非线性能量阱的力学特性与振动抑制效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器在实际任务中面临的振动环境十分复杂,振动对航天器的结构及某些敏感载荷都会造成威胁,因此振动抑制在航天领域一直是重点研究问题。本文研究的非线性能量阱(Nonlinear energy sink, NES)是一种可实现靶能量传递(Targeted energy transfer, TET)的非线性被动吸振器,在航天器局部减振方面具有良好的应用前景。NES的力学特性与振动抑制效果的研究是理论研究的重点,对NES在实际工程中的应用具有重要意义。
     NES在抑制结构的自由振动时有两个特点:其一、振动抑制效率同输入能量的大小有关;其二、靶能量传递的实现需要NES与主结构的质量之比大于一定值。目前对以上两点只有定性的结论,本文对其作了进一步的定量分析。通过分析得到了保守系统中振动能量在待减振部件与NES间完全传递的解析条件,并得到了实现最优靶能量传递所需的NES与主结构之间质量比的最小值。而后将能量完全传递时立方刚度与初始能量的关系扩展至含有小阻尼的非保守系统中,进而提出了在小阻尼情况下,依据输入能量大小设计NES的立方刚度的方法,并验证了该方法的正确性。
     NES能否在不同振动峰值处同时实现良好的振动抑制效果是衡量其性能优劣的一个重要方面,因此,本文用两种方法研究了NES进行两自由度线性系统的强迫振动抑制问题:在激励频率固定的条件下,使用复变量—平均法推导出了系统的慢变方程及解耦的平衡点计算公式,得到了系统的周期解,并用Lyapunov理论分析了周期解的稳定性;对激励频率可变的情况,使用增量谐波平衡法(Incremental Harmonic Balance Method, IHB)得到了系统的周期解,并用Floquet理论判断了周期解的稳定性。两种方法从不同角度揭示了系统的鞍结分岔和Hopf分岔现象,并揭示了NES同时抑制两个不同振动峰值的有效性。解析分析的结论均通过数值解法得到了验证。
     针对单自由度NES在抑制结构的自由振动时,因振动能量大小的变化,振动抑制效率起伏较大的问题,本文提出了一种两自由度的NES,可以在不增加NES总质量的前提下缓解该问题,通过数值仿真说明了这种两自由度NES的优越性。并且,使用Hilbert-Huang变换研究了系统产生靶能量传递所需的内共振条件,进而用打靶法及复变量—平均法分析了系统在主共振附近的力学特性,支持了上述结论。
     鉴于前述两自由度NES对自由振动抑制的优越性,本文进一步研究了用其抑制结构在简谐荷载下的强迫振动的问题。当激励频率等于结构的固有频率时,推导了系统的慢变方程,对平衡点的个数及位置进行了解析分析,并判断了平衡点的稳定性;当激励频率可变时,用IHB法计算出系统的周期响应,并判断了系统响应的稳定性。以上研究揭示了系统的局部分岔现象,并说明了系统在产生何种响应类型时对振动抑制更为有利。最后比较了两自由度NES同单自由度NES在简谐荷载下的振动抑制效果。
Since spacecraft faces complicated vibration environment which poses greatthreat to the structure and sensitive equipment on it during practical missions,vibration suppression is always a focus in the field of spacecraft design. Thisresearch is focus on a kind of nonlinear vibration absorber which terms as nonlinearenergy sink. It’s a method for vibration suppression using the principle of targetedenergy transfer, and it processes good application foreground for local vibrationreduction of spacecrafts. Research of the dynamics and efficiency of vibrationsuppression of NES is the key point of theoretical research, which is also importantfor application in actual projects.
     NES has two features while used for free vibration suppression: First, NESbecomes most efficient when the vibration energy of the system reaches a certainvalue; Second, for realizing targeted energy tranfer, the mass ratio between the NESand the main structure must beyond a certain value. The above two features arequalitative conclusions, and will be analyzed quantitatively in this research. Theanalytic conditions for vibration energy completely transfers between the mainstrucure and the NES is derived for the conservative system, and the minimum massratio between the NES and the main structure for realizing optimal targeted energytransfer is also abtained. Then, the relation between cubic stiffness and intial energyis generalized to non-conservative systems which contain small damping. Based onthe above conclusions, the method for designing the cubic stiffness according to theinitial input energy to the main structure is developed on the cases of small damping,and the method is verified numerically.
     The ability of suppressing two different vibration peaks is an important aspectto evaluate the efficiency of the NES. So, vibration mitigation of atwo-degree-of-freedom linear system under harmonic excitation by means of NES isstudied with two methods: the decoupled formula of equilibrium points of the slowdynamics are derived, and the periodic response of the system is obtained usingcomplex-averaging method when the excitation frequency is fixed. The stability ofthe equilibium points are studied based on Lyapunov’s theorem; The periodicresponse of the system is studied using incremental harmonic balance method whenthe excitation frequency is tuning, and the stability of the periodic response isstudied based on Floquet’s theorem. Sadle-node bifurcation and Hopf bifurcation arerevealed from different aspects with the two methods, and the effectiveness ofvibration suppression for the two different energy peaks is also revealed. Analyticalconclusions are verified using numerial simulations.
     The effeciency of vibration suppression varies drastically with the changing ofinitial energy of the main structure when the NES is used for free vibration control.It is proposed that the problem could be reliefed with the application of a kind oftwo-degree-of-freedom NES. The advantage of the-two-degree-of-freedom NES isverified numerically. The phenomenon of resonance capture when targeted energytranfer occurs is studied using Hilbert-Huang transform. Then, dynamics of thesystem is analyzed using shooting method and complexification-averaging method,and the analytical results support the frontal conclusions.
     A fruther study of the two-degree-of-freedom NES is carried out for forcedvibration suppression under harmonic excitation since the superiority of thetwo-degree-of-freedom NES is found in chapter4. The slow dynamics of the systemis derived and the equilibrium points of the slow dynamics is studied analyticallywhen the excitation frequency is equal to the natural frequency of the main structure.The stability of the equilibrium points is also studied. The periodic response of thesystem is studied using incremental harmonic balance method when the excitationfrequency is tuning, and the stablility of the periodic response is given. Localbifurcations of the system are revealed and verified using numerical method, and itis also revealed which response regime is more favorable for vibration suppression.Finally, the efficiency of vibration suppression under harmonic force of thetwo-degree-of-freedom NES is compared with the single-degree-of-freedom NES.
引文
[1]张军,谌勇,骆剑等.整星隔振技术的研究现状和发展[J].航空学报,2005,26(2):179–183.
    [2] Roberson R. Synthesis of a nonlinear dynamic vibration absorber[J]. Journalof the Franklin Institute,1952,254(5):205–220.
    [3] Kopidakis G, Aubry S, Tsironis G P. Targeted energy transfer through discretebreathers in nonlinear systems[J]. Physical Review Letters,2001,87: paper165501.
    [4]梁鲁.减振隔振与整星及全箭动态特性相互影响的研究[D].哈尔滨:哈尔滨工业大学,2008.
    [5] Kress G. Improving single constrained-layer damping treatment by sectioningthe constraining layer[C]. Proceedings of the Eleventh Biennial Conference onMechanical Vibration and Noise, Boston,1987:41-48.
    [6]王威远.卫星适配器结构振动主被动控制方法研究[D].哈尔滨:哈尔滨工业大学,2008.
    [7] Chen X. Optimal Design of a Two-Stage Mounting Isolation System By theMaximum Entropy Approach[J]. Journal of Sound and Vibration,2001,243(4):591–599.
    [8] Niu J, Song K, Limb C W. On Active Vibration Isolation of Floating RaftSystem[J]. Journal of Sound and vibration,2005,285(2):391–406.
    [9] Snowdon J C. Representation of the Mechanical Damping Possessed byRubber Materials and Structures[J]. Journal of the Acousticical Society ofAmerican,1963,35(6):821–821.
    [10] Sciulli D, Inman D J. Isolation Design for a Flexible System[J]. Journal ofSound and Vibration,1998,216(2):251–267.
    [11] Denoyer K K, Johnson C D. Recent achievements in vibration isolationsystems for space launch and on-orbit applications[C].52nd InternationalAstronautical Congress, Toulouse,2001:4–11.
    [12] Johnson C D, Wilke P S, Grosserode P J. Whole-spacecraft vibration isolationsystem for the GFO/Taurus mission[C]. SPIE Proceedings,1999:175–185.
    [13] Wilke P S, Johnson C D, Grosserode P J, et al. Whole-spacecraft vibrationisolation for broadband attenuation[C]. IEEE Aerospace Conference,2000:315–321.
    [14] Frahm H. Device for damping vibrations of bodies[P]. USPat,1909:989958.
    [15]刘耀宗,郁殿龙,赵宏刚等.被动式动力吸振技术研究进展[J].机械工程学报,2008,43(3):14–21.
    [16]杨飞,杨智春,王巍.吸振夹层壁板颤振抑制的吸振器频率设计[J].振动与冲击,2009,28(7):65-68.
    [17] Nishihara O, ASAMI T. Closed-form solutions to the exact optimizations ofdynamic vibration absorbers (minimizations of the maximum amplitudemagnification factors)[J]. ASME Journal of Vibration and Acoustics,2002,124(4):576–582.
