两种掺杂半导体材料的制备及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非金属掺杂可以有效地窄化半导体的禁带宽度,扩展半导体的可见光响应,从而提高半导体材料的可见光光催化活性。本论文以此为机理,成功合成出具有可见光响应的球状C掺杂TiO2材料,C掺杂Nb2O5材料和C,F共掺杂Nb2O5材料。
     第一章为绪论,主要介绍了半导体光催化技术的相关原理,提高半导体光催化活性的常用途径,和的备纳米材料的常用方法。
     第二章,将C掺杂和合成多级结构的孔材料相结合,以钛酸四丁酯为钛源,采用溶剂热法,在乙醇体系下合成出球状C掺杂TiO2材料。材料具有由纳米粒子组成的多级结构。通过乙酸加入量能够控制材料形貌的大小,可以满足实际应用中的各种需求。c原子进入TiO2晶格内部,取代了O原子,窄化了TiO2的禁带宽度,拓宽了材料的可见光响应范围,提高了材料的可见光光催化活性。
     第三章,以NbCl5为前驱体、乙醇为溶剂,采用溶剂热法合成出具有高比表面积的C掺杂Nb2O5材料。材料中C原子进入Nb2O5晶格内部,取代了O原子,窄化了Nb2O5的禁带宽度,拓展了其可见光响应范围,合成材料在可见光下光解水制氢和光降解有机染料的实验中表现很好的光催化活性。合成过程中,煅烧温度和晶化温度能够显著影响材料的比表面积和c掺杂量,对材料的光催化性能影响显著。乙酸加入量和晶化时间对样品的结构和组成影响较小,进而对光催化活性影响不是很大。
     第四章,在合成C掺杂Nb2O5的基础上,合成出C,F共掺杂Nb2O5材料。F离子能够促进Nb2O5纳米晶沿着[001]方向取向性生长。F原子并没有进入Nb2O5晶格内部,而是以离子的形式均匀的分散在Nb2O5的纳米结构中,能够促进Nb2O5表面·OH自由基的产生,从而达到提高合成样品光催化活性的目的。
     第五章,对本论文的内容进行总结。
Semiconductor photocatalytic has been an important approach for solving theproblems of energy crisis and environmental pollution as a result of its advantages,such as high efficiency, energy efficiency, environment friendly, and so on. However,the use of conventional semiconductor materials (TiO2,Nb2O5) is impaired by theirwide band gap, which require ultraviolet light irradiation for photocatalytic reaction,and the ultraviolet light accounts for only5%of solar energy. In recent years,researchers found doping could improve its photocatalytic activity under visible lightirradiation. Normally, doping can be classified into metal doping and nonmetaldoping in accordance with the doping element. Metal doping refers trace metal atomsinto crystal of the semiconductor, replacing the metal lattice, improving thephotocatalytic activity of the semiconductor by changing the composite rate of theelectron and hole, and transferring rate of the interfacial electron. Nonmetal dopingrefers some nonmetal atoms into the lattice of the semiconductor, replacing the spaceof O atom, narrowing its band gap, which can be irradiated by the visible light, so asto improve the photocatalytic activity under visible light. Compared withmetal doping, nonmetal doping is used more widely by researchers because of simpleoperation, low cost, and higher photocatalytic efficiency.
     In this paper, we had synthesized spherical C doped TiO2mesoporous materials,C doped Nb2O5mesoporous materials and C, F codoped Nb2O5mesoporous materialsusing the solvothermal method, and we also studied its morphologyand photocatalytic activity.
     The research contents include the following aspects:
     1) C doped TiO2mesoporous materials with spherical morphology have beensynthesized by solvothermal method in the system of ethanol, using TBOT as thetitanium source. The synthesized samples have been characterized by XRD,SEM,N2adsorption-desorption, XPS, UV-Vis and photocatalytic degradation of dye. Wefind that, synthesized samples are pure phase anatase TiO2, and the synthesizedsamples show uniform size ball with the accumulation of the nanoparticles.The crystallinity and morphology of the synthesized samples changes with the volumeof adding acetic acid during the synthesis process. With the addition acetic acidincreasing, the crystallinity increases, and the TiO2balls also gradually becomessmaller, and the size of nanoparticles which composed of TiO2ball also increases.Nitrogen adsorption desorption data shows that the synthesized samples aremesoporous materials, and the mesoporous structure is in disorder as a result of theaccumulation of nanoparticles. XPS data shows traces of C atoms getting intothe TiO2lattice, replacing the site of O atom. UV-Vis data indicates that the lightabsorption of the synthesized samples shifts towards long wavelength, and thephotocatalytic degradation experiments also prove its excellent photocatalyticactivity under visible light.
     2) Nb2O5is a kind of semiconductor material, which is similar to TiO2. Itslarge band gap greatly limits the absorption of visible-light, and seriously affectsits promotion and application. In this paper, we have synthesized C-doped Nb2O5,and the C atoms were incorporated in the lattice of the niobium pentoxide byoccupying the O sites, forming the bonding of Nb-C, which can narrow the bandgap of Nb2O5, and improve its photocatalytic property. During the experiments,mesoporous C-Nb2O5materials with a high surface area had been preparedthrough solvothermal synthetic strategy using NbCl5as precursor, ethanol as solvent. The structure, morphology and property of the obtained material wereverified by the combination of powder X-ray diffraction (PXRD),High-resolution transmission microscopy (HRTEM), N2adsorption and X-rayphotoelectron spectrum (XPS), photodegradation and H2evolution. Due to itssmall size (3-8nm), it was difficult to identify the phases of the sample bypowder XRD pattern. In this case, high resolution transmission electronmicroscopy (HRTEM) was employed to investigate the obtained samples. Thesamples were identifies as TT phase. Proved by XPS data, the obtained samplescontained elements of Nb, O, C, and the Nb exists in the form of state+5, the Catom is incorporated in the lattice of the niobium pentoxide by occupying the Osites, forming the bonding of Nb-C. N2Nitrogen adsorption-desorption datademonstrates the surface area of the sample is up to344m2/g, and it is richmesoporous structure, which is very important for photocatalytic procedure.UV-Vis data proves C-doped Nb2O5with strong visible light absorption resultingfrom the doping. This mesoporous C-doped Nb2O5is turned out to be a highlyefficient photocatalyst by the experiments of photodegradation and H2evolutionunder visible-light irradiation (>420nm). Meanwhile, the influences of syntheticfactors on the photocatalytic activity of the samples were also studied. Thecalcination temperature and crystallization temperature have great influence onthe morphology, surface area, and C content, thus affect the photocatalyticactivity of the samples. While the amount of acetic acid and crystallization timehas slight influence on the structure, morphology and C content, and thus has nodifference on its photocatalytic activity.
     3) It has been reported that the F ion physically absorbed on the surface of theTiO2, without onto its internal lattice, can be helpful for the formation for thesurface·OH, thus contributes to improve its photocatalytic activity. In thischapter,we had prepared C, F-doped Nb2O5base on the synthesis of C-dopedNb2O5by adding HF during preparation process. The morphology, chemicalcomposition and photocatalytic activity had been characterized by a series ofcharacterization methods. The results show the F ions can promote the growth of Nb2O5along the direction of [001]. The F ions were not incorporated into thelattice of Nb2O5by occupying the O atoms, but physically adsorbed on thesurface of Nb2O5nanocrystals. It can accelerate the photocatalytic reaction byenhancing the generation of free·OH radicals over the surface of Nb2O5.
引文
[1]. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductorelectrode. Nature.1972;238(5358):37-38.
    [2]. Wu G S, Chen A. Direct growth of F-doped TiO2particulate thin films with highphotocatalytic activity for environmental applications. J Photoch Photobio A.2008;195(1):47-53.
    [3]. Kamitakahara M, Murakami S, Watanabe N, Ji S, Nishikawa H, Ioku K.Evaluation of photocatalytic activity of anatase/hydroxyapatite composite granules forenvironmental purification. Journal of the Ceramic Society of Japan.2009;117(1371):1172-1174.
    [4]. Lam S M, Sin J C, Abdullah A Z, Mohamed A R. Photocatalytic TiO2/CarbonNanotube Nanocomposites for Environmental Applications: An Overview and RecentDevelopments. Fuller Nanotub Car N.2014;22(5):471-509.
    [5]. Sakthivel S, Neppolian B, Shankar M V, Arabindoo B, Palanichamy B,Murugesan V. Solar photocatalytic degradation of azo dye:comparison ofphotocatalytic efficiency of ZnO and TiO2. Solar Energy Materials&Solar Cells.2003;77(2003):65–82.
    [6]. Xu F, Shen Y T, Sun L T, Zeng H B, Lu Y N. Enhanced photocatalytic activity ofhierarchical ZnO nanoplate-nanowire architecture as environmentally safe andfacilely recyclable photocatalyst. Nanoscale.2011;3(12):5020-5025.
    [7]. O'Driscoll C. Air quality Photocatalyst promises to improve health. ChemInd-London.2012;76(5):10-10.
    [8]. Tsuzuki T, He R L, Wang J F, Sun L, Wang X G, Hocking R. Reduction of thephotocatalytic activity of ZnO nanoparticles for UV protection applications. Int JNanotechnol.2012;9(10-12):1017-1029.
    [9]. He X L, Chiu C W, Esmacher M J, Liang H. Nanostructured photocatalyticcoatings for corrosion protection and surface repair. Surf Coat Tech.2013;237:320-327.
    [10]. Tu W G, Zhou Y, Zou Z G. Versatile Graphene-Promoting PhotocatalyticPerformance of Semiconductors: Basic Principles, Synthesis, Solar EnergyConversion, and Environmental Applications. Advanced Functional Materials.2013;23(40):4996-5008.
    [11]. Pavasupree S, Jitputti J, Ngamsinlapasathian S, Yoshikawa S. Hydrothermalsynthesis, characterization, photocatalytic activity and dye-sensitized solar cellperformance of mesoporous anatase TiO2nanopowders. Mater Res Bull.2008;43(1):149-157.
    [12]. Kondo Y, Yoshikawa H, Awaga K, Murayama M, Mori T, Sunada K, et al.Preparation, photocatalytic activities, and dye-sensitized solar-cell performance ofsubmicron-scale TiO2hollow spheres. Langmuir.2008;24(2):547-550.
    [13]. Matsuoka M, Kamegawa T, Rakhmawaty D, Kitano M, Wada K, Anpo M.Photocatalytic decomposition of lactic acid in water on a photoelectrochemical circuitsystem consisting of a rod-type TiO2electrode and silicon solar cell. Top Catal.2008;47(3-4):162-165.
    [14]. Oh S L, Choi K H, Im J E, Wang K K, Yaung H Y, Kim K, et al. Fabrication of mesoporous titania membrane of dual-pore system and its photocatalytic activity and dye-sensitized solar cell performance. Nanotechnology. DOI:10.1088/0957-4484/22/27/275309
    [15]. Huang C W, Liao C H, Wu C H, Wu J C S. Photocatalytic water splitting toproduce hydrogen using multi-junction solar cell with different deposited thin films.Sol Energ Mat Sol C.2012;107:322-328.
    [16]. Guo M Y, Ng A M C, Liu F Z, Leung Y H, Wong K K, Ng A, et al. Influence ofdefects in ZnO nanomaterials on the performance of dye-sensitized solar cell andphotocatalytic activity. Proc Spie. DOI:10.1117/12.2002976
    [17]. Li J Y, Li J H, Chen Q P, Bai J, Zhou B X. Converting hazardous organics intoclean energy using a solar responsive dual photoelectrode photocatalytic fuel cell.Journal of Hazardous Materials.2013;262:304-310.
    [18]. Cui W Q, Feng L R, Xu C H, Lu S J, Qiu F. Hydrogen production byphotocatalytic decomposition of methanol gas on Pt/TiO2nano-film. Catal Commun.2004;5(9):533-536.
    [19]. Aarthi T, Madras G. Photocatalytic reduction of metals in presence ofcombustion synthesized nano-TiO2. Catal Commun.2008;9(5):630-634.
    [20]. Bianchi C L, Gatto S, Pirola C, Naldoni A, Di Michele A, Cerrato G, et al.Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase:Comparison between nano and micro-sized TiO2. Appl Catal B-Environ.2014;146:123-130.
    [21]. Kim K, Thiyagarajan P, Ahn H J, Kim S I, Jang J H. Optimization for visiblelight photocatalytic water splitting: gold-coated and surface-textured TiO2inverseopal nano-networks. Nanoscale.2013;5(14):6254-6260.
    [22]. Cong Y, Zhang J L, Chen F, Anpo M, He D N. Preparation, photocatalyticactivity, and mechanism of Nano-TiO2co-doped with nitrogen and iron (III). J PhysChem C.2007;111(28):10618-10623.
    [23]. Kim Y H, Kang Y S. Synthesis and characterization of Ag nanoparticle,Ag-TiO2nanoparticle and Ag-TiO2-chitosan complex and their application toantibiosis and deodorization. Mater Res Soc Symp P.2004;820:221-226.
    [24]. Haldorai Y, Shim J J. Novel Chitosan-TiO2Nanohybrid: Preparation,Characterization, Antibacterial, and Photocatalytic Properties. Polym Composite.2014;35(2):327-333.
    [25]. He W W, Kim H K, Warner W G, Melka D, Callahan J H, Yin J J.Photogenerated Charge Carriers and Reactive Oxygen Species in ZnO/Au HybridNanostructures with Enhanced Photocatalytic and Antibacterial Activity. Journal ofthe American Chemical Society.2014;136(2):750-757.
    [26]. He W X, Huang H E, Yan J, Zhu J. Photocatalytic and antibacterial properties ofAu-TiO2nanocomposite on monolayer graphene: From experiment to theory. J ApplPhys.2013;114(20),204701.
    [27]. Wang J X, Liu W X, Li H D, Wang H L, Wang Z, Zhou W J, et al. Preparationof cellulose fiber-TiO2nanobelt-silver nanoparticle hierarchically structured hybridpaper and its photocatalytic and antibacterial properties. Chem Eng J.2013;228:272-280.
    [28]. Zhang Y Y, Lee M W, An S, Sinha-Ray S, Khansari S, Joshi B, et al.Antibacterial activity of photocatalytic electrospun titania nanofiber mats andsolution-blown soy protein nanofiber mats decorated with silver nanoparticles. CatalCommun.2013;34:35-40.
    [29]. Kavitha T, Gopalan A I, Lee K P, Park S Y. Glucose sensing, photocatalytic andantibacterial properties of graphene-ZnO nanoparticle hybrids. Carbon.2012;50(8):2994-3000.
    [30]. Maijenburg A W, Veerbeek J, de Putter R, Veldhuis S A, Zoontjes M G C, MulG, et al. Electrochemical synthesis of coaxial TiO2-Ag nanowires and theirapplication in photocatalytic water splitting. J Mater Chem A.2014;2(8):2648-2656.
    [31]. Zhang T T, Zhao K, Yu J G, Jin J, Qi Y, Li H Q, et al. Photocatalytic watersplitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3microcubes. Nanoscale.2013;5(18):8375-8383.
    [32]. Wang C, Hu Q Q, Huang J Q, Wu L, Deng Z H, Liu Z G, et al. Efficienthydrogen production by photocatalytic water splitting using N-doped TiO2film.Applied Surface Science.2013;283:188-192.
    [33]. Rayalu S S, Jose D, Joshi M V, Mangrulkar P A, Shrestha K, Klabunde K.Photocatalytic water splitting on Au/TiO2nanocomposites synthesized throughvarious routes: Enhancement in photocatalytic activity due to SPR effect. Appl CatalB-Environ.2013;142:684-693.
    [34]. Parayil S K, Kibombo H S, Koodali R T. Naphthalene derivatized TiO2-carbonhybrid materials for efficient photocatalytic splitting of water. Catalysis Today.2013;199:8-14.
    [35]. Kato H, Sasaki Y, Shirakura N, Kudo A. Synthesis of highly activerhodium-doped SrTiO3powders in Z-scheme systems for visible-light-drivenphotocatalytic overall water splitting. J Mater Chem A.2013;1(39):12327-12333.
    [36]. Zhang Y J, Liu L C, Xu Y, Wang Y C, Xu D L. A new alkali-activated steelslag-based cementitious material for photocatalytic degradation of organic pollutantfrom waste water. Journal of Hazardous Materials.2012;209:146-150.
    [37]. Liu Z Q, Wang Y C, Chu W, Li Z H, Ge C C. Characteristics of doped TiO2photocatalysts for the degradation of methylene blue waste water under visible light. JAlloy Compd.2010;501(1):54-59.
    [38]. Sharma S D, Saini K K, Kant C, Sharma C P, Jain S C. Photodegradation of dyepollutant under UV light by nano-catalyst doped titania thin films. Appl CatalB-Environ.2008;84(1-2):233-240.
    [39]. Nezamzadeh-Ejhieh A, Khodabakhshi-Chermahini F. Incorporated ZnO ontonano clinoptilolite particles as the active centers in the photodegradation ofphenylhydrazine. J Ind Eng Chem.2014;20(2):695-704.
    [40]. Zhang X W, Wang D K, Lopez D R S, da Costa J C D. Fabrication ofnanostructured TiO2hollow fiber photocatalytic membrane and application forwastewater treatment. Chem Eng J.2014;236:314-322.
    [41]. Cappelletti G, Ardizzone S, Bianchi C L, Gialanella S, Naldoni A, Pirola C, et al.Photodegradation of Pollutants in Air: Enhanced Properties of Nano-TiO2Prepared byUltrasound. Nanoscale Res Lett.2009;4(2):97-105.
    [42]. Nischk M, Mazierski P, Gazda M, Zaleska A. Ordered TiO2nanotubes: Theeffect of preparation parameters on the photocatalytic activity in air purificationprocess. Appl Catal B-Environ.2014;144:674-685.
    [43]. Dong F, Ou M Y, Jiang Y K, Guo S, Wu Z B. Efficient and Durable VisibleLight Photocatalytic Performance of Porous Carbon Nitride Nanosheets for AirPurification. Ind Eng Chem Res.2014;53(6):2318-2330.
    [44]. El-Roz M, Kus M, Cool P, Thibault-Starzyk F. New Operando IR Technique toStudy the Photocatalytic Activity and Selectivity of TiO2Nanotubes in AirPurification: Influence of Temperature, UV Intensity, and VOC Concentration. J PhysChem C.2012;116(24):13252-13263.
    [45]. Shelimov B, Tolkachev N, Baeva G, Stakheev A, Kazansky V. Photocatalyticpurification of indoor air from nitrogen oxide contaminants on modified TiO2-basedcatalysts. Catalysis Today.2011;176(1):3-6.
    [46]. Aguia C, Angelo J, Madeira L M, Mendes A. Influence of paint components onphotoactivity of P25titania toward NO abatement. Polym Degrad Stabil.2011;96(5):898-906.
    [47]. Allen N S, Edge M, Sandoval G, Verran J, Stratton J, Maltby J. Photocatalyticcoatings for environmental applications. Photochem Photobiol.2005;81(2):279-290.
    [48]. Tryba B, Janus M, Wrobel R J, Przepiorski J, Grzechulska-Damszel J, MorawskiA W. Photodegradation of Benzo-[a]-pyrene on the Surface of the PhotocatalyticPaints and Analysis of the Degradation Products. J Adv Oxid Technol.2013;16(1):151-158.
    [49]. Kandavelu V, Kastien H, Thampi K R. Photocatalytic degradation ofisothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2andZnO catalysts. Appl Catal B-Environ.2004;48(2):101-111.
    [50]. Yaghoubi H, Taghavinia N, Alamdari E K. Self cleaning TiO2coating onpolycarbonate: Surface treatment, photocatalytic and nanomechanical properties. SurfCoat Tech.2010;204(9-10):1562-1568.
    [51]. Hwang D K, Shul Y G, Oh K. Photocatalytic Application of Au-TiO2Immobilized in Polycarbonate Film. Ind Eng Chem Res.2013;52(50):17907-17912.
    [52]. Fateh R, Dillert R, Bahnemann D. Preparation and Characterization ofTransparent Hydrophilic Photocatalytic TiO2/SiO2Thin Films on Polycarbonate.Langmuir.2013;29(11):3730-3739.
    [53]. Akgun B A, Wren A W, Durucan C, Towler M R, Mellott N P. Sol-gel derivedsilver-incorporated titania thin films on glass: bactericidal and photocatalytic activity.J Sol-Gel Sci Techn.2011;59(2):228-238.
    [54]. Ganesh V A, Nair A S, Raut H K, Walsh T M, Ramakrishna S. Photocatalyticsuperhydrophilic TiO2coating on glass by electrospinning. Rsc Adv.2012;2(5):2067-2072.
    [55]. Zhang X C, Li Y L, Lin Z X, Zhang S Y. Photocatalytic activity of SiO2/TiO2supported on glass fiber under visible light irradiation. Advanced Materials, Pts1-4.2011;239-242:571-574.
    [56]. Nejand B A, Sanjabi S, Ahmadi V. Sputter deposition of high transparentTiO2-xNx/TiO2/ZnO layers on glass for development of photocatalytic self-cleaningapplication. Applied Surface Science.2011;257(24):10434-10442.
    [57]. Sayama K, Hayashi H, Konishi Y, Gunji T, Sugihara H. Photocatalytic andAntibacterial Activities over WO3on Glass Filters. Chem Lett.2010;39(8):884-885.
    [58]. Li Q M. Preparation and characterization of antibacterial polyacrylonitrile-basedactivated carbon fiber supporting Nano-ZnO. Chem Res Chinese U.2013;29(5):1011-1015.
    [59]. Suwannamek N, Ruangpaisarn N, Prahsan C. Effect of Fiber Cross-SectionalShape and Nano ZnO/Modified Chitosan Loading on Antibacterial Properties.Eco-Materials Processing and Design Xiv.2013;761:103-106.
    [60]. Chang Y T, Lin C H, Chang Y J, Chiang C C. Bactericidal Activity ofPhotocatalytic Reaction in Aqueous Media by the TiO2-Coated Stainless Steel Sieves.Renewable and Sustainable Energy, Pts1-7.2012;347-353:1906-1910.
    [61]. Muangtrairat N, Rachpech V, Sikong L. Photocatalytic and AntibacterialProperties of TiO2Composite Thin Films Coated on304Stainless Steel SubstrateSynthesized at Low Temperature. Advances in Key Engineering Materials.2011;214:444-449.
    [62]. Yu J C, Ho W K, Lin J, Yip K Y, Wong P K. Photocatalytic activity,antibacterial effect, and photoinduced hydrophilicity of TiO2films coated on astainless steel substrate. Environ Sci Technol.2003;37(10):2296-2301.
    [63]. Priambodo P S, Yusivar F, Subiantoro A, Gunawan R. Development ofElectrolysis System Powered by Solar-Cell Array to Supply Hydrogen Gas forFuel-Cell Energy Resource Systems. International Workshop on Advanced Materialfor New and Renewable Energy.2009;1169:206-213.
    [64]. Contreras A, Guirado R, Veziroglu T N. Design and simulation of the powercontrol system of a plant for the generation of hydrogen via electrolysis, usingphotovoltaic solar energy. Int J Hydrogen Energ.2007;32(18):4635-4640.
    [65]. Ohya H, Yatabe M, Aihara M, Negishi Y, Takeuchi T. Feasibility of hydrogenproduction above2500K by direct thermal decomposition reaction in membranereactor using solar energy. Int J Hydrogen Energ.2002;27(4):369-376.
    [66]. Moller S, Kaucic D, Sattler C. Hydrogen production by solar reforming ofnatural gas: A comparison study of two possible process configurations. J SolEnerg-T Asme.2006;128(1):16-23.
    [67]. Burgess S J, Tamburic B, Zemichael F, Hellgardt K, Nixon P J. Solar-DrivenHydrogen Production in Green Algae. Adv Appl Microbiol.2011;75:71-110.
    [68]. Hemschemeier A, Melis A, Happe T. Analytical approaches to photobiologicalhydrogen production in unicellular green algae. Photosynth Res.2009;102(2-3):523-540.
    [69]. Zhang W, Chen Z A. Photobiological hydrogen production from seawater bymarine green algae. J Biotechnol.2007;131(2): S125-S125.
    [70]. Shimura K, Kawai H, Yoshida T, Yoshida H. Simultaneously photodepositedrhodium metal and oxide nanoparticles promoting photocatalytic hydrogen production.Chemical Communications.2011;47(31):8958-8960.
    [71]. Li Q, Guo B D, Yu J G, Ran J R, Zhang B H, Yan H J, et al. Highly EfficientVisible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-DecoratedGraphene Nanosheets. Journal of the American Chemical Society.2011;133(28):10878-10884.
    [72]. Okamoto Y, Ida S, Hyodo J, Hagiwara H, Ishihara T. Synthesis andPhotocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets forHydrogen Production from a Water/Methanol System without Cocatalyst Loading.Journal of the American Chemical Society.2011;133(45):18034-18037.
    [73]. Chen X B, Shen S H, Guo L J, Mao S S. Semiconductor-based PhotocatalyticHydrogen Generation. Chem Rev.2010;110(11):6503-6570.
    [74]. Song J T, Mashiko H, Kamiya M, Nakamine Y, Ohtomo A, Iwasaki T, et al.Improved visible light driven photoelectrochemical properties of3C-SiCsemiconductor with Pt nanoparticles for hydrogen generation. Appl Phys Lett.2013;103(21),213901.
    [75]. Sun Y J, Sun J W, Long J R, Yang P D, Chang C J. Photocatalytic generation ofhydrogen from water using a cobalt pentapyridine complex in combination withmolecular and semiconductor nanowire photosensitizers. Chem Sci.2013;4(1):118-124.
    [76]. Chen G D, Sun M, Wei Q, Ma Z M, Du B. Efficient photocatalytic reduction ofaqueous Cr(VI) over CaSb2O5(OH)(2) nanocrystals under UV light illumination. ApplCatal B-Environ.2012;125:282-287.
    [77]. Lei X F, Xue X X. Photocatalytic reduction of Cr(VI) in the presence of citricacid over perovskite type SO42-/TBBFS under UV-vis light irradiation. EnvironmentMaterials and Environment Management Pts1-3.2010;113-116:1632-1638.
    [78]. Qiu R L, Zhang D D, Diao Z H, Huang X F, He C, Morel J L, et al. Visible lightinduced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2and itssynergism with phenol oxidation. Water Res.2012;46(7):2299-2306.
    [79]. Mohamed R M, Aazam E S. Enhancement of photocatalytic activity ofZnO-SiO2by nano-sized Ag for visible photocatalytic reduction of Hg(II). DesalinWater Treat.2012;50(1-3):140-146.
    [80]. Li L Y, Jiang F, Liu J L, Wan H Q, Wan Y Q, Zheng S R. Enhancedphotocatalytic reduction of aqueous Pb(II) over Ag loaded TiO2with formic acid ashole scavenger. J Environ Sci Heal A.2012;47(3):327-336.
    [81]. Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in thepresence of titanium dioxide in aqueous suspensions. Bull Environ Contam Toxicol.1976;16(6):697-701.
    [82]. Zhao J, Yang X D. Photocatalytic oxidation for indoor air purification: aliterature review. Build Environ.2003;38(5):645-654.
    [83]. Yu Q L, Ballari M M, Brouwers H J H. Indoor air purification usingheterogeneous photocatalytic oxidation. Part II: Kinetic study. Appl Catal B-Environ.2010;99(1-2):58-65.
    [84]. Ai Z H, Lee S C, Huang Y, Ho W K, Zhang L Z. Photocatalytic removal of NOand HCHO over nanocrystalline Zn2SnO4microcubes for indoor air purification.Journal of Hazardous Materials.2010;179(1-3):141-150.
    [85]. Yu Q L, Brouwers H J H. Indoor air purification using heterogeneousphotocatalytic oxidation. Part I: Experimental study. Appl Catal B-Environ.2009;92(3-4):454-461.
    [86]. Sdringola P, Proietti S, Desideri U, Giombini G. Thermo-fluid dynamicmodeling and simulation of a bioclimatic solar greenhouse with self-cleaning andphotovoltaic glasses. Energy and Boulding.2014;(65):183-195.
    [87]. Cedillo-Gonzalez E I, Ricco R, Montorsi M, Montorsi M, Falcaro P, Siligardi C.Self-cleaning glass prepared from a commercial TiO2nano-dispersion and itsphotocatalytic performance under common anthropogenic and atmospheric factors.Build Environ.2014;71:7-14.
    [88]. Guo M Z, Ling T C, Poon C S. TiO2-based self-compacting glass mortar:Comparison of photocatalytic nitrogen oxide removal and bacteria inactivation. BuildEnviron.2012;53:1-6.
    [89]. Wang C Y, Tang H J, Pang S H, Qiu J X, Tao Y. Enhancing sunlightphotocatalytic efficiency of self-cleaning glass by coating ZnFe2O4-TiO2film. RareMetal Mat Eng.2008;37:548-551.
    [90]. Yu J G, Zhao X J. Hydrophilicity and photocatalytic activity of self-cleaningporous TiO2thin films on glass. Chem J Chinese U.2000;21(9):1437-1440.
    [91]. Fu J. Highly photocatalytic glass ceramics containing MgTi4(PO4)6crystals.Mater Lett.2014;118:84-87.
    [92]. Fu J. Photocatalytic properties of glass ceramics containing anatase-type TiO2.Mater Lett.2012;68:419-422.
    [93]. Machida F, Daiko Y, Mineshige A, Kobune M, Toyoda N, Yamada I, et al.Structures and Photocatalytic Properties of Crystalline Titanium Oxide-DispersedNanoporous Glass-Ceramics. J Am Ceram Soc.2010;93(2):461-464.
    [94]. Yoshida K, Masai H, Takahashi Y, Ihara R, Fujiwara T. Fabrication ofSr0.5Ba0.5Nb2O6-precipitated microstructured ceramics for photocatalytic application.Journal of the Ceramic Society of Japan.2011;119(1394):731-735.
    [95]. Ichiura H, Kitaoka T, Tanaka H. Photocatalytic oxidation of NOx usingcomposite sheets containing TiO2and a metal compound. Chemosphere.2003;51(9):855-860.
    [96]. Zhou L, Tan X, Zhao L, Sun M. Photocatalytic oxidation of NOx overvisible-fight-responsive nitrogen-doped TiO2. Korean J Chem Eng.2007;24(6):1017-1021.
    [97]. Jing L Q, Xin B F, Yuan F L, Wang B Q, Shi K Q, Cai W M, Fu H G.Deactivation and regeneration of ZnO and TiO2nanoparticles in the gas phasephotocatalytic oxidation of n-C7H16or SO2. Applied Catalysis A-General.2004;275(1-2):49-54
    [98]. Wang S Q, Wang Y T, Liu Y D. Experimental Research of Visible light-inducedPhotocatalytic Oxidation Effects of SO2by N-doping Nano-TiO2. Nanotechnologyand Advanced Materials.2012;486:12-17.
    [99]. Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2Surfaces: Principles,Mechanisms, and Selected Results. Chem Rev.1995;95:735-758.
    [100]. Hoffmann M R, Martin S T, Choi W, Bahneman D W. EnvironmentalApplications of Semiconductor Photocatalysis. Chem Rev.1995;95:69-96.
    [101]. Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants inQuantum-Sized TiO2: Correlation between Photoreactivity and Charge CarrierRecombination Dynamics. J Phys Chem.1994;98:13669-13679.
    [102].Sato E, Hasebe M, Kanaoka Y. Photochemistry of ConjugatedNitrogen-Thiocarbonyl Systems.3. Photoaddition of Olefins to3(2h)-Pyridazinethiones. Chem Pharm Bull.1986;34(7):3061-3063.
    [103]. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysisin nitrogen-doped titanium oxides. Science.2001;293(5528):269-271.
    [104]. Hassan M E, Cong L C, Liu G L, Zhu D W, Cai J B. Synthesis andcharacterization of C-doped TiO2thin films for visible-light-induced photocatalyticdegradation of methyl orange. Applied Surface Science.2014;294:89-94.
    [105]. Nie L H, Xu H T, Yuan S D. A Simple Way to Prepare C-doped TiO2withVisible Light Photocatalytic Activity. Advanced Materials, Pts1-4.2011;239-242:1175-1179.
    [106]. Li H Y, Wang D J, Fan H M, Wang P, Jiang T F, Xie T F. Synthesis of highlyefficient C-doped TiO2photocatalyst and its photo-generated charge-transferproperties. J Colloid Interf Sci.2011;354(1):175-180.
    [107]. Dong F, Guo S, Wang H, Li X F, Wu Z B. Enhancement of the Visible LightPhotocatalytic Activity of C-Doped TiO2Nanomaterials Prepared by a GreenSynthetic Approach. J Phys Chem C.2011;115(27):13285-13292.
    [108]. Chen X B, Burda C. The electronic origin of the visible-light absorptionproperties of C-, N-and S-doped TiO2nanomaterials. J. Am. Chem. Soc.,2008;130(15):5018-5019.
    [109]. Nakano Y, Morikawa T, Ohwaki T, Taga Y. Electrical characterization of bandgap states in C-doped TiO2films. Appl Phys Lett.2005;87(5),052111.
    [110]. Choi Y, Umebayashi T, Yoshikawa M. Fabrication and characterization ofC-doped anatase TiO2photocatalysts. J Mater Sci.2004;39(5):1837-1839.
    [111]. Ma D, Xin Y J, Gao M C, Wu J. Fabrication and photocatalytic properties ofcationic and anionic S-doped TiO2nanofibers by electrospinning. Appl CatalB-Environ.2014;147:49-57.
    [112]. Peng X L, Yao M M, Li F, Sun X H. Microstructures and PhotocatalyticProperties of S Doped Nanocrystalline TiO2Films. Particul Sci Technol.2012;30(1):81-91.
    [113]. Gao Y L, Liu S Y, Zhang F, Feng Q G. Solid Phase Synthesis of S-doped TiO2Nanomaterials with Visible Light Degradation Property. Green Building Materials Iii.2012;509:65-73.
    [114]. Nishijima K, Ohtani B, Yan X L, Kamai T, Chiyoya T, Tsubota T, et al.Incident light dependence for photocatalytic degradation of acetaldehyde and aceticacid on S-doped and N-doped TiO2photocatalysts. Chem Phys.2007;339(1-3):64-72.
    [115]. Nishijima K, Naitoh H, Tsubota T, Ohno T. Visible-light-induced hydrophilicconversion of an S-doped TiO2thin film and its photocatalytic activity fordecomposition of acetaldehyde in gas phase. Journal of the Ceramic Society of Japan.2007;115(1341):310-314.
    [116]. Zhou W Y, Cao Q Y, Tang S Q, Liu Y J. Doping mechanism and visible-lightphotocatalytic activity of S-doped TiO2nano powders. J Inorg Mater.2006;21(4):776-782.
    [117]. Li L, Yang Y L, Liu X R, Fan R Q, Shi Y, Li S, et al. A direct synthesis ofB-doped TiO2and its photocatalytic performance on degradation of RhB. AppliedSurface Science.2013;265:36-40.
    [118]. Xu J J, Ao Y H, Chen M D. Preparation of B-doped titania hollow sphere andits photocatalytic activity under visible light. Mater Lett.2009;63(28):2442-2444.
    [119]. Yu A M, Wu G J, Yan J J, Meng C M, Mang F X, Yang Y L, et al. Synthesisof Visible Light Responsive B-Doped TiO2by Hydrothermal Method and ItsPhotocatalytic Activity in Phenol Degradation. Chinese J Catal.2009;30(2):137-141.
    [120]. Zhao W, Zhong Q, Pan Y X, Zhang R. Defect structure and evolutionmechanism of O2-radical in F-doped V2O5/TiO2catalysts. Colloid Surface A.2013;436:1013-1020.
    [121]. Lin X X, Ji X, Fu D G, Hao L Y. Photocatalytic Properties of MagneticActivated Carbon Supported F-doped TiO2. J Inorg Mater.2013;28(9):997-1002.
    [122]. Chen Y M, Zhong J, Chen F, Zhang J L. Low-Temperature Preparation andPhotocatalytic Performance of F-Doped Nanosized TiO2Thin Film. Chinese J Catal.2010;31(1):120-125.
    [123]. Yu Y, Wu H H, Zhu B L, Wang S R, Huang W P, Wu S H, et al. Preparation,characterization and photocatalytic activities of F-doped TiO2nanotubes. Catal Lett.2008;121(1-2):165-171.
    [124]. Xu J J, Ao Y H, Fu D G, Yuan C W. Low-temperature preparation of F-dopedTiO2film and its photocatalytic activity under solar light. Applied Surface Science.2008;254(10):3033-3038.
    [125]. Wu G S, Wang J P, Thomas D F, Chen A C. Synthesis of F-doped flower-likeTiO2nanostructures with high photoelectrochemical activity. Langmuir.2008;24(7):3503-3509.
    [126]. Huang D G, Liao S J, Quan S Q, Liu L, He Z J, Wan J B, et al. Preparation ofanatase F doped TiO2sol and its performance for photodegradation of formaldehyde.J Mater Sci.2007;42(19):8193-8202.
    [127]. Li D, Haneda H, Hishita S, Ohashi N. Visible-light-driven N-F-codoped TiO2photocatalysts.2. Optical characterization, photocatalysis, and potential application toair purification. Chem Mater.2005;17(10):2596-2602.
    [128]. Jiang Y H, Luo Y Y, Zhang F M, Guo L Q, Ni L. Equilibrium and kineticstudies of CI Basic Blue41adsorption onto N, F-codoped flower-like TiO2microspheres. Applied Surface Science.2013;273:448-456.
    [129]. Wen J, Zuo C Y, Xu M, Zhong C, Qi K. First-principles investigation ofelectronic structure and optical properties in N-F codoped ZnO with wurtzite structure.Eur Phys J B.2011;80(1):25-30.
    [130]. Ding H, Zhang N, Rong F, Fu D G. Preparation, Characterization andBactericidal Activity of N-F-codoped TiO2Film. J Inorg Mater.2011;26(5):517-522.
    [131]. Xu J A, Yang B F, Wu M, Fu Z P, Lv Y, Zhao Y X. Novel N-F-Codoped TiO2Inverse Opal with a Hierarchical Meso-/Macroporous Structure: Synthesis,Characterization, and Photocatalysis. J. Phys. Chem. C.2010;114(36):15251-15259.
    [132]. Pelaez M, de la Cruz A A, Stathatos E, Falaras P, Dionysiou D D. Visiblelight-activated N-F-codoped TiO2nanoparticles for the photocatalytic degradation ofmicrocystin-LR in water. Catalysis Today.2009;144(1-2):19-25.
    [133]. Li D, Haneda H, Hishita S, Ohashi N. Visible-light-driven N-F-codoped TiO2photocatalysts.1. Synthesis by spray pyrolysis and surface characterization. ChemMater.2005;17(10):2588-2595.
    [134]. Zong X, Xing Z, Yu H, Chen Z G, Tang F Q, Zou J, et al. Photocatalytic wateroxidation on F, N co-doped TiO2with dominant exposed {001} facets under visiblelight. Chem Commun.2011;47(42):11742-11744.
    [135]. Giannakas A E, Seristatidou E, Deligiannakis Y, Konstantinou I. Photocatalyticactivity of N-doped and N-F co-doped TiO2and reduction of chromium(VI) inaqueous solution: An EPR study. Appl Catal B-Environ.2013;132:460-468.
    [136]. Yan H J, Kochuveedu S T, Quan L N, Lee S S, Kim D H. Enhancedphotocatalytic activity of C, F-codoped TiO2loaded with AgCl. J Alloy Compd.2013;560:20-26.
    [137]. Li Z B, Xia W, Jia L C. Enhanced visible light photocatalytic activity ofanatase TiO2through C, N, and F codoping. Can J Phys.2014;92(1):71-75.
    [138]. Yu Z J, Zhou A N. Preparation and application of S cation and N anionco-doped TiO2pillared montmorillonite nano composite photocatalyst. Proceedings of2005International Conference on Advanced Fibers and Polymer Materials (ICAFPM2005), Vol1and2.2005:489-492.
    [139]. Li X, Xiong R C, Wei G. S-N co-doped TiO2photocatalysts with visible-lightactivity prepared by sol-gel method. Catal Lett.2008;125(1-2):104-109.
    [140]. Hu S Z, Li F Y, Fan Z P. Preparation and Characterization of N, S Co-dopedTiO2Nanopowder and its Photocatalytic Activity under Visible Light. Asian J Chem.2012;24(10):4709-4712.
    [141]. Dolat D, Quici N, Kusiak-Nejman E, Morawski A W, Puma G L. One-step,hydrothermal synthesis of nitrogen, carbon co-doped titanium dioxide (N,C-TiO2)photocatalysts. Effect of alcohol degree and chain length as carbon dopant precursorson photocatalytic activity and catalyst deactivation. Appl Catal B-Environ.2012;115:81-89.
    [142]. Li L H, Lu J, Wang Z S, Yang L, Zhou X F, Han L. Fabrication of the C-Nco-doped rod-like TiO2photocatalyst with visible-light responsive photocatalyticactivity. Mater Res Bull.2012;47(6):1508-1512.
    [143]. Wang X P, Lim T T. Effect of hexamethylenetetramine on the visible-lightphotocatalytic activity of C-N codoped TiO2for bisphenol A degradation: evaluationof photocatalytic mechanism and solution toxicity. Appl Catal a-Gen.2011;399(1-2):233-241.
    [144]. Wang X P, Lim T T. Solvothermal synthesis of C-N codoped TiO2andphotocatalytic evaluation for bisphenol A degradation using a visible-light irradiatedLED photoreactor. Appl Catal B-Environ.2010;100(1-2):355-364.
    [145]. Yu C L, Yu J C. A Simple Way to Prepare C-N-Codoped TiO(2) Photocatalystwith Visible-Light Activity. Catal Lett.2009;129(3-4):462-470.
    [146]. Ao Y H, Xu J J, Fu D G, Yuan C W. Visible-light responsive C,N-codopedTitania hollow spheres for X-3B dye photodegradation. Micropor Mesopor Mat.2009;118(1-3):382-386.
    [147]. Anandan S, Ikuma Y, Kakinuma K, Niwa K. Synthesis and Characterization ofa Highly Crystalline Novel Mesoporous C-and N-Codoped TiO2Nanophotocatalyst.Nano.2008;3(5):367-372.
    [148]. Xu Q C, Wellia D V, Sk M A, Lim K H, Loo J S C, Liao D W, et al.Transparent visible light activated C-N-F-codoped TiO2films for self-cleaningapplications. J Photoch Photobio A.2010;210(2-3):181-187.
    [149]. Shen Y F, Xiong T Y, Du H, Jin H Z, Shang J K, Yang K. Investigation ofBr-N Co-doped TiO2photocatalysts: preparation and photocatalytic activities undervisible light. J Sol-Gel Sci Techn.2009;52(1):41-48.
    [150]. Li X, Chen Z M, Shi Y C, Liu Y Y. Preparation of N, Fe co-doped TiO2withvisible light response. Powder Technol.2011;207(1-3):165-169.
    [151]. Mangham A N, Govind N, Bowden M E, Shutthanandan V, Joly A G,Henderson M A, et al. Photochemical Properties, Composition, and Structure inMolecular Beam Epitaxy Grown Fe "Doped" and (Fe,N) Codoped Rutile TiO2(110).J Phys Chem C.2011;115(31):15416-15424.
    [152]. Huang K Q, Chen L, Xiong J W, Liao M X. Preparation and Characterization of Visible-Light-Activated Fe-N Co-Doped TiO2and Its Photocatalytic Inactivation Effect on Leukemia Tumors. Int J Photoenergy. http://dx.doi.org/10.1155/2012/631435
    [153]. Cottineau T, Bealu N, Gross P A, Pronkin S N, Keller N, Savinova E R, et al.One step synthesis of niobium doped titania nanotube arrays to form (N,Nb) co-dopedTiO2with high visible light photoelectrochemical activity. J Mater Chem A.2013;1(6):2151-2160.
    [154]. Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo J N, Hara M, et al.Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A.2002;106(29):6750-6753.
    [155]. Yang X, Cao C, Hohn K, Erickson L, Maghirang R, Hamal D, et al. Highlyvisible-light active C-and V-doped TiO2for degradation of acetaldehyde. J Catal.2007;252(2):296-302.
    [156]. Li X, Liu Y Y, Yang P F, Shi Y C. Visible light-driven photocatalysis of W, Nco-doped TiO2. Particuology.2013;11(6):732-736.
    [157]. Thind S S, Wu G S, Tian M, Chen A C. Significant enhancement in thephotocatalytic activity of N, W co-doped TiO2nanomaterials for promisingenvironmental applications. Nanotechnology.2012;23(47):475706.
    [158]. Kubacka A, Bachiller-Baeza B, Colon G, Fernandez-Garcia M. Doping leveleffect on sunlight-driven W,N-co-doped TiO2-anatase photo-catalysts for aromatichydrocarbon partial oxidation. Appl Catal B-Environ.2010;93(3-4):274-281.
    [159]. Kasahara A, Nukumizu K, Takata T, Kondo J N, Hara M, Kobayashi H, et al.LaTiO2N as a visible-light (<=600nm)-driven photocatalyst (2). J Phys Chem B.2003;107(3):791-797.
    [160]. Hara N, Hitoki G, Takata T, Kondo J N, Kobayashi H, Domen K. Ta3N5andTaON as novel photocatalysts responding to visible light. Science and Technology inCatalysis2002.2003;145:169-172.
    [161]. Hara M, Hitoki G, Takata T, Kondo J N, Kobayashi H, Domen K. TaON andTa3N5as new visible light driven photocatalysts. Catalysis Today.2003;78(1-4):555-560.
    [162]. Hitoki G, Ishikawa A, Takata T, Kondo J N, Hara M, Domen K. Ta3N5as anovel visible light-driven photocatalyst (lambda <600nm). Chem Lett.2002;(7):736-737.
    [163]. Jang J S, Ji S M, Bae S W, Son H C, Lee J S. Optimization of CdS/TiO2nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3aqueous electrolyte solution under visible light (lambda>=420nm). J PhotochPhotobio A.2007;188(1):112-119.
    [164]. Qian S S, Wang C S, Liu W J, Zhu Y H, Yao W J, Lu X H. An enhancedCdS/TiO2photocatalyst with high stability and activity: Effect of mesoporoussubstrate and bifunctional linking molecule. Journal of Materials Chemistry.2011;21(13):4945-4952.
    [165]. Hu Z S, Song C X, Wang D B, Wang H T, Fu X. Preparation andcharacterization of hollow spheres consisting of CdS/TiO2composite. Rare Metal MatEng.2005;34:8-10.
    [166]. Bessekhouad Y, Chaoui N, Trzpit M, Ghazzal N, Robert D, Weber J V. UV-visversus visible degradation of Acid Orange II in a coupled CdS/TiO2semiconductorssuspension. J Photoch Photobio A.2006;183(1-2):218-224.
    [167]. Jang J S, Li W, Oh S H, Lee J S. Fabrication of CdS/TiO2nano-bulk compositephotocatalysts for hydrogen production from aqueous H2S solution under visible light.Chem Phys Lett.2006;425(4-6):278-282.
    [168]. Lv T, Pan L K, Liu X J, Lu T, Zhu G, Sun Z, et al. One-step synthesis of CdS-TiO2-chemically reduced graphene oxide composites via microwave-assisted reactionfor visible-light photocatalytic degradation of methyl orange. Catal Sci Technol.2012;2(4):754-758.
    [169]. Liu Z Y, Hu Z Y, Huang H C, Zhang Q Q, Zhang T R, Zhai J, et al.Heterogeneous3-D nanotubular arrays of CdS-TiO2: efficient collections of reflectionlight for enhanced photoelectric output. Journal of Materials Chemistry.2012;22(41):22120-22125.
    [170]. Pan J H, Lee W I. Preparation of highly ordered cubic mesoporous WO3/TiO2films and their photocatalytic properties. Chem Mater.2006;18(3):847-853.
    [171]. Song K Y, Park M K, Kwon Y T, Lee H W, Chung W J, Lee W I. Preparationof transparent particulate MoO3/TiO2and WO3/TiO2films and their photocatalyticproperties. Chem Mater.2001;13(7):2349-2355.
    [172]. He J, Luo Q, Cai Q Z, Li X W, Zhang D Q. Microstructure and photocatalyticproperties of WO3/TiO2composite films by plasma electrolytic oxidation. MaterChem Phys.2011;129(1-2):242-248.
    [173]. Ke D N, Liu H J, Peng T Y, Liu X, Dai K. Preparation and photocatalyticactivity of WO3/TiO2nanocomposite particles. Mater Lett.2008;62(3):447-450.
    [174]. Barpuzary D, Khan Z, Vinothkumar N, De M, Qureshi M. HierarchicallyGrown Urchinlike CdS@ZnO and CdS@Al2O3Heteroarrays for EfficientVisible-Light-Driven Photocatalytic Hydrogen Generation. J Phys Chem C.2012;116(1):150-156.
    [175]. Nayak J, Sahu S N, Kasuya J, Nozaki S. CdS-ZnO composite nanorods:Synthesis, characterization and application for photocatalytic degradation of3,4-dihydroxy benzoic acid. Applied Surface Science.2008;254(22):7215-7218.
    [176]. Fan X, Zhang M L, Shafiq I, Zhang W J, Lee C S, Lee S T. ZnS/ZnOHeterojunction Nanoribbons. Adv Mater.2009;21(23):2393-2396.
    [177]. Hu L F, Yan J, Liao M Y, Xiang H J, Gong X G, Zhang L D, et al. AnOptimized Ultraviolet-A Light Photodetector with Wide-Range Photoresponse Basedon ZnS/ZnO Biaxial Nanobelt. Adv Mater.2012;24(17):2305-2309.
    [178]. Chung J K, Kim J W, Do D, Kim S S, Song T K, Kim W J. Energy Band GapShift of ZnS-ZnO Thin Films Grown by Pulsed Laser Deposition. Ferroelectrics.2010;404:186-191.
    [179]. Lo S C, Lin C F, Wu C H, Hsieh P H. Capability of coupled CdSe/TiO2forphotocatalytic degradation of4-chlorophenol. Journal of Hazardous Materials.2004;114(1-3):183-190.
    [180]. Ho W K, Yu J C. Sonochemical synthesis and visible light photocatalyticbehavior of CdSe and CdSe/TiO2nanoparticles. J Mol Catal a-Chem.2006;247(1-2):268-274.
    [181]. Kim J Y, Choi S B, Noh J H, HunYoon S, Lee S, Noh T H, et al. Synthesis ofCdSe-TiO2Nanocomposites and Their Applications to TiO2Sensitized Solar Cells.Langmuir.2009;25(9):5348-5351.
    [182]. Chakrapani V, Tvrdy K, Kamat P V. Modulation of Electron Injection in CdSe-TiO2System through Medium Alkalinity. J. Am. Chem. Soc.,2010;132(4):1228-1229.
    [183]. Okur H I, Turker Y, Dag O. Synthesis of Stable Mesostructured CoupledSemiconductor Thin Films: meso-CdS-TiO2and meso-CdSe-TiO2. Langmuir.2010;26(1):538-544.
    [184]. Wang Y J, Shao J P, Deng A Z, Li D. Preparation and Characterization ofSnO2/TiO2Composite with Low Infrared Emissivity. Advanced Materials, Pts1-3.2012;415-417:768-771.
    [185]. Li Y J, Cao T P, Wang C H, Shao C L. Fabrication and EnhancedPhotocatalytic Properties of Heterostructures SnO2/TiO2Composite Nanofibers.Chem J Chinese U.2011;32(4):822-827.
    [186]. Akurati K K, Vital A, Hany R, Bommer B, Graule T, Winterer M. One-stepflame synthesis of SnO2/TiO2composite nanoparticles for photocatalytic applications.Int J Photoenergy.2005;7(4):153-161.
    [187]. Alcantara R, Canoira L, Joao P G, Rodriguez J G, Vazquez I. Photoxidation ofethylbenzene with air catalyzed by a polymer supported Rose Bengal photosensitizer.J Photoch Photobio A.2000;133(1-2):27-32.
    [188]. Zhao D, Chen C, Wang Y, Ma W, Zhao J, Rajh T, et al. Enhancedphotocatalytic degradation of dye pollutants under visible irradiation onAl(III)-modified TiO2: Structure, interaction, and interfacial electron transfer. EnvironSci Technol.2008;42(1):308-314.
    [189]. Kim W, Tachikawa T, Majima T, Choi W. Photocatalysis of Dye-SensitizedTiO2Nanoparticles with Thin Overcoat of Al2O3: Enhanced Activity for H2Production and Dechlorination of CCl4. J Phys Chem C.2009;113(24):10603-10609.
    [190]. Hara K, Sugihara H, Tachibana Y, Islam A, Yanagida M, Sayama K, et al.Dye-sensitized nanocrystalline TiO2solar cells based on ruthenium(II) phenanthrolinecomplex photosensitizers. Langmuir.2001;17(19):5992-5999.
    [191]. Matsuoka M, Ide Y, Ogawa M. Temperature-dependent photocatalytichydrogen evolution activity from water on a dye-sensitized layered titanate. PhysChem Chem Phys.2014;16(8):3520-3522.
    [192]. Qin G H, Zhang Y, Ke X B, Tong X L, Sun Z, Liang M, et al. Photocatalyticreduction of carbon dioxide to formic acid, formaldehyde, and methanol usingdye-sensitized TiO2film. Appl Catal B-Environ.2013;129:599-605.
    [193]. Li Z Y, Fang Y L, Zhan X Q, Xu S. Facile preparation of squarylium dyesensitized TiO2nanoparticles and their enhanced visible-light photocatalytic activity.J Alloy Compd.2013;564:138-142.
    [194]. Li Z Y, Fang Y L, Xu S. Squaraine dye sensitized TiO2nanocomposites withenhanced visible-light photocatalytic activity. Mater Lett.2013;93:345-348.
    [195]. Li L, Yue E, Lian L S, Ma W H. Visible light induced dye-sensitizedphotocatalytic hydrogen production over platinized TiO2derived from decompositionof platinum complex precursor. Int J Hydrogen Energ.2013;38(25):10746-10753.
    [196]. Chen Y J, Mou Z G, Yin S L, Huang H, Yang P, Wang X M, et al. Grapheneenhanced photocatalytic hydrogen evolution performance of dye-sensitized TiO2under visible light irradiation. Mater Lett.2013;107:31-34.
    [197]. Zhang X H, Veikko U, Mao J, Cai P, Peng T Y. Visible-Light-InducedPhotocatalytic Hydrogen Production over Binuclear RuII-Bipyridyl Dye-SensitizedTiO2without Noble Metal Loading. Chem-Eur J.2012;18(38):12103-12111.
    [198]. Lakadamyali F, Reisner E. Photocatalytic H2evolution from neutral water witha molecular cobalt catalyst on a dye-sensitised TiO2nanoparticle. ChemicalCommunications.2011;47(6):1695-1697.
    [199]. Zhang M A, Chen C C, Ma W H, Zhao J C. Visible-Light-Induced AerobicOxidation of Alcohols in a Coupled Photocatalytic System of Dye-Sensitized TiO2and TEMPO. Angew Chem Int Edit.2008;47(50):9730-9733.
    [200]. Wu T X, Lin T, Zhao J C, Hidaka H, Serpone N. TiO2-assistedphotodegradation of dyes.9. Photooxidation of a squarylium cyanine dye in aqueousdispersions under visible light irradiation. Environ Sci Technol.1999;33(9):1379-1387.
    [201]. Liu G M, Wu T X, Zhao J C, Hidaka H, Serpone N. Photoassisted degradationof dye pollutants.8. Irreversible degradation of alizarin red under visible lightradiation in air-equilibrated aqueous TiO2dispersions. Environ Sci Technol.1999;33(12):2081-2087.
    [202]. Liu G M, Li X Z, Zhao J C, Hidaka H, Serpone N. Photooxidation pathway ofsulforhodamine-B. Dependence on the adsorption mode on TiO2exposed to visiblelight radiation. Environ Sci Technol.2000;34(18):3982-3990.
    [203]. Chen C C, Zhao W, Li J Y, Zhao J C. Formation and identification ofintermediates visible-light-assisted photodegradation sulforhodamine-B dye inaqueous TiO2dispersion. Environ Sci Technol.2002;36(16):3604-3611.
    [204]. Liu G M, Li X Z, Zhao J C, Horikoshi S, Hidaka H. Photooxidation mechanismof dye alizarin red in TiO2dispersions under visible illumination: an experimental andtheoretical examination. J Mol Catal a-Chem.2000;153(1-2):221-229.
    [205]. Chemseddine A, Moritz T. Nanostructuring titania: Control over nanocrystalstructure, size, shape, and organization. Eur J Inorg Chem.1999;(2):235-245.
    [206]. Sugimoto T, Zhou X P, Muramatsu A. Synthesis of uniform anatase TiO2nanoparticles by gel-sol method4. Shape control. J Colloid Interf Sci.2003;259(1):53-61.
    [207]. Buha J, Arcon D, Niederberger M, Djerdj I. Solvothermal and surfactant-freesynthesis of crystalline Nb2O5, Ta2O5, HfO2, and Co-doped HfO2nanoparticles. PhysChem Chem Phys.2010;12(47):15537-15543.
    [208]. Sun Z Q, Kim J H, Zhao Y, Bijarbooneh F, Malgras V, Lee Y, et al. RationalDesign of3D Dendritic TiO2Nanostructures with Favorable Architectures. Journal ofthe American Chemical Society.2011;133(48):19314-19317.
    [209]. Bian Z F, Zhu J, Cao F L, Lu Y F, Li H X. In situ encapsulation of Aunanoparticles in mesoporous core-shell TiO2microspheres with enhanced activity anddurability. Chemical Communications.2009;(25):3789-3791.
    [210]. Wu J J, Yu C C. Aligned TiO2nanorods and nanowalls. J Phys Chem B.2004;108(11):3377-3379.
    [211]. Pradhan S K, Reucroft P J, Yang F Q, Dozier A. Growth of TiO2nanorods bymetalorganic chemical vapor deposition. J Cryst Growth.2003;256(1-2):83-88.
    [212]. Corradi A B, Bondioli F, Focher B, Ferrari A M, Grippo C, Mariani E, et al.Conventional and microwave-hydrothermal synthesis of TiO2nanopowders. J AmCeram Soc.2005;88(9):2639-2641.
    [213]. Liao X H, Chen N Y, Xu S, Yang S B, Zhu J J. A microwave assisted heatingmethod for the preparation of copper sulfide nanorods. J Cryst Growth.2003;252(4):593-598.
    [214]. Palchik O, Kerner R, Gedanken A, Weiss A M, Slifkin M A, Palchik V.Microwave-assisted polyol method for the preparation of CdSe "nanoballs". Journalof Materials Chemistry.2001;11(3):874-878.
    [215]. Wu Q P, Yang C C, van de Krol R. A dopant-mediated recombinationmechanism in Fe-doped TiO2nanoparticles for the photocatalytic decomposition ofnitric oxide. Catalysis Today.2014;225:96-101.
    [216]. Wang S, Lian J S, Zheng W T, Jiang Q. Photocatalytic property of Fe dopedanatase and rutile TiO2nanocrystal particles prepared by sol-gel technique. AppliedSurface Science.2012;263:260-265.
    [217]. Yang J K, Zhang X T, Wang C H, Sun P P, Wang L L, Xia B, et al. Solarphotocatalytic activities of porous Nb-doped TiO2microspheres prepared byultrasonic spray pyrolysis. Solid State Sci.2012;14(1):139-144.
    [218]. Tian H, Ma J F, Li K, Li J J. Photocatalytic degradation of methyl orange withW-doped TiO2synthesized by a hydrothermal method. Mater Chem Phys.2008;112(1):47-51.
    [219]. Gao H T, Liu W C, Lu B, Liu F F. Photocatalytic Activity of La, Y Co-DopedTiO2Nanoparticles Synthesized by Ultrasonic Assisted Sol-Gel Method. J NanosciNanotechno.2012;12(5):3959-3965.
    [220]. Cao G X, Li Y G, Zhang Q H, Wang H Z. Enhanced Visible Light-DrivenPhotocatalytic Performance of La-Doped TiO2-xFx. J Am Ceram Soc.2010;93(1):25-27.
    [221]. Shieh D L, Lin Y S, Yeh J H, Chen S C, Lin B C, Lin J L. N-doped, porousTiO2with rutile phase and visible light sensitive photocatalytic activity. ChemicalCommunications.2012;48(19):2528-2530.
    [222]. Xing M Y, Zhang J L, Chen F. Photocatalytic Performance of N-Doped TiO2Adsorbed with Fe3+Ions under Visible Light by a Redox Treatment. J Phys Chem C.2009;113(29):12848-12853.
    [223]. Wang D H, Jia L, Wu X L, Lu L Q, Xu A W. One-step hydrothermal synthesisof N-doped TiO2/C nanocomposites with high visible light photocatalytic activity.Nanoscale.2012;4(2):576-584.
    [224]. Ho W, Yu J C, Lee S. Synthesis of hierarchical nanoporous F-doped TiO2spheres with visible light photocatalytic activity. Chemical Communications.2006;(10):1115-1117.
    [225]. Zhou J K, Lv L, Yu J Q, Li H L, Guo P Z, Sun H, et al. Synthesis ofself-organized polycrystalline F-doped TiO2hollow microspheres and theirphotocatalytic activity under visible light. J Phys Chem C.2008;112(14):5316-5321.
    [226]. Zhang Z H, Cao G X, Li Y Y, Wei X Y. Visible Light PhotocatalyticDegradation PVC/B-F Co-doped TiO2Composite. Advanced Materials, Pts1-4.2011;239-242:2015-2018.
    [227]. Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2powders as avisible-light sensitive photocatalyst. Chem Lett.2003;32(8):772-773.
    [228]. Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical watersplitting by a chemically modified n-TiO22. Science.2002;297(5590):2243-2245.
    [229]. Neville E M, Mattle M J, Loughrey D, Rajesh B, Rahman M, MacElroy J M D,et al. Carbon-Doped TiO2and Carbon, Tungsten-Codoped TiO2through Sol-GelProcesses in the Presence of Melamine Borate: Reflections through Photocatalysis. JPhys Chem C.2012;116(31):16511-16521.
    [230]. Yu J G, Li Q, Liu S W, Jaroniec M. Ionic-Liquid-Assisted Synthesis ofUniform Fluorinated B/C-Codoped TiO2Nanocrystals and Their EnhancedVisible-Light Photocatalytic Activity. Chem-Eur J.2013;19(7):2433-2441.
    [231]. Wu X Y, Yin S, Dong Q, Guo C S, Li H H, Kimura T, et al. Synthesis of highvisible light active carbon doped TiO2photocatalyst by a facile calcination assistedsolvothermal method. Appl Catal B-Environ.2013;142:450-457.
    [232]. Gu D E, Lu Y, Yang B C, Hu Y D. Facile preparation of micro-mesoporouscarbon-doped TiO(2) photocatalysts with anatase crystalline walls under template-freecondition. Chemical Communications.2008;(21):2453-2455.
    [233]. Wang H Q, Wu Z B, Liu Y. A Simple Two-Step Template Approach forPreparing Carbon-Doped Mesoporous TiO2Hollow Microspheres. J Phys Chem C.2009;113(30):13317-13324.
    [234]. Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titaniumdioxide. Angew Chem Int Edit.2003;42(40):4908-4911.
    [235]. Li Y Z, Hwang D S, Lee N H, Kim S J. Synthesis and characterization ofcarbon-doped titania as an artificial solar light sensitive photocatalyst. Chem PhysLett.2005;404(1-3):25-29.
    [236]. Ren W J, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Low temperaturepreparation and visible light photocatalytic activity of mesoporous carbon-dopedcrystalline TiO2. Appl Catal B-Environ.2007;69(3-4):138-144.
    [237]. Zhang Y J, Zhang S J, Wang K J, Ding F, Wu J. Surfactant-Free SolvothermalMethod for Synthesis of Mesoporous Nanocrystalline TiO2Microspheres withTailored Pore Size. J Nanomater. http://dx.doi.org/10.1155/2013/294020
    [238]. Xie J, Bian L, Yao L, Hao Y J, Wei Y. Simple fabrication of mesoporous TiO2microspheres for photocatalytic degradation of pentachlorophenol. Mater Lett.2013;91:213-216.
    [239]. Cheng Y C, Guo J J, Liu X H, Sun A H, Xu G J, Cui P. Preparation of uniformtitania microspheres with good electrorheological performance and their size effect.Journal of Materials Chemistry.2011;21(13):5051-5056.
    [240]. Li Y C, Yan S R, Yue B, Yang W M, Xie Z K, Chen Q L, et al. Selectivecatalytic hydration of ethylene oxide over niobium oxide supported on alpha-alumina.Appl Catal a-Gen.2004;272(1-2):305-310.
    [241]. Li Y C, Yan S R, Qian L P, Yang W M, Xie Z K, Chen Q L, et al. Effect of tinon Nb2O5/alpha-Al2O3catalyst for ethylene oxide hydration. J Catal.2006;241(1):173-179.
    [242]. Garcia-Sancho C, Sadaba I, Moreno-Tost R, Merida-Robles J,Santamaria-Gonzalez J, Lopez-Granados M, et al. Dehydration of Xylose to Furfuralover MCM-41-Supported Niobium-Oxide Catalysts. Chemsuschem.2013;6(4):635-642.
    [243]. Carniti P, Gervasini A, Biella S, Auroux A. Niobic acid and niobium phosphateas highly acidic viable catalysts in aqueous medium: Fructose dehydration reaction.Catalysis Today.2006;118(3-4):373-378.
    [244]. Paulis M, Martin M, Soria D B, Diaz A, Odriozola J A, Montes M. Preparationand characterization of niobium oxide for the catalytic aldol condensation of acetone.Appl Catal a-Gen.1999;180(1-2):411-420.
    [245]. Rocha L L L, Ramos A L D, Antoniosi N R, Furtado N C, Taft C A, Aranda DA G. Production of Biodiesel by a Two-Step Niobium Oxide Catalyzed Hydrolysisand Esterification. Lett Org Chem.2010;7(7):571-578.
    [246]. Yamashita K, Hirano M, Okumura K, Niwa M. Activity and acidity ofNb2O5-MoO3and Nb2O5-WO3in the Friedel-Crafts alkylation. Catalysis Today.2006;118(3-4):385-391.
    [247]. de Paiva J B, Monteiro W R, Zacharias M A, Rodrigues J A J, Cortez G G.Characterization and catalytic behavior of MoO3/V2O5/Nb2O5systems in isopropanoldecomposition. Braz J Chem Eng.2006;23(4):517-524.
    [248]. Qi S S, Zuo R Z, Liu Y, Wang Y. Synthesis and photocatalytic activity ofelectrospun niobium oxide nanofibers. Mater Res Bull.2013;48(3):1213-1217.
    [249]. Ge S X, Jia H M, Zhao H X, Zheng Z, Zhang L Z. First observation of visiblelight photocatalytic activity of carbon modified Nb2O5nanostructures. Journal ofMaterials Chemistry.2010;20(15):3052-3058.
    [250]. Prado A G S, Bolzon L B, Pedroso C P, Moura A O, Costa L L. Nb2O5asefficient and recyclable photocatalyst for indigo carmine degradation. Appl CatalB-Environ.2008;82(3-4):219-224.
    [251]. Esteves A, Oliveira L C A, Ramalho T C, Goncalves M, Anastacio A S,Carvalho H W P. New materials based on modified synthetic Nb2O5as photocatalystfor oxidation of organic contaminants. Catal Commun.2008;10(3):330-332.
    [252]. Chen X Y, Yu T, Fan X X, Zhang H T, Li Z S, Ye J H, et al. Enhanced activityof mesoporous Nb2O5for photocatalytic hydrogen production. Applied SurfaceScience.2007;253(20):8500-8506.
    [253]. Pai Y H, Fang S Y. Preparation and characterization of porous Nb2O5photocatalysts with CuO, NiO and Pt cocatalyst for hydrogen production bylight-induced water splitting. J Power Sources.2013;230:321-326.
    [254]. Cho I S, Kim D W, Kim D H, Shin S S, Noh T H, Kim D W, et al. ElectronicBand Structure, Optical Properties, and Photocatalytic Hydrogen Production ofBarium Niobium Phosphate Compounds (BaO-Nb2O5-P2O5). Eur J Inorg Chem.2011;(14):2206-2210.
    [255]. Li J Z, Lu G X, Li K. Promoting effect of Nb2O5addition to Ni-Cu catalysts onhydrogen production via methane decomposition. Chem Lett.2004;33(6):652-653.
    [256]. Lee B, Lu D L, Kondo J N, Domen K. Three-dimensionally orderedmesoporous niobium oxide. Journal of the American Chemical Society.2002;124(38):11256-11257.
    [257]. Habibi M H, Mokhtari R. First Observation on S-doped Nb2O5NanostructureThin Film Coated on Carbon Fiber Paper Using Sol-Gel Dip-Coating: Fabrication,Characterization, Visible Light Sensitization, and Electrochemical Properties. J InorgOrganomet P.2012;22(1):158-165.
    [258]. Wu G S, Wen J L, Nigro S, Chen A C. One-step synthesis of N-and F-codopedmesoporous TiO2photocatalysts with high visible light activity. Nanotechnology.DOI:10.1088/0957-4484/21/8/085701
    [259]. Yu J G, Zhou M H, Cheng B, Zhao X J. Preparation, characterization andphotocatalytic activity of in situ N,S-codoped TiO2powders. J Mol Catal a-Chem.2006;246(1-2):176-184.
    [260]. Yu C, Yu J C. A Simple Way to Prepare C–N-Codoped TiO2Photocatalystwith Visible-Light Activity. Catal Lett.2009;129(3-4):462-470.
    [261]. Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y. Band-gap narrowing oftitanium dioxide by nitrogen doping. Jpn J Appl Phys2.2001;40(6A): L561-L563.
    [262]. Yamaki T, Umebayashi T, Sumita T, Yamamoto S, Maekawa M, Kawasuso A,et al. Fluorine-doping in titanium dioxide by ion implantation technique. Nucl InstrumMeth B.2003;206:254-258.
    [263]. Pan J H, Zhang X W, Du A J, Sun D D, Leckie J O. Self-etching reconstructionof hierarchically mesoporous F-TiO2hollow microspherical photocatalyst forconcurrent membrane water Purifications. J. Am. Chem. Soc.,2008;130(34):11256-11257.
    [264]. Park H, Choi W. Effects of TiO2surface fluorination on photocatalyticreactions and photoelectrochemical behaviors. J Phys Chem B.2004;108(13):4086-4093.
    [265]. Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, et al. Anatase TiO2single crystals with a large percentage of reactive facets. Nature.2008;453(7195):638-641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700