when Ti (C, N)-based cermets content more than 16% HXP, the oxide films are porous reducing the high-temperature antioxidant capacity.
     The high-temperature oxidation resistance of Ti (C, N)-based cermets should be increases with HXP, but the relative density of the high content of HXP was very low, which greatly reduces the high-temperature oxidation resistance. The high-temperature oxidation resistance of Ti (C, N)-based cermets which are contents of 5% HXP are the best by comprehensive analysis.
引文
[1] J. R.丁格尔波夫, W. B.克兰道夫.金属陶瓷.施今译.上海:上海科技出版社,1964.1
    [2] D. Mari, S. Bolognini, G. Feusier, et al. TiMoCN-based cermets PartⅡ: Microstructure and room temperature mechanical properties. Refractory metals & hard materials,2003,21:47~53
    [3] Hμmenik K jr., Parikh N.M. Cermets. Fundamental concepts related to microstructure and physical properties of cermet systems. J.Amer .ceram. soc, 1956, 39(2):60~63
    [4] Parikb N. M. Wettability and Microstructure Studies in Liquid-Phase Sintering J.Amer cerarn soc.,1957, 40(3):315~320
    [5] Kieffer. Novel types of nitrides and carbonitrides of hard metals. Metall, 1971, 25(12):1335~1342
    [6]熊惟皓.粉末粒度对Ti (C,N)基金属陶瓷组织与性能的影响.华中理工大学学报,1995,23(12):38~41
    [7]许育东,刘宁,曾庆梅等.纳米改性金属陶瓷的组织和力学性能复合材料学报,2003,20(1):33~37
    [8]田春艳,姜海.纳米TiN提高金属陶瓷刀具耐磨损性能的机理研究.现代制造工程,2004 (2):86~87
    [9]章晓波,刘宁,李勇等.纳米改性Ti(C, N)基金属陶瓷的力学性能及抗热震性能.硅酸盐学报,2008,36(4):503~509
    [10]章晓波,刘宁,陈焱等.纳米TiN改性Ti(C, N)基金属陶瓷的组织和性能.中国有色金属学报,2008,18(7):1280~1285
    [11]陈文琳,刘宁,晁晟等.超细晶粒Ti( C, N)基金属陶瓷刀具切削性能.材料热处理学报,2008,29(3):80~84
    [12]周书助,卓海宇,胡茂中.纳米晶基金属陶瓷的研究.硬质合金, 2006, 23(1):5~7
    [13]王洪涛,熊惟皓.细晶粒Ti (C ,N)基金属陶瓷制备技术与性能.硬质合金,2005,22(4):241~2441
    [14]陈文琳,刘宁,晁盛.添加碳化钛对超细Ti(C, N)–Ni金属陶瓷显微结构和力学性能的影响.硅酸盐学报,2007,35(9):1210~1216
    [15]晏鲜梅,熊惟皓,郑立允.表面处理制备Ti(C、N)基金属陶瓷功能梯度材料.稀有金属材料与工程,2006,35(2):50~52
    [16]胡文彬,刘业翔,王化章等.金属-陶瓷梯度功能材料的研究和发展.材料工程,1992,S1:1~2
    [17]汤青云,熊文高.粉末冶金行业氧化氮废气的处理与综合利用.硬质合金,2002,19(3):166~168
    [18]汤青云,段冬平.从废Ti( C, N )基金属陶瓷中回收金属材料.硬质合金,2004,21(4):237~240
    [19]熊惟皓,周风云,胡镇华等. TiC-50Nb钢结合金相界面组织结构的研究.华中理工大学学报,I995,20(9):88~92
    [20] Monteverde F, Medri V, Bellosi A. Microstructure of hot-pressed Ti(C,N) based cermets. Euro. Ceram. Soc., 2002, 22(14):2587~2593
    [21] Won T K, June S P, Seong-W K. Effect of WC and group IV carbides on the cutting perfoumances of Ti(C, N) cermet tools. Mac.Tools&Manu, 2004, 44(4):341~346
    [22] MARI D, GONSETH D R. A new look at carbide tool life. Wear., 1993, 165 :9~17
    [23] MOSKOWITZ D, TERNER L L. TiN improves properties of titanium carbonit ride2base materials. Int J Ref r Met Hard Mater, 1986, 5:13
    [24] ETTMAYER P, KOLASKA H, L ENGAUER W et al. Ti (C, N) cermets metallurgy and properties. Int J Ref r Met Hard Mater, 1995, 13:343~351.
    [25]铃木寿,林宏尔,寺田修. TiC~Mo2C-Ni合金にわけゐ周边组织形成机构.日本金属学会讠志,1971,35(9):936~941.
    [26]铃木寿,林宏尔,寺田修. TiC-Mo2C-Ni合金の机械的性质と组织との关系.日本金属学会讠志,1972,36(5):514~518.
    [27]铃木寿,林宏尔. TiC-Ni合金の诸性质に及ぼす他炭化物添加の影响.粉体および粉末冶金,1971,17(6):262~266.
    [28]艾兴,邓建新,赵军等.陶瓷刀具及其应用.机械工人(冷加工),2000,9:4~6
    [29]刘开琪,徐强,张会军.金属陶瓷的制备与应用.北京:2008. 281
    [30]李荣久.陶瓷金属复合材料.第二版.北京:冶金工业出版社,2004.39
    [31]郑勇,范钟明. TiN对Ti(C,N)基金属陶瓷组织和性能的影响.硬质合金,1997,14(3):140~143
    [32]刘宁,胡镇华,崔昆. Mo在颗粒型复合材料金属陶瓷中的作用.稀有金属材料与工程,1994,23(3):45~48
    [33] S.Bolognini, G.Feusier. High temperature mechanical behaviour of Ti(C, N)-Mo-Cocermets. Inter. J. Refrac. Met.HardMater.,1998,16:257~268
    [34]刘宁. Ti(C,N)基金属陶瓷的制备及成分的组织和性能的研究:[D].武汉:华中理工大学, 1994.
    [35] D.Mari, S.Bolognini et al. TiMoCN based cermets PartⅠ.Morphology and phase composition. Inter. J. Refrac. Met.HardMater., 2003, 21: 37~46
    [36] Ning Liu, Yudong Xu et al. Influence of molybdenum addition on the microstructure and mechanical properties of Tic-based cermets with nano-TiN modification. Ceram. Inter.,2003,29:919~925
    [37] P.Lindahl, P.Gustafson et al. Microstructure of model cermets with high Mo or W content. Inter. J. Refrac. Met.HardMater.,1999,17:411~421
    [38]何林,黄传真等. Mo2C含量对Ti(C,N)基金属陶瓷力学性能和显微结构的影响.材料学与工程学报,2003,21(2):238~241
    [39] Jiang hong Gong, Xiao tian Pan et al. Effect of metallic binder content on the microhardness of TiCN-based cermets. Mater.Sci. Eng.,2003,A(359):391~395
    [40]刘宁,刘逊芬. Mo2C相价电子结构及其本质硬度.合肥工业大学学报,1997,20(4):14~19
    [41] Zhixing Guo, Ji Xiong, Mei Yang et al. Effect of Mo2C on the microstructure and properties of WC–TiC–Ni cemented carbide. International Journal of Refractory Metals & Hard Materials,2008,26:601~605
    [42] S.Q. Zhou, W. Zhao, W.H. Xiong et al. EFFECT OF Mo AND Mo2C ON THE MICROSTRUCTURE AND PROPERTIES OF THE CERMETS BASED ON Ti(C, N). Acta Metall. Sin.(Engl. Lett.) ,2008,21(3):211~219
    [43] J. Pirso, M. Viljus, S. Letunovits. Sliding wear of TiC-NiMo cermets. Trib. Inter, 2004, 37:817~824
    [44]熊惟皓,胡镇华,崔昆. Ti(C,N)基金属陶瓷中包覆结构的研究.华中理工大学学报,1998,26(3):32~34
    [45] Marl D, Bolognini S et al. TiMoCN-based cermets PartⅠ.Morphology and phase composition. Inter J Refae Met Hard Mater, 2003, 21 :37~461
    [46] Liu N, Xu Y D, Li Z H et al. Influence of molybdenum addition on the microstructure and mechanical properties of TiC2based cermets with nanoTiN modification. Ceram Inter,2003,29:919~9251
    [47]何林,黄传真,黄勤等. Mo2C含量对Ti (C ,N)基金属陶瓷力学性能和显微结构的影响.材料科学与工程学报,2003,21(2):238~2411
    [48]许育东,刘宁,石敏等. Mo添加量对纳米改性金属陶瓷显微组织的影响.矿冶工程,2005,25(2):77~80
    [49] Wang S Y, Xiong W H, Yan MS et al. Effects of molybdenumon the microstructure and mechanical properties of Ti (C,N)-based cermets with low Ni. Rare Metals,2006, 25(1):90~95
    [50] HE Lin, HUANG Chuan zhen, HUANGQing et al. Efect of the content of Mo2C on the mechanical properties and microstructure of Ti (C, N) based crèmet. Journal ofMaterials Science & Engineering,2003,21(2):238~2411
    [51] J. C. Lasalvia, D.K.Kim, M.A.Meyers. Effect of Mo on microstructure and mechanical properties of TiC-Ni-based cermets produced by combustion synthesis-impact forging technique. Mater .Sci. and Eng,1996,A(206):71~80
    [52]贺从训,夏志华等. Ti(C,N)基金属陶瓷的研究.稀有金属,1999,23(1):4~12
    [53]刘宁,吕庆荣等.化学成分对Ti(C,N)基金属陶瓷力学性能的影响.硬质合金,1999,16(4):206~209
    [54]曾德麟.粉末冶金材料.北京:冶金工业出版社,1989.46
    [55]罗序明,母育锋. Mo对燃烧合成非化学计量碳化钛基金属陶瓷的影响.热加工工艺,1995,6:18~20
    [56]熊惟皓,胡镇华,崔昆. Ti(C,N)基金属陶瓷烧结性能及其组织的研究.华中理工大学学报,1997,25(10):13~16
    [57] Yan Li, Ning Liu, Xiaobo Zhang et al. Effect of WC content on the microstructure and mechanical properties of (Ti, W)(C, N)-Co cermets. International Journal of Refractory Metals & Hard Materials,2008,26:33~40
    [58] Wang Jun, Liu Ying et al. Effect of WC on the microstructure and mechanical properties in the Ti(C0.7N0.3)-xWC-Mo2C-(Co,Ni) system. International Journal of Refractory Metals & Hard Materials,2009,27:9~13
    [59]李吉刚,刘宁. WC含量对Ti(C,N)基金属陶瓷组织和性能的影响研究.现代技术陶瓷,2006,4:3~7
    [60] Ji Xiong, Zhixing Guo, Baoluo Shen et al. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0.7N0.3 cermet. Materials and Design,2007,28:1689~1694
    [61]望军,吕凌,孙晓燕等. VC对微米级Ti( CN)基金属陶瓷微观结构和力学性能的影响.工具技术,2008,42:14~16
    [62] Ping Feng, Yuehui He, Yifeng Xiao et al. Effect of VC addition on sinterability andmicrostructure of ultrafine Ti(C, N)-based cermets in spark plasma sintering. Journal of Alloys and Compounds,2008,46:453~459
    [63] Wang Jun, Liu Ying, et al. Effect of VC and nano-TiC addition on the microstructure and properties of micrometer grade Ti(C, N)-based cermets. Materials and Design,2009,30:2222~2226
    [64] Wang Jun, Liu Ying, Feng Yan et al. Effect of NbC on the microstructure and sinterability of Ti (C0.7, N0.3)-based cermets. Refractory Metals & Hard Materials, 2009,27( 3):549~551
    [65] Yuxin Li, Peikang Bai, Yaomin Wang et al. Effect of Ni contents on the microstructure and mechanical properties of TiC-Ni cermets obtained by direct laser fabrication. Refractory Metals & Hard Materials,2009,27:552~555
    [66]张红芹,刘宁等.镍钴对Ti(C,N)基金属陶瓷性能的影响.硬质合金,2008,25(4):214~217
    [67]刘寿荣.硬质合金的粘结相及其相.变硬质合金,1998,15(4):200~207
    [68] Laoui T, Zou H, Van der Biest O. Analytical Elec-tron Microscopy of the Core/Rim Structure in Titani-um Carbonitride Cermets. Refractory Metals &HardMaterials,1992,11 (1):207~252
    [69]黄金昌,徐秀茹.碳氮化钛基金属陶瓷.稀有金属与硬质合金,1994,4:13~18
    [70]康新婷. Ti(C, N)基金属陶瓷的制备与应用.硬质合金,1999,16(1):51~53
    [71]李美栓.金属的高温腐蚀.北京:冶金工业出版社,2001.1~234
    [72] Yuxin Li, Peikang Bai, Yaomin Wang et al. Effect of Ni contents on the microstructure and mechanical properties of TiC–Ni cermets obtained by direct laser fabrication. Refractory Metals & Hard Materials,2009,27:552~555
    [73] D. Gethin, A. Ariffin, D. Tran et al. Compaction and ejection of green powder compacts. Powder Metallurgy,1994,37(1):42~52
    [74]郑树林.硬质合金真空烧结.湖南有色金属,1990,6(5):43~46
    [75] N.F.莫特,R.W.格尼.离子晶体中的电子过程.潘金声,李文雄译.北京:科学出版社,1995. 264
    [76] Kubaschenski O, Hopkins B E. Oxidation of Metals and Alloy. London: Buttemorths Science publ,1962. 89
    [77]李铁藩.金属高温氧化和热腐蚀.第一版.北京:化学工业出版社,2003.61
    [78] wagner C.J. Electrochem. Soc. 1952, 99:396~380
    [79] wagner C.J. Electrochem. Soc. 1956, 103:571~627
    [80]程兰征,章燕豪.物理化学.第二版.上海:上海科学技术出版社,1998. 264~267
    [81] W. J.穆尔.基础物理化学.黄丽鹏译.台湾:晓园出版社,1992. 767~770

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700