    [18] ASAMI T, Nishihara O, Baz A M. Analytical solutions to H andH2optimization of dynamic vibration absorbers attached to damped linearsystems[J]. ASME Journal of Vibration and Acoustics,2002,124(2):284–295.
    [19] ASAMI T, Nishihara O.H2optimization of the three-element type dynamicvibration absorbers[J]. ASME Journal of Vibration and Acoustics,2002,124:583–592.
    [20] Verdirame J, Nayfeh S. Design of multi-degree-of-freedom tuned massdampers based on eigenvalue perturbation[C].44th Structures, StructuralDynamics and Materials Conference, AIAA,2003:1686.
    [21] Nayfeh S A, Zuo L. Minimax optimization of multi-degree-of-freedomtuned-mass dampers[J]. Journal of Sound and Vibration,2004,272(3-5):893–908.
    [22] Nayfeh S A, Zuo L. The two-degree-of-freedom tuned-mass damper forsuppression of single-mode vibration under random and harmonic excitation[J].ASME Journal of Vibration and Acoustics,2006,128(1):56–65.
    [23] Snowdon J C. Vibration and shock in damped mechanical systems[M]. NewYork: John Wiley&Sons,1968.
    [24]吴崇健,骆东平,杨叔子等.离散分布式动力吸振器的设计及在船舶工程中的应用[J].振动工程学报,1999,12(4):24–30.
    [25] Oueini S S, Chin C M, Nayfeh A H. Dynamics of a cubic nonlinear vibrationabsorber[J]. Nonlinear Dynamics,1999,20(3):283–295.
    [26] Pun D, Liu Y B. On the design of the piecewise linear vibration absorber[J].Nonlinear Dynamics,2000,22(4),393–413.
    [27] Walsh P L, Lamancusa J S. A variable stiffness vibration absorber forminimization of transient vibrations[J]. Journal of Sound and Vibration,1992,158(2):195–211.
    [28] Starosvetsky Y, Gendelman O V. Vibration absorption in systems with anonlinear energy sink: nonlinear damping[J]. Journal of Sound and Vibration,2009,324(3-5):916–939.
    [29] Bajaj A K, Chang S I, Johnson J. Amplitude modulated dynamics of aresonantly excited autoparametric two degree-of-freedom system[J]. NonlinearDynamics,1994,5(4):433–457.
    [30] Felix J L P, Balthazar J M, Dantas M J H. On energy pumping, synchronizationand beat phenomenon in a non-ideal structure coupled to an essentiallynonlinear oscillator[J]. Nonlinear Dynamics,2009,56(1-2):1–11.
    [31] Zhu S J, Zheng Y F, Fu Y M. Analysis of nonlinear dynamics of atwo-degree-of-freedom vibration system with nonlinear damping andnonlinear spring[J]. Journal of Sound and Vibration,2004,271(1-2):15–24.
    [32]楼京俊,唐斯密,朱石坚等.改进的本质非线性吸振器宽频吸振参数域研究[J].振动与冲击,2011,30(6):218-223.
    [33]赵艳影,徐鉴.时滞非线性动力吸振器的减振机理[J].力学学报,2008,40(1):98-105.
    [34] Kivshar Y S, Campbell D K. Peierls-Nabarro potential barrier for highlylocalized nonlinear modes[J]. Physical Review E,1993,48(4):3077–3081.
    [35] Vilallonga E, Rabitz H. Vibrational energy transfer at the gas-solid interface:the role of collective and of localized vibrational modes[J]. The Journal ofChemical Physics,1986,85(4):2300–2314.
    [36] Vilallonga E, Rabitz H. A hybrid model for vibrational energy transfer at thegas-solid interface: discrete surface atoms plus a continuous elastic bulk[J].The Journal of Chemical Physics,1990,92(6):3957–3976.
    [37] Sievers A, Takeno S. Intrinsic localized modes in anharmonic crystals[J].Physical Review Letters,1988,61(8):970–973.
    [38] Shepelyansky D. Delocalization of quantum chaos by weak nonlinearity[J].Physical Review Letters,1993,70(12):1787–1790.
    [39] Sokoloff J. Reduction of energy absorption by phonons and spin waves in adisordered solid due to localization[J]. Physical Review B,2000,61(14):9380–9386.
    [40] Morgante A M, Johansson M, Aubry S, et al. Breather-phonon resonances infinite-size lattices:“Phantom breathers”[J]. Journal of Physics A,2002,35(24):4999–5021.
    [41] Hodges C H. Confinement of vibration by structural irregularity[J]. Journal ofSound and Vibration,1982,82(3):411–424.
    [42] Hodges C H, Woodhouse J. Confinement of vibration by one-dimensionaldisorder, I: theory of ensemble averaging, II: a numerical experiment ondifferent ensemble averages[J]. Journal of Sound and Vibration,1989,130(2):237–268.
    [43] Pierre C, Dowell E H. Localization of vibrations by structural irregularity.Journal of Sound and Vibration[J],1987,114(3):549–564.
    [44] Bendiksen O O. Mode localization phenomena in large space structures[J].AIAA Journal,1987,25(9):1241–1248.
    [45] Cai C W, Chan H C, Cheung Y K. Localized modes in a two-degree-coupledperiodic systems with a nonlinear disordered subsystem[J]. Chaos, Solitons&Fractals,2000,11(10):1481–1492.
    [46] Vakakis A F. Non-linear normal modes (nnms) and their applications invibration theory: an overview[J]. Mechanical Systems and Signal Processing,1997,11(1):3–22.
    [47] Lyapunov A. The General Problem of the Stability of Motion[M]. New Jersey:Princeton University Press.1947.
    [48] A. Weinstein. Normal modes for nonlinear Hamiltonian systems[J].Inventiones Mathematicae,1973,20(1):47–57.
    [49] Moser J. Periodic orbits and a theorem by Alan Weinstein[J]. Communicationsin Pure Applied Mathematics,1976,29(6):727–747.
    [50] Vakakis A F. Non-similar normal oscillations in a strongly non-linear discretesystem[J]. Journal of Sound and Vibration,1992,158(22):341–361.
    [51] Happawana G S, Bajaj A K, Azene M. An analytical solution to non-similarnormal modes in a strongly nonlinear discrete system[J]. Journal of Sound andVibration,1995,183(2):361–367.
    [52] Aubrecht J, Vakakis A F, Tsao T C, et al. Experimental study of non-lineartransient motion confinement in a system of coupled beams[J]. Journal ofSound and Vibration,1996,195(4):629–648.
    [53] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical System, andBifurcation of Vector Fields[M]. New York: Springer-Verlag,1983.
    [54] Wiggins S. Introduction to Applied Nonlinear Dynamical Systems andChaos[M]. New York: Springer-Verlag,1990.
    [55] Nayheh A H, Mook D T. Nonlinear Oscillations, New York: John Wiley&Sons,1995.
    [56] Nayfeh A H. Nonlinear Interactions: Analytical, Computational andExperimental Methods[J]. New York: Wiley Interscience,2000.
    [57] Renger T, May V, Kühn O. Ultrafast excitation energy transfer dynamics inphotosynthetic pigment–Protein complexes[J]. Physics Reports,2001,343(3):137-254.
    [58] Hu X, Damjanovic A, Ritz T, et al. Architecture and mechanism of thelight-harvesting apparatus of purple bacteria[C]. Proceedings of the NationalAcademy of Sciences of the United States of America,1998,95(11):5935–5941.
    [59] Julicher F, Ajdari A, Prost J. Modeling molecular motors[J]. Reviews ofModern Physics,1997,69(4):1269–1282.
    [60] Wang Z, Carter J A, Lagutchev A, et al. Ultrafast flash thermal conductance ofmolecular chains[J]. Science,2007,317(5839):787–790.
    [61] Vedruccio C, Meessen A. EM cancer detection by means of nonlinearresonance interaction[C]. Proceedings of Progress in ElectromagneticsResearch Symposium, Pisa,2004:28–31.
    [62] Morgante A M, Johansson M, Aubry S. Breather U phonon resonances in finitelattices: Phantom breathers?[J]. Journal of Physics A: Mathematical andGeneral,2002,35(24):4999–5021.
    [63] Maniadis P, Kopidakis G, Aubry S. Classical and quantum targeted energytransfer between nonlinear oscillators[J]. Physica D,2004,188(3-4):153–177.
    [64] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljaěié M.Wireless power transfer via strongly coupled magnetic resonances[J]. Science,2007,317(5834):83–86.
    [65] Dauxois T, Litvak-Hinenzon A, Mackay R, et al. Energy localization andtransfer. World scientific, Singapore:2004.
    [66] Jenkins R D, Andrews D L. Four-center energy transfer and interaction pairs:Molecular quantum electrodynamics[J]. The Journal of Chemical Physics,2002,116(15):6713–6724.
    [67] Daniels G J, Jenkins R D, Bradshaw D S, et al. Resonance energy transfer: Theunified theory revisited[J]. The Journal of Chemical Physics,2003,119(4):2264–2274.
    [68] Dodaro F A, Herman M F. Comparison of theoretical methods for resonantvibration–ú Vibration energy transfer in liquids[J]. The Journal of ChemicalPhysics,1998,108(7):2903–2911.
    [69] Allcock P, Jenkins R D, Andrews D L. Laser assisted resonance energytransfer[J]. Physical Review A,2000,61(2):023812.
    [70] Spector A A. Effectiveness, active energy produced by molecular motors, andnonlinear capacitance of the cochlear outer hair cell[J]. Journal ofbiomechanical engineering.2005,127(3):391–399.
    [71] Lesieutre G A, Ottman G K, Hofmann H F. Damping as a result ofpiezoelectric energy harvesting[J]. Journal of Sound and Vibration,2004,269(3-5):991–1001.
    [72] Cornwell P J, Goethhal J, Kowko J, et al. Enhancing power harvesting using atuned auxiliary structure[J]. Journal of intelligent material systems andstructures,2005,16(10):825–834.
    [73] Roundy S. On the effectiveness of vibration-based energy harvesting. Journalof intelligent material systems and structures,2005,16(10):809–823.
    [74] Kim S, Clark W W, Wang Q M. Piezoelectric energy harvesting with aclamped circular plate: Analysis[J]. Journal of intelligent material systems andstructures,2005,16(10):847–854.
    [75] Stephen N G. On energy harvesting from ambient vibration[J]. Journal ofSound and Vibration,2006,293(1-2):409-425.
    [76] Itin A, Neishtadt A, Vasiliev A. Captures into resonance and scattering onresonance in dynamics of a charged relativistic particle in magnetic field andelectrostatic wave[J]. Physica D,2000,141(3-4):281–296.
    [77] Haberman R, Rand R, Yuster T. Resonant capture and separatrix crossing indual-spin spacecraft[J]. Nonlinear Dynamics,1999,18(2):159–184.
    [78] Belokonov V, Zabolotnov M. Estimation of the probability of capture into aresonancemode ofmotion for a spacecraft during its descent in theatmosphere[J]. Cosmic Research,2002,40(5):467–478.
    [79] Sanders J A. On the passage through resonance[J]. SIAM Journal ofMathematical Analysis,1979,10(6):1220–1243.
    [80] Haberman R. Energy bounds for the slow capture by a center in sustainedresonance[J]. SIAM Journal of Applied Mathematics,1983,43(2):244–256.
    [81] Quinn D D. Capture, nonlinear normal modes, and energy transfer throughnon-stationary resonances[C]. Second International Conference on NonlinearNormal Modes and Localization in Vibrating Systems, Samos, Greece,2006.
    [82] Zniber A, Quinn D D. Frequency shifting in nonlinear resonant systems withdamping[C]. Proceedings of the2003ASME Design Engineering TechnicalConferences, Chicago,2003:1189-1196.
    [83] Lee Y S, Kerschen G, Vakakis A F, Panagopoulos P, Bergman L A, McFarlandD M. Complicated dynamics of a linear oscillator with an essentially nonlinearlocal attachment[J]. Physica D,2005,204(1-2):41–69.
    [84] Gendelman O V, Vakakis A F. Transitions from localization to non-localizationin strongly nonlinear damped oscillators[J]. Chaos Solitons Fractals,2000,11(10):1535–1542.
    [85] Vakakis A F. Analysis and identification of linear and nonlinear normal modesin vibrating systems[D]. California: California Institute of Technology,1991.
    [86] Gendelman O V, Manevitch L, Vakakis A F, et al. Energy pumping in coupledmechanical oscillators, part I: dynamics of the underlying Hamiltoniansystems[J]. Journal of Applied Mechanics,2001,68(1):34–41.
    [87] Vakakis A F, Gendelman O V. Energy pumping in coupled mechanicaloscillators, part ii: resonance capture[J]. Journal of Applied Mechanics,2001,68(1):42–48.
    [88] Pilipchuk V, Vakakis A F, Azeez M. Study of a class of subharmonic motionsusing a non-smooth temporal transformation (NSTT)[J]. Physica D,1997,100(1-2):145–164.
    [89] Gendelman O V, Manevitch L, Vakakis A F, et al. A Degenerate bifurcationstructure in the dynamics of coupled oscillators with essential stiffnessnonlinearities. Nonlinear Dynamics,2003,33(1):1–10.
    [90] Gendelman O V. Bifurcations of nonlinear normal modes of linear oscillatorwith strongly nonlinear damped attachment[J]. Nonlinear Dynamics,2004,37(2):115–128.
    [91] Gourdon E, Lamarque C H. Nonlinear energy sink with uncertainparameters[J]. Journal of Computational and Nonlinear Dynamics,2006,1(3):187–195.
    [92] Musienko A I, Lamarque C H, Manevitch L I. Design of mechanical energypumping devices[J]. Journal of Vibration and Control,2006,12(4):355–371.
    [93] Vakakis A F. Designing a linear structure with a local nonlinear attachment forenhanced energy pumping[J]. Meccanica,2003,38(6):677–686.
    [94] Vakakis A F, Manevitch L I, Gendelman O V, et al. Dynamics of linear discretesystems connected to local, essentially non-linear attachments[J]. Journal ofSound and Vibration,2003,264(3):559–577.
    [95] Vakakis A F, McFarland D M, Bergman L, et al. Isolated resonance capturesand resonance capture cascades leading to single-or multi-mode passiveenergy pumping in damped coupled oscillators[J]. Journal of Vibration andAcoustics,2004,126(2):235–244.
    [96] Manevitch L, Gendelman O V, Musinko A, et al. Dynamic interaction of asemi-infinite linear chain of coupled oscillators with a strongly nonlinear endattachment[J]. Physica D,2003,178(1-2):1–18.
    [97] Vakakis A, Manevitch L, Musienko A, et al. Transient dynamics of adispersive elastic wave guide weakly coupled to an essentially nonlinear endattachment[J]. Wave Motion,2005,41(2):109–132.
    [98] Gendelman O V, Gorlov D, Manevitch L, et al. Dynamics of coupled linearand essentially nonlinear oscillators with substantially different masses[J].Journal of Sound and Vibration,2005,286(1-2):1–19.
    [99] Lee Y, Kerschen G, Vakakis A F, et al. Complicated dynamics of a linearoscillator with a light, essentially nonlinear attachment[J]. Physica D,2005,204(1–2):41–69.
    [100] Kerschen G, Lee Y, Vakakis A F, et al. Irreversible passive energy transfer incoupled oscillators with essential nonlinearity[J]. SIAM Journal on AppliedMathematics2006,66(2):648–679.
    [101] Kerschen G, Gendelman O V, Vakakis A F, et al. Impulsive periodic andquasi-periodic orbits of coupled oscillators with essential stiffnessnonlinearity[J]. Communications in Nonlinear Science and NumericalSimulation,2008,13(5):959–978.
    [102] Panagopoulos P, Gendelman O V, Vakakis A F. Robustness of nonlineartargeted energy transfer in coupled oscillators to changes of initialconditions[J]. Nonlinear Dynamics,2007,47(4):377–387.
    [103] Manevitch L, Gourdon E, Lamarque C. Parameters optimization for energypumping in strongly non-homogeneous2DOF system[J]. Chaos SolitonsFractals,2007,31(4):900–911.
    [104] Kerschen G, Kowtko J, McFarland D, et al. Theoretical and experimental studyofmultimodal targeted energy transfer in a system of coupled oscillators[J].Nonlinear Dynamics,2007,47(1):285–309.
    [105] Tsakirtzis S, Panagopoulos P N, Kerschen G, et al. Complex dynamics andtargeted energy transfer in linear oscillators coupled tomulti-degree-of-freedom essentially nonlinear attachments[J]. NonlinearDynamics,2007,48(3):285–318.
    [106] Panagopoulos P N, Vakakis A F, Tsakirtzis S. Transient resonant interactions offinite linear chains with essentially nonlinear end attachments leading topassive energy pumping[J]. International Journal of Solids and Structures,2004,41(22–23),6505–6528.
    [107] Vakakis A, Rand R. Non-linear dynamics of a system of coupled oscillatorswith essential stiffness non-linearities[J]. International Journal of Non-LinearMechanics,2004,39(7):1079–1091.
    [108] Gourdon E, Lamarque C. Energy pumping for a larger span of energy[J].Journal of Sound and Vibration,2005,285(3):711–720.
    [109] Tsakirtzis S, Panagopoulos P N, Kerschen G, et al. Complex dynamics andtargeted energy transfer in linear oscillators coupled tomulti-degree-of-freedom essentially nonlinear attachments[J]. Nonlineardynamics,2007,48:285-318.
    [110] Gendelman O V. Bifurcations of self-excitation regimes in a van der Poloscillator with a nonlinear energy sink[J]. Physica D,2010,239(3-4):220–229.
    [111] Starosvetsky Y, Gendelman O V. Interaction of nonlinear energy sink with atwo degrees of freedom linear system: Internal resonance[J]. Journal of Soundand Vibration,2010,329(10):1836–1852.
    [112] Sapsis T P, Vakakis A F, Bergman L A. Effect of stochasticity on targetedenergy transfer from a linear medium to a strongly nonlinear attachment[J].Probabilistic Engineering Mechanics,2011,26(2):119-133.
    [113] Sigalov G, Gendelman O V, AL-Shudeifat M A, et al. Resonance captures andtargeted energy transfers in an inertially-coupled rotational nonlinear energysink[J]. Nonlinear dynamics,2012, Online first.
    [114] Natsiavas S. Steady state oscillations and stability of nonlinear dynamicvibration absorbers[J]. Journal of Sound and Vibration,1992,156(2):227-245.
    [115] Shaw J, Shaw S W, Haddow A G. On the response of the nonlinear vibrationabsorber[J]. International Journal of Nonlinear Mechanics,1989,24(4):281-293.
    [116] Malatkar P, Nayfeh A H. Steady-state dynamics of a linear structure weaklycoupled to an essentially nonlinear oscillator[J]. Nonlinear dynamics,2007,47(1-3):167-179.
    [117] Gendelman O V, Gourdon E, Lamarque C H. Quasi-periodic energy pumpingin coupled oscillators under periodic forcing[J]. Journal of Sound andvibration,2006,294(4-5):651-662.
    [118] Starosvetsky Y, Gendelman O V. Quasi-Periodic response regimes of linearoscillator coupled to nonlinear energy sink under periodic forcing[J]. Journalof Applied mechanics,2007,74(2):325-332.
    [119] Starosvetsky Y, Gendelman O V. Attractors of harmonically forced linearoscillator with attached nonlinear energy sink I: Description of responseregimes[J]. Nonlinear dynamics,2008,51(1-2):31–46.
    [120] Starosvetsky Y, Gendelman O V. Attractors of harmonically forced linearoscillator with attached nonlinear energy sink II: Optimization of a nonlinearvibration absorber[J]. Nonlinear dynamics,2008,51(1-2):47–57.
    [121] Starosvetsky Y, Gendelman O V. Strongly modulated response in forced2DOFoscillatory system with essential mass and potential asymmetry[J]. Physica D:Nonlinear Phenomena,2008,237(13):1719-1733.
    [122] Starosvetsky Y, Gendelman O V. Response regimes of linear oscillator coupledto nonlinear energy sink with harmonic forcing and frequency detuning[J].Journal of Sound and Vibration,2008,315(3):746-765.
    [123] Starosvetsky Y, Gendelman O V. Bifurcations of attractors in forced systemwith nonlinear energy sink: the effect of mass asymmetry[J]. NonlinearDynamics,2010,59(4):711-731.
    [124] Starosvetsky Y, Gendelman O V. Vibration absorption in systems with anonlinear energy sink: Nonlinear damping[J]. Journal of Sound and Vibration,2009,324(3-5):916-939.
    [125] Starosvetsky Y, Gendelman O V. Response regimes in forced system withnon-linear energy sink: quasi-periodic and random forcing[J]. NonlinearDynamics,2011,64(1-2):177-195.
    [126] Starosvetsky Y, Gendelman O V. Dynamics of a strongly nonlinear vibrationabsorber coupled to a harmonically excited two-degree-of-freedom system[J].Journal of sound and vibration,2008,312(1-2):234-256.
    [127] Lamarque C-H, Gendelman O V, Savadkoohi A, Etcheverria E. Targetedenergy transfer in mechanical systems by means of non-smooth nonlinearenergy sink[J]. ACTA Mechanica,2011,221(1-2):175-200.
    [128] Vakakis A. Shock isolation through the use of nonlinear energy sinks[J].Journal of Vibration and Control,2003,9(1-2):79–93.
    [129] McFarland D M, Bergman L A, Vakakis A F. Experimental study of non-linearenergy pumping occurring at a single fast frequency[J]. International Journalof Non-Linear Mechanics,2005,40(6):891–899.
    [130] Kerschen G, Vakakis A F, Lee Y, et al. Energy transfers in a system of twocoupled oscillators with essential nonlinearity:1:1resonance manifold andtransient bridging orbits[J]. Nonlinear Dynamics,2005,42(3):283–303.
    [131] McFarland D M, Kerschen G, Kowtko J, et al. Experimental investigation oftargeted energy transfers in strongly and nonlinearly coupled oscillators[J].The Journal of the Acoustical Society of America,2005,118(2),791–799.
    [132] Kerschen G, McFaland D M, Kowtko J, et al. Experimental demonstration oftransient resonance capture in a system of two coupled oscillatorswithessential stiffness nonlinearity[J]. Journal of Sound and Vibration,2007,299(4-5):822–838.
    [133] Nucera F, Iaconoa F L, McFarland D M, et al. Application of broadbandnonlinear targeted energy transfers for seismic mitigation of a shear frame:experimental results[J]. Journal of Sound and Vibration,2008,313(1-2):57–76.
    [134] Nucera F, Vakakis A F, McFarland D M, et al. Targeted energy transfers invibro-impact oscillators for seismic mitigation[J]. Nonlinear Dynamics,2007,50(3):651–677.
    [135] Nucera F, McFarland D M, Bergman L, et al. Application of broadbandnonlinear targeted energy transfers for seismic mitigation of a shear frame:computational results[J]. Journal of Sound and Vibration,2008,313(1-2):57-76.
    [136] Jiang X, Vakakis A F. Dual mode vibration isolation based on non-linear modelocalization[J]. International Journal of Non-Linear Mechanics,2003,38(6):837–850.
    [137] Georgiadis F, Vakakis A F, McFarland D M, et al. Shock isolation throughpassive energy pumping caused by nonsmooth nonlinearities[J]. InternationalJournal of Bifurcation and Chaos,2005,15(6):1989–2001.
    [138] Jiang X, McFarland D M, Bergman L, et al. Steady-state passive nonlinearenergy pumping in coupled oscillators: theoretical and experimental results[J].Nonlinear Dynamics,2003,33(1):87–102.
    [139] Gourdon E, Alexander N, Taylor C, et al. Nonlinear energy pumping undertransient forcing with strongly nonlinear coupling: theoretical andexperimental results[J]. Journal of Sound and Vibration,2007,300(3–5):522–551.
    [140] Lee Y, Vakakis A F, Bergman L, et al. Suppression of limit cycle oscillations inthe van der Pol oscillator by means of passive nonlinear energy sinks(NESs)[J]. The Journal of the International Association for Structural Controland Monitoring,2006,13(1):41–75.
    [141] Gendelman O V, Sigalov G, Manevitch L I, et al. Dynamics of an EccentricRotational Nonlinear Energy Sink[J]. Journal of Applied Mechanics,2011,79(1):011012.
    [142] Lee Y, Vakakis A F, Bergman L, et al. Triggering mechanisms of limit cycleoscillations in a two-degree-of-freedom wing flutter model[C]. ASME2005International Design Engineering Technical Conferences and Computers andInformation in Engineering Conference, California,2005,1:1863–1872.
    [143] Lee Y, Vakakis A F, Bergman L, et al. Suppressing aeroelastic instability usingbroadband passive targeted energy transfers, part1: theory[J]. AIAA Journal,2007,45(3):693–711.
    [144] Lee Y, Vakakis A F, Bergman L, et al. Enhancing robustness of aeroelasticinstability suppression using multi-degree-of-freedom nonlinear energysinks[J]. AIAA Journal,2008,46(6):1371–1394.
    [145] Lee Y, Kerschen G, McFarland D M, et al. Suppressing aeroelastic instabilityusing broadband passive targeted energy transfers, part2: experiments[J].AIAA Journal,2007,45(10):2391–2400.
    [146] Bellet R, Cochelin B, Herzog P, et al. Experimental study of targeted energytransfer from an acoustic system to a nonlinear membrane absorber[J]. Journalof Sound and Vibration,2010,329(14):2768-2791.
    [147] Bellizzi S, Cochelin B, Herzog P, et al. An insight of energy pumping inacoustic[C]. The Second International Conference on Nonlinear NormalModes and Localization in Vibrating Systems, Samos:2006,19–23.
    [148] Viguie R, Kerschen G, Golinval J C, et al. Using nonlinear targeted energytransfer to stabilize drill-string systems[J]. Mechanical Systems and SignalProcessing,2009,23(1):148-169.
    [149] Sapsis T P, Vakakis A F, Gendelman O V, et al. Efficiency of targeted energytransfers in coupled nonlinear oscillators associated with1:1resonancecaptures: Part II, analytical study[J]. Journal of Sound and Vibration,2009,325(1-2):297-320.
    [150] Quinn D D, Gendelman O V, Kerschen G, et al. Efficiency of targeted energytransfers in coupled nonlinear oscillators associated with1:1resonancecaptures: part I[J]. Journal of Sound and Vibration,2008,311(3-5):1228-1248.
    [151] Manevitch L I, Musienko A I, Lamarque C. New analytical approach to energypumping problem in strongly nonhomogeneous2dof systems[J]. Meccanica,2007,42(1):77-83.
    [152] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition andthe Hilbert spectrum for nonlinear and non-stationary time series analysis[C].Proceedings of the Royal Society, London,1998:903–995.
    [153]陈树辉.强非线性系统的定量分析方法[M].北京:科学出版社,2006.
    [154] Seyranian P A, Solem Frederik, Pedersen P. Multi-Parameter linear periodicsystems: sensitivity analysis and applications[J]. Journal of Sound andVibration,2000,229(1):89-111.
    [155] Gendelman O V, Sapsis T, Vakakis A F, et al. Enhanced passive targetedenergy transfer in strongly nonlinear mechanical oscillators[J]. Journal ofSound and Vibration,2011,330(1):1-8.
    [156] Friedmann P, Hammond C E, Woo T-H. Efficient numerical treatment ofperiodic systems with application to stability problems[J]. InternationalJournal for Numerical Methods in Engineering,1977,11(7):1117-1136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700