支化磺化聚醚醚酮聚合物电解质膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于低排放和高转换效率,燃料电池技术已被认为是最有前景能源技术之一。聚合物电解质膜(PEM)作为燃料电池的关键部件,它起着隔绝燃料和氧化剂,从阳极至阴极传导质子的作用。这就要求聚合物电解质膜具有下列性质:优异的质子传导性,良好的电绝缘性,高的化学稳定性和机械性能,低的燃料透过性和成本。目前,已经商品化用于燃料电池中的PEM主要是全氟磺酸系列膜,如Dupont公司的Nafion系列膜,因为它的质子传导性和化学稳定性十分优异。然而,高成本,低工作温度和高甲醇透过,限制了Nafion膜的广泛应用。目前已经开发出多种PEM材料如磺化聚芳醚酮,磺化聚芳醚砜,磺化聚酰亚胺,磺化聚芳醚腈和酸掺杂的聚苯并咪唑等。
     磺化聚芳醚酮类聚合物膜材料由于其具有良好的机械性能,优异的耐热性和质子传导性能,已经被作为聚合物电解质膜广泛地研究。然而,为了获得更高的质子传导率,就需要提高聚合物的磺化度,随之而来的,高磺化度聚合物膜在水中会过度吸水溶胀,严重影响机械性能,限制了它的进一步发展。本论文针对传统结构磺化聚芳醚酮材料存在的缺点,分别通过分子设计新结构、交联改性以及有机-无机复合等方法来制备新型聚合物电解质膜材料。
     首先,通过两步法将1,3,5-三氟苯羰基苯作为支化单体引入到聚合反应中,制备了一系列支化结构含量不同的支化磺化聚醚醚酮。支化磺化聚醚醚酮表现出了良好的溶解性,通过溶剂挥发法可以容易地制备出致密的膜材料。与线性聚合物膜相比,支化聚合物膜表现出增强的机械强度和更好的尺寸稳定性。虽然质子传导率由于支化结构的引入有所降低,但是甲醇渗透率降低的更多。相对于线性聚合物膜来说,支化聚合物膜表现出更高的化学稳定性。在80oC的Fenton试剂中,BSPEEK-10膜的破碎时间是267min,时长是相同磺化度的LSPEEK膜的4倍。
     采用磺酰氯作为磺化试剂,制备了磺化二氧化硅纳米粒子(SSA)。通过EDX和TEM,证实了这种简单方法的成功修饰,同时并没有导致二氧化硅微观形貌的改变。随后将磺化二氧化硅纳米粒子混入到支化磺化聚醚醚酮材料中,制备了一系列有机-无机复合膜材料。SSA纳米粒子的引入,增强了膜材料的热稳定性,提高了吸水率和质子传导率。同时,甲醇渗透率也有一定的升高,但不显著,这是因为存在亲水相中的SSA可以弯曲甲醇传递通道,阻碍其透过。
     选用带有胺基和巯基的两种硅烷偶联剂掺杂到支化聚醚醚酮中,并利用硅烷偶联剂的水解交联反应,制备了一系列硅烷交联膜材料。随后,将硅烷交联结构中的巯基氧化为磺酸基团。硅烷交联结构的引入,使得膜材料的吸水率下降,质子传导率有所降低。随着MPTMS引入量的增加,质子传导率有所提高,甚至高于纯膜。在80oC,BSPEEK/AP/MP膜的质子传导率达0.177S cm-1,高于相同磺化度的LSPEEK膜(0.152S cm-1)。而甲醇渗透率增加则不明显,并且低于相同磺化度的线性磺化聚醚醚酮膜。
     通过两步法成功制备了一系列不同磺化度含丙烯基的支化磺化聚醚醚酮。随后,在BPO的催化作用下,通过点击化学反应将苯并咪唑磺酸钠基团接枝到聚合物链段当中,并利用核磁和红外光谱确认了聚合物的结构。引入苯并咪唑磺酸钠基团,膜材料的质子传导性能显著增强。在80oC,最高的质子传导率达0.215S cm-1,远高于相同测试条件下的Nafion117膜(0.146S cm-1)。同时,吸水率和甲醇渗透率低于相同磺化度的线性聚合物膜材料,这主要是因为支化结构和磺酸基团与苯并咪唑之间的相互作用,使得膜结构更为致密。
     利用点击化学反应将可以与磺酸基团形成离子交联的苯并噁唑基团接枝到支化聚醚醚酮链段中。引入苯并噁唑基团,膜材料的热稳定性有所提高,因为苯并噁唑结构是一种耐热等级非常高的结构。这种离子交联膜材料表现出了很好的机械强度和尺寸稳定性,这主要是因为引入苯并噁唑基团后所形离子键限制了分子链段的运动。相对于未修饰的BSPEEK膜,BSPEEK-BO膜显示出了更好的氧化稳定性,在80oC的Fenton试剂中的破碎时间从165min增加到255min。此外,相对于纯BSPEEK膜,离子交联膜表现出了更好的阻醇性能,BSPEEK-BO膜的甲醇渗透率在3.25×10-7cm2S-1与5.18×10-7cm2S-1之间。
Fuel cells have been regarded as one of the most promising alternative powersources due to its low emission and high conversion efficiency. The heart and key partof fuel cell is the proton electrolyte membrane (PEM) that separates fuel and oxidantand transports protons from anode side to cathode side. It is required that the PEMshould have the following properties: high proton conductivity under operatingconditions; good electrical insulation; high chemical and mechanical stability; lowpermeability of fuel, and low cost. Currently, the commercially availableperfluorinated acid membranes, such as Dupont’ Nafion membranes arepredominantly used in direct methanol fuel cell system as the PEM owing to theirhigh proton conductivity and excellent chemical stability. However, Nafon is limitedin extensive scale due to its high cost, low operating temperature and high methanolcrossover. A variety of alternative PEMs have been developed in the last decades forPEMFCs: such as sulfonated poly(arylene ether ketone)s, sulfonated poly(aryleneether sulfone)s, sulfonated polyimides, sulfonated poly(arylene ether nitrile)s andacid-doped poly(benzimidazole)s, and so on.
     In recent years, sulfonated poly(arylene ether ketone)s have attracted a great dealof attentions due to their remarkable properties, such as good mechanical property,excellent thermal stability, and high proton conductivity that can be controlled by thedegree of sulfonation. However, SPEEK with a high sulfonation degree (DS) aremuch swelling in water and low mechanical property under humid circumstance,which limit the end-use in fuel cells. In order to solve the shortcomings of thetraditional sulfonated poly(arylene ether ketone)s material, we have prepared newmolecular structure, cross-linked structure and organic-inorganic hybrid compositematerial to further improve their properties.
     First, novel branched sulfonated poly(ether ether ketone)s (BSPEEK) containingdifferent sulfonated degrees have been successfully prepared via a two-steppolymerization method. A series of BSPEEK were obtained by changing the amounts of branching agents. The branched polymers exhibited good solubilities, and could beeasily made into tough and smooth films by casting from the common polar aproticsolvents. Compared with linear polymer membrane, the branched polymer membraneshowed improved mechanical strength and better dimensional stability. Although theproton conductivity decreased upon the addition of the branching agent, lowermethanol permeability value was found. Incorporation of the branching structure, themembrane showed enhanced oxidative stability. The BSPEEK-10showed the bestoxidative stability and the elapsed time in Fenton’s reagent at80oC was267min,which was4times longer than that of LSPEEK.
     The silica sulfonic acid nanoparticles (SSA) were successfully prepared via thesimple sulfonation with sulfuryl chloride. The EDX analysis and TEM imagesindicated that the sulfonic acid groups were successfully grafted on the silica and thesulfonation process didn’t alter the morphological characteristics. Then theas-prepared nanoparticles were used as fillers to prepare nanocomposite hybridmembranes. The presence of SSA improved thermal property, water uptake andproton conductivity of hybrid membranes as compared with pure BSPEEK membrane.The methanol permeabilities of BSPEEK-SSA hybrid membranes were slightly higherthan that of pristine BSPEEK, because the hydrophilic inorganic filler existed aroundhydrophilic ion-cluster and could not react with methanol molecules, increasing thetortuosity of methanol transport channels.
     A novel series of silane-cross-linked membranes based on branched sulfonatedpoly(ether ether ketone)s were successfully prepared by hydrolysis-condensationreaction of silane coupling agents. The silane coupling agents were(3-Mercaptopropyl)trimethoxysilane (MPTMS) and (3-Aminopropyl)triethoxysilane(APTES). Subsequently, the thiol groups were easily oxidized to sulfonic acid groupsvia hydrogen peroxide oxidation. Due to the silane-cross-linked network structure, thecomposite membrane showed lower proton conductivity than BSPEEK. However, theproton conductivities of silane-cross-linked membranes increased with the increasingcontent of MPTMS, even higher than the pure polymer membrane. The highest protonconductivity of silane-cross-linked membranes was0.177S cm-1at80oC, which was much higher than that of LSPEEK (0.152S cm-1). The methanol permeabilities ofBSPEEK/AP/MP membranes were slightly higher than that of pristine BSPEEKmembrane due to the dense structure formed by the silane-crosslinking.
     A series of branched sulfonated poly(ether ether ketone)s containing propenylgroups have been synthesized using a nucleophilic polycondensation reaction.Subsequently, a thiol-ene click chemistry reaction between propenyl and thiol groupsresulted in a new series of copolymers containing benzimidazole sulfonic acid groups.The expected structures of the copolymers were confirmed by1H NMR and Fouriertransform infrared spectroscopy. By introducing benzimidazole sulfonic acid groupsonto the pendant position, the proton conductivity of BSPEEK membrane improvedsignificantly. The highest proton conductivity was0.215S cm-1at80oC, which wasmuch higher than that of Nafion117measured at the same condition (0.146S cm-1).Meanwhile, the water uptake values and methanol permeabilities of BSPEEK-BISmembranes were lower than those of LSPEEK with the same DS, due to the densestructure formed by branching structure and interaction between sulfonic acid andbenzimidazole groups.
     A series of novel branched sulfonated poly(ether ether ketone)s containingintermolecular ionic cross-linkable groups, benzoxazole groups, have been preparedfor direct methanol fuel cells. The benzoxazole groups (BO) were grafted onto thepolymer chain via a thiol-ene click chemistry reaction. Introduced BO groups, themembrane showed enhanced thermal stability due to the benzoxazole ring washeat-resistant structure. The ionic cross-linked membranes showed improvedmechanical properties and good dimensional stabilities, due to the compact membranestructure by the introduction of benzoxazole groups. Compared to BSPEEKmembrane, the oxidative stabilities of BSPEEK-BO membranes increased from165min to255min. Furthermore, compared with that of pure BSPEEK, the ioniccross-linked membranes exhibited extremely improved methanol resistance properties,from3.25×10-7cm2S-1to5.18×10-7cm2S-1, due to the branching structure and the interaction between sulfonic acid and benzi midazole groups.
引文
[1]崔民选.低碳时代的中国能源战略转型[J].中国市场,2010,16:93-96.
    [2]崔民选.中国能源发展报告[G].北京:社会科学文献出版社,2008.
    [3]朱成章.中外非化石能源统计分析的启示[J].中外能源,2011,16:34-39.
    [4]何建坤.推动能源生产和消费革命的战略思路[J].环境保护,2013,8:15-18.
    [5] RIKUKAWA M, SANUI K. Proton-conducting polymer electrolyte membranesbased on hydrocarbon polymers [J]. Progress in Polymer Science,2000,25:1463-1502.
    [6] MEHTA V, COOPER J S. Review and analysis of PEM fuel cell design andmanufacturing [J]. Journal of Power Sources,2003,114:32-53.
    [7] SMITHA B, SRIDHAR S, KHAN A A. Solid polymer electrolyte membranes forfuel cell applications-a review [J]. Journal of Membrane Science,2005,259:10-26.
    [8] ORMERODA R M, AFFILIATIONS S. Solid oxide fuel cells [J]. ChemicalSociety Reviews,2003,32:17-28.
    [9] YU X, PICKUP P G. Recent advances in direct formic acid fuel cells [J]. Journalof Power Sources,2008,182:124-132.
    [10] WANGA Y, CHENB K S, MISHLERA J, et al. A review of polymer electrolytemembrane fuel cells: Technology, applications, and needs on fundamental research [J].Applied Energy,2011,88:981-1007.
    [11] MISHRA A K, BOSE S, KUILA T, et al. Silicate-based polymer-nanocompositemembranes for polymer electrolyte membrane fuel cells [J].2012,37:842-869.
    [12] OKADA K Y O. Development of polymer electrolyte fuel cell congenerationsystems for residential applications [J]. Fuel cells,2001,1:72-77.
    [13] DHATHATHATHREYAN K S, SRIDHAR P, SASIKUMAR G, et al.Development of polymer electrolyte membrane fuel cell stacks [J]. InternationalJournal of Hydrogen Energy,1999,24:1107-1115.
    [14] CAO Y, GUO Z. Performance evaluation of an energy recovery system for fuelreforming of PEM fuel cell power plants [J]. Journal of Power Sources,2002,109:287-293.
    [15] PASSALACQUA E, LUFRANO F, SQIADROTO G, et al. Nafion content in thecatalyst layer of polymer electrolyte fuel cells: effects on structure and performance[J]. Electrochimica Acta,2001,46:799-805.
    [16] GRIMAUD A, ROUGE L. Non-renewable resources and growth with verticalinnovations: optimum, equilibrium and economic policies [J]. Journal ofEnvironmental Economics and Management,2003,45:433-453.
    [17] LI X. Principles of fuel cells [M]. New York: Taylor&Francis Group,2006.
    [18] PEIGHANMBARFOUST S J, ROWSHANZAMIR S, AMJADI M. Review ofthe proton exchange membranes for fuel cell applications [J]. International Journal ofHydrogen Energy,2010,35:9349-9384.
    [19] ZHANG H W, SHEN P K. Recent development of polymer electrolytemembranes for fuel cells [J]. Chemical Reviews,2012,112:2780-2832.
    [20] ZHANG H W, SHEN P K. Advances in the high performance polymer electrolytemembranes for fuel cells [J]. Chemical Society Reviews,2012,41:2382-2394.
    [21] KIM K H, LEE K Y, LEE S Y, et al. The effects of relative humidity on theperformances of PEMFC MEAs with various Nafion ionomer contents [J].International Journal of Hydrogen Energy,2010,35:13104-13110.
    [22] HWANG S S, HAN S S, LEE P H, et al. Transient Performance behavior ofproton exchange membrane fuel cell by configuration of membrane and gas diffusionlayer [J]. Journal of Thermal Science and Technology,2010,5:165-177.
    [23] JAO T C, JUNG G B, CHI P H, et al. Investigation of degradation behavior ofmembranes assembly with polytetrafluoroethylene/Nafion composite membrane [J].Journal of Power Sources,2011,196:1818-1825.
    [24] LIU C Y, SUNG C C. A review of the performance and analysis of protonexchange membrane fuel cell membrane electrode assemblies [J]. Journal of PowerSources,2012,220:348-353.
    [25] OKANISHI T, YSUJI Y, SAKAIYAMA Y, et al. Effect of PEFC operatingconditions on the durability of sulfonated poly(arylene ether sulfone ketone)multiblock membranes [J]. Electrochimica Acta,2011,56:8989-8996.
    [26] CHOO M J, OH K H, PARK H, et al. New cross-linked interfacial layer onhydrocarbon membrane to improve long-term stability of polymer electrolyte fuelcells [J]. Electrochimica Acta,2013,592:285-290.
    [27] SAKAGUCHI Y, KAJI A, KITAMURA K, et al. Polymer electrolyte membranesderived from novel fluorine-containing poly(arylene ether ketone)s by controlledpost-sulfonation [J]. Polymer,2012,53:4388-4398.
    [28] YE D, ZHAN Z. A review on the sealing structures of membrane electrodeassembly of proton exchange membrane fuel cells [J]. Journal of Power Sources,2013,231:285-292.
    [29] YOON Y J, KIM T H, YU D M, et al. Modification of hydrocarbon structure forpolymer electrolyte membrane fuel cell binder application [J]. International Journal ofHydrogen Energy,2012,37:13452-13461.
    [30] WARSHAY M and PROKOPIUS P R. The fuel cell in space: yesterday, todayand tomorrow [J]. Journal of Power Sources,1990,29:193-200.
    [31] YANG C, COSTAMAGNA P, SRINIVASAN S J, et al. Approaches and technicalchallenges to high temperature operation of proton exchange membrane fuel cells [J].Journal of Power Sources,2001,103:1-9.
    [32] SOUZY R, AMEDURI B. Functional fluoropolymers for fuel cell membranes [J].Progress in Polymer Science,2005,30:644-687.
    [33] ROZIERE J, JONES D J. Non-fluorinated polymer materials for proton exchangemembrane fuel cells [J]. Annual Review of Materials Research,2003,33:503-555.
    [34] BOURUP R, MEYERS J, PIVOVAR B, et al. Scientific aspects of polymerelectrolyte fuel cell durability and degradation [J]. Chemical Reviews,2007,107:3904-3951.
    [35] HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative polymer systemsfor proton exchange membranes [J]. Chemical Reviews,2004,104:4587-4612.
    [36] AGNOLUCCI P. Economics and market prospects of portable fuel cells [J].International Journal of Hydrogen Energy,2007,32:4319-4328.
    [37] KIM D J, CHO E A, HONG S A, et al. Recent progress in passive directmethanol fuel cells at KIST [J]. Journal of Power Sources,2004,130:172-177.
    [38] CHENG X, SHI Z, GLASS N. A review of PEM hydrogen fuel cellcontamination: impacts, mechanisms, and mitigation [J]. Journal of Power Sources,2007,165:739-756.
    [39] NEBURCHILOV V, MARTIN J, WANG H, et al. A review of polymerelectrolyte membranes for direct methanol fuel cells [J]. Journal of Power Sources,2007,169:211-238.
    [40] EINSLA B R, KIM Y S, HICKNER M A, et al. Sulfonated naphthalenedianhydride based polyimide copolymers for proton exchange membrane fuel cells: II.membrane properties and fuel cell performance [J]. Journal of Membrane Science,2005,255:141-148.
    [41] KUBO W, YAMAUCHI K, KUMAGAI K, et al. Imaging of ionic channels inproton exchange membranes by the nickel replica method [J]. The Journal of PhysicalChemistry C,2010,114:2370-2374.
    [42] MAURITZ K A, MOORE R B. State of Understanding of Nafion [J]. ChemicalReviews,2004,104:4535-4586.
    [43] INAN T Y, DOGAN H, UNCEREN E E, et al. Sulfonated PEEK and fluorinatedpolymer based blends for fuel cell applications: Investigation of the effect of type andmolecular weight of the fluorinated polymers on the membrane’s properties [J].International Journal of Hydrogen Energy,2010,35:12038-12053.
    [44] BAHLAKEH G, NIKAZAR M, HAFEZI M J, et al. Molecular dynamicssimulation study of proton diffusion in polymer electrolyte membranes based onsulfonated poly (ether ether ketone)[J]. International Journal of Hydrogen Energy,2012,37:10256-10264.
    [45] CHOI K H, PECK D H, KIM C S, et al. Water transport in polymer membranesfor PEMFC [J]. Journal of Power Sources,2000,86:197-201.
    [46] LUFRANO F, BAGLIO V, STAITI P, et al. Performance analysis of polymerelectrolyte membranes for direct methanol fuel cells [J]. Journal of Power Sources,2013,243:519-534.
    [47] LIU Y L. Developments of highly proton conductive sulfonated polymers forproton exchange membrane fuel cells [J]. Polymer Chemistry,2012,3:1373-1383.
    [48] MAITI J, KAKATI N, LEE S H, et al. Where do poly(vinyl alcohol) basedmembranes stand in relation to Nafion for direct methanol fuel cell applications [J].Journal of Power Sources,2012,216:48-66.
    [49] SAKAGUCHI Y, KITAMYRA K, YAMASHITA M, et al. Synthesis andproperties of sulfonated poly(arylene ether)s with flexible oligomeric phenylene ethersegments [J]. Macromolecules,2012,45:5403-5409.
    [50] LI Q, JENSEN J O, SAVINELL R F,et al. High temperature proton exchangemembranes based on polybenzimidazoles for fuel cells [J]. Progress in PolymerScience,2009,34:449-477.
    [51] KARIDURAGANAVAR M Y, NAGARALE R K, KITTUR A A, et al.Ion-exchange membranes: preparative methods for electrodialysis and fuel cellapplications [J]. Desalination,2006,197:225-246.
    [52] PEIGHAMBARDOUST S J, ROWSHANZAMIR S, AMJADI M. Review of theproton exchange membrane for fuel cell applications [J]. International Journal ofHydrogen Energy,2010,35:9349-9384.
    [53] DIYLE M,LEWITTES M E,ROELOFS M G,et al. Ionic conductivity ofnonaqueous solvent-swollen ionomer membranes based on fluorosulfonate,fiuoroearboxylate, and sulfonated fixed ion groups [J]. Journal of Physical ChemistryB,2001,105:9387-9394.
    [54] YOSHIDA N,ISHISAKI T,WATANABE A,et al. Characterization of flemionmembranes for PEFC [J]. Electrochimica Acta,1998,43:3749-3754.
    [55] COSTAMAGNA P, SRUBUVASAN S. Quantum jumps in the PEMFC scienceand technology from the1960s to the year2000: Part I. Fundamental scientificaspects [J]. Journal of Power Sources,2001,102:242-252.
    [56] MOTUPALLY S, BECKER A J, WEIDNER J W. Diffusion of water in Nafion115membranes [J]. Journal of Electrochemical Society,2000,147:3171-3177.
    [57] SCHMIDT-ROHR K, CHEN Q. Parallel cylindrical water nanochannels inNafion fuel-cell membranes [J]. Nature Materials,2008,7:75-83.
    [58] IULIANELLI A, BASILE A. Sulfonated PEEK-based polymers in PEMFC andDMFC applications: A review [J]. International Journal of Hydrogen Energy,2012,37:15241-15255.
    [59] LIN H L, WANG S H, CHIU C K, et al. Preparation of Nafion/poly(vinyl alcohol)electro-spun fiber composite membranes for direct methanol fuel cells [J]. Journal ofMembrane Science,2010,365:114-122.
    [60] THOMASSIN J M, KOLLAR J, CALDARELLA G, et al. Beneficial effect ofcarbon nanotubes on the performances of Nafion membranes in fuel cell applications[J]. Journal of Membrane Science,2007,303:252-257.
    [61] STECK A E, STONE C, SAVADOGO I O, ROBERGE P R (Eds). New Materialsfor Fuel Cell and Modern Battery Systems II: Proceedings of the second internationalsymposium on new materials for fuel cell and modern battery systems [C]. Montreal:Ecole Polytechnique de Montreal,1997.
    [62] STECK A E, SAVADOGO I O, ROBERGE P R, VERIZOGLU T N (Eds). NewMaterials for Fuel Cell Systems I: Proceedings of the first international symposium ofnew materials for fuel cell systems [C]. Montreal: Ecole Polytechnique de Montreal,1995.
    [63] BASURA V I, CHUY C, BEATTIE P D, et al. Effect of equivalent weight onelectrochemical mass transport properties of oxygen in proton exchange membranesbased on sulfonated α,β,β-trifluorostyrene (BAM) and sulfonatedstyrene-(ethylene-butylene)-styrene triblock (DAIS-analytical) copolymers [J].Journal of Electroanalytical Chemistry,2001,501:77-88.
    [64] KIM Y W, LEE D K, LEE K J,et al. Single-step synthesis of proton conductingpoly(vinylidene fluoride)(PVDF) graft copolymer electrolytes [J]. European PolymerJournal,2008,44:932-939.
    [65] NIE L, WANG J, XU T, et al. Enhancing proton conduction under low humidityby incorporating core–shell polymeric phosphonic acid submicrospheres intosulfonated poly(ether ether ketone) membrane [J]. Journal of Power Sources,2012,213:1-9.
    [66] PANG J, SHEN K, REN J, et al. Polyelectrolyte based on tetra-sulfonatedpoly(arylene ether)s for direct methanol fuel cell [J]. Journal of Power Sources,2013,226:179-185.
    [67] NAKAGAWA T, NAKABAYASHI K, HIGHSHIHARA T, et al. A highperformance polymer electrolyte membrane based on sulfonated poly(ether sulfone)with binaphthyl units [J]. Journal of Materials Chemistry,2010,20:6662-6667.
    [68] SAKAGUCHI Y, KITAMURA K, TAKASE S. Isomeric effect of sulfonatedpoly(arylene ether)s comprising dihydroxynaphthalene on properties for polymerelectrolyte membranes [J]. Journal of Polymer Science, Part A: Polymer Chemistry,2012,50:4749-4755.
    [69] YOSHIMUNE M, MIZOGUCHI K, HARAYA K. Alcohol dehydration bypervaporation using a carbon hollow fiber membrane derived from sulfonatedpoly(phenylene oxide)[J]. Journal of Membrane Science,2013,425:149-155.
    [70] BARIQUE M A, SEESUKPHRONRARAK S, WU L, et al. A comparisonbetween highly crystalline and low crystalline poly(phenylene sulfide) as polymerelectrolyte membranes for fuel cells [J]. The Journal of Physical Chemistry B,2011,115:27-33.
    [71] LI Z, LIU X, CHAO D, et al. Controllable sulfonation of aromatic poly(aryleneether ketone)s containing different pendant phenyl rings [J]. Journal of Power Sources,2009,193:477-482.
    [72] CHEN L K, WU C S, CHEN M C, et al. Cross-linked norbornene sulfonatedpoly(ether ketone)s for proton exchange membrane [J]. Journal of Membrane Science,2010,361:143-153.
    [73] LI Y, WANG W, JIN R, et al. Synthesis and characterization of novel sulfonatedpolyimides from4,6-bis(4-aminophenoxy)-naphthalene-2-sulfonic acid [J]. ChemicalResearch in Chinese Universities,2013,29:1225-1228.
    [74] MISTRI E A, MOHANTY A K, BANERJEE S, et al. Naphthalene dianhydridebased semifluorinated sulfonated copoly(ether imide)s: Synthesis, characterizationand proton exchange properties [J]. Journal of Membrane Science,2013,441:168-177.
    [75] YAMAZAKI K, WANG G, TANAKA M, et al. Sulfonated block-graftcopolyimide for high proton conductive and low gas permeable polymer electrolytemembrane [J]. Journal of Power Sources,2012,216:387-394.
    [76] GULLEDGE A L, CHEN X, BENICEWICZ B C. Investigation of SequenceIsomer Effects in AB-Polybenzimidazole Polymers [J]. Journal of Polymer Science,Part A: Polymer Chemistry,2014,52:619-628.
    [77] ANGIONI S, VILLA D C, DAL B S, et al. Polysulfonation of PBI-basedmembranes for HT-PEMFCs: a possible way to maintain high proton transport at alow H3PO4doping level [J]. Journal of Materials Chemistry A,2014,2:663-671.
    [78] HUGHES C E, HAUFE S, ANGERSTEIN B, et al. Probing structure anddynamics in poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] Fuel Cells withMagic-Angle Spinning NMR [J]. The Journal of Physical Chemistry B,2004,108:13626-13631.
    [79] HE M, XU H, DONG Y, et al. Synthesis and characterization of sulfonatedpolyphosphazene-graft-polystyrene copolymers for proton exchange membranes [J].Chinese Journal of Polymer Science,2014,32:151-162.
    [80] HACIVELIOGLU F, OZDEN S, CELIK S U, et al. Azole substitutedpolyphosphazenes as nonhumidified proton conducting membranes [J]. Journal ofMaterials Chemistry,2011,21:1020-1027.
    [81] HACIVELIOGLU F, OKUTAN E, CELIK S U, et al. Controlling phosphonicacid substitution degree on proton conducting polyphosphazenes [J]. Polymer,2012,53:3659-3668.
    [82] LEE H, NADAMI A S, ROY A, et al. Segmented sulfonated poly(arylene ethersulfone)-b-polymide copolymers for proton exchange membrane fuel cells [J]. Journalof Polymer Science, Part A: Polymer Chemistry,2007,45:4879-4890.
    [83] MIYAKE J, WATANABE M, MIYATAKE K. Effect of ammonium groups on theproperties and alkaline stability of poly(arylene ether)-based anion exchangemembranes [J]. Journal of Polymer Science, Part A: Polymer Chemistry,2014,52:383-389.
    [84] LIN C K, TSAI J C. The effect of the side-chain ratio on main-chain-type andside-chain-type sulfonated poly(ether ether ketone) for direct methanol fuel cellapplications [J]. Journal of Materials Chemistry,2012,22:9244-9252.
    [85] TANG W, LING Y, CHEN S, et al. Synthesis and properties of proton exchangemembranes based on cross-linked block sulfonated poly(arylene ether sulfone)s [J].Chemical Journal of Chinese Universities,2013,34:2661-2666.
    [86] PANG J, SHEN K, REN D, et al. Polymer electrolyte membranes based onpoly(arylene ether)s with penta-sulfonated pendent groups [J]. Journal of MaterialsChemistry A,2013,1:1465-1474.
    [87] HU Q, WU X, ZHOU B, et al. Preparation and properties of highly branchedpoly(urethane-imide)-epoxy cross-linked copolymer [J]. Designed Monomers andPolymers,2014,17:445-452.
    [88] CHEN Y, ZHANG Q, SUN W, et al. Synthesis and gas permeation properties ofhyperbranched polyimides membranes from a novel (A(2)+B2B '+B-2)-typemethod [J]. Journal of Membrane Science,2014,450:138-146.
    [89] PARK H S, SEO D W, CHOI S W, et al. Preparation and characterization ofbranched and linear sulfonated poly(ether ketone sulfone) proton exchangeMembranes for fuel cell applications [J]. Journal of Polymer Science, Part A: PolymerChemistry,2008,46:1792-1799.
    [90] WANG L, WANG D, ZHU G M, et al. Synthesis and properties of highlybranched sulfonated poly(arylene ether)s as proton exchange membranes [J].European Polymer Journal,2011,47:1985-1993.
    [91] GUO W, LI X, WANG H, et al. Synthesis of branched sulfonated ploy(aryl etherketone) copolymers and their proton exchange membrane properties [J]. Journal ofMembrane Science,2013,444:259-267.
    [92] MA W, ZHAO C, YANG J, et al. Cross-linked aromatic cationic polymerelectrolytes with enhanced stability for high temperature fuel cell applications [J].Energy Environmental Science,2012,5:7617-7625.
    [93] ZHANG G, LI H, MA W, et al. Cross-linked membranes with a macromolecularcross-linker for direct methanol fuel cells [J]. Journal of Materials Chemistry,2011,21:5511-5518.
    [94] JIANG H, GUO X, ZHANG G, et al. Cross-linked high conductive membranesbased on water soluble ionomer for high performance proton exchange membrane fuelcells [J]. Journal of Power Sources,2013,241:529-535.
    [95] PARK C H, LEE C H, GUIVER M D, et al. Sulfonated hydrocarbon membranesfor medium temperature and low humidity proton exchange membrane fuel cells [J].Progress in Polymer Science,2011,36:1443-1498.
    [96] LI H, ZHANG G, WU J, et al. A facile approach to prepare self-cross-linkablesulfonated poly(ether ether ketone) membranes for direct methanol fuel cells [J].Journal of Power Sources,2010,195:8061-8066.
    [97] CHEN N H, LI H Y, LAI J Y, et al. Synthesis and characterization ofbenzoxazine-containing, crosslinkable, and sulfonated polymer through Diels-Alderreaction for direct methanol fuel cells [J]. Polymer,2013,54:2096-2104.
    [98] WANG J, LIAO J, YANG L, et al. Highly compatible acid-base blendmembranes based on sulfonated poly(ether ether ketone) and poly(ether etherketone-alt-benzimidazole) for fuel cells application [J]. Journal of Membrane Science,2012,415-416:644-653.
    [99] NAM S E, PARK S, CHOI W C, et al. Preparation of nafion/poly(ether(aminosulfone)) acid-base blend polymer electrolyte membranes and their application toDMFC [J]. Macromolecular Research,2013,21:1314-1321.
    [100] ZUO Z, FU Y, MANTHIRAM A. Novel blend membranes based on acid-baseinteractions for fuel cells [J]. Polymers,2012,4:1627-1644.
    [101] FENG S, SHANG Y, WANG S, et al. Novel method for the preparation ofionically crosslinked sulfonated poly(arylene ether sulfone)/polybenzimidazolecomposite membranes via in situ polymerization [J]. Journal of Membrane Science,2010,346:105-112.
    [102] LI X, LIU C, ZHAO C, et al. Preparation and properties of sulfonatedpoly(ether ether ketone)s (SPEEK)/polypyrrole composite membranes for directmethanol fuel cells [J]. Journal of Power Sources,2006,162:1-8.
    [103] SEIWER S, SHAW M, WEISS R. Morphology control of sulfonated poly(etherketone ketone) poly(ether imide) blends and their use in proton-exchange membranes[J]. Journal of Membrane Science,2006,270:22-31.
    [104] LI X, CHEN D, XU D, et al. SPEEKK/polyaniline (PANI) compositemembranes for direct methanol fuel cell usages [J]. Journal of Membrane Science,2006,275:134-140.
    [105] LI Y, LI Z, LU X, et al. Composite membranes based on sulfonated poly(arylether ketone)s containing the hexafuoroisopropylidene diphenyl moiety andpoly(amic acid) for proton exchange membrane fuel cell application [J]. InternationalJournal of Hydrogen Energy,2011,36:14622-14631.
    [106] LI W, MANTHIRAM A, GUIVER M D. Acid–base blend membranesconsisting of sulfonated poly(ether ether ketone) and5-amino-benzotriazole tetheredpolysulfone for DMFC [J]. Journal of Membrane Science,2010,362:289-297.
    [107] Thanganathan U. Structural study on inorganic/organic hybrid compositemembranes [J]. Journal of Materials Chemistry,2011,21:456-465.
    [108] DU L, YAN X, HE G, et al. SPEEK proton exchange membranes modified withsilica sulfuric acid nanoparticales [J]. International Journal of Hydrogen Energy,2012,37:11853-11861.
    [109] WU H, SHEN X, XU T, et al. Sulfonated poly(ether ether ketone)/amino-acidfunctionalized titania hybrid proton conductive membranes [J]. Journal of PowerSources,2012,213:83-92.
    [110] LIU D, GENG L, FU Y, et al. Novel nanocomposite membranes based onsulfonated mesoporous silica nanoparticles modifed sulfonated polyimides for directmethanol fuel cells [J].Journal of Membrane Science,2011,366:251-257.
    [111] ZHAO D, YI B L, ZHANG H M, et al. MnO2/SiO2–SO3H nanocomposite ashydrogen peroxide scavenger for durability improvement in proton exchangemembranes [J]. Journal of Membrane Science,2010,346:143-151.
    [112] WANG S, ZHAO C, MA W, et al. Silane-cross-linked polybenzimidazole withimproved conductivity for high temperature proton exchange membrane fuel cells [J].Journal of Materials Chemistry A,2013,1:621-629.
    [113] TENG X, DAI J, SU J, et al. A high performance polytetrafluoroethene/Nafioncomposite membrane for vanadium redox flow battery application [J]. Journal ofPower Sources,2013,240:131-139.
    [114] LIU F, YI B, XING D, et al. Nafion/PTFE composite membranes for fuel cellapplications [J]. Journal of Membrane Science,2003,212:213-223.
    [115] VERBRUGGE M bW, HILL R F, SCHNEIDER E W. Composite membranesfor fuel-cell applications [J]. AIChE Journal,1992,38:93-100.
    [116] LIN H, ZHAO C, CUI Z,et al. Novel sulfonated poly(arylene ether ketone)copolymers bearing carboxylic or benzimidazole pendant groups for proton exchangemembranes [J]. Journal of Power Sources,2009,193:507-514.
    [1] SEO D W, LIM Y D, LEE S H, et al. Preparation and characterization ofsulfonated amine-poly(ether sulfone)s for proton exchange membrane fuel cell [J].International Journal of Hydrogen Energy,2010,35:13088-13095.
    [2] ZAMEL N, HANKE-RAUSCHENBACH R, KIRSCH S, et al. Relating theN-shaped polarization curve of a PEM fuel cell to local oxygen starvation andhydrogen evolution [J]. International Journal of Hydrogen Energy,2013,38:15318-15327.
    [3] GUO M, LIU B, GUAN S, et al. Novel sulfonated poly(ether ether ketone)scontaining nitrile groups and their composite membranes for fuel cells [J]. Journal ofPower Sources,2010,195:4613-4621.
    [4] ITOH T, HITAI K, TAMURA M, et al. Anhydrous proton-conducting electrolytemembranes based on hyperbranched polymer with phosphonic acid groups forhigh-temperature fuel cells [J]. Journal of Power Sources,2008,178:627-633.
    [5] SUDA T, YAMAZAKI K, KAWAKAMI H. Syntheses of sulfonatedstar-hyperbranched polyimides and their proton exchange membrane properties [J].Journal of Power Sources,2010,195:4641-4646.
    [6] LI Y, WANG X, XIE M, et al. Proton conducting electrolyte membranes derivedfrom novel branched sulfonated poly(ether ether ketone)s with benzimidazole sulfonicacid pendants via thiol-ene click chemistry [J]. International Journal of HydrogenEnergy,2013,38:16276-16285.
    [7] GUO W, PANG J, ZHANG L, et al. Synthesis and characterization of highlybranched sulfonated poly(aryl ether ketone) copolymers as proton exchangemembranes [J]. High Performance Polymers,2013,25:947-955.
    [8] MATSUMURA S, HLIL A R, DU N Y, et al. Ionomers for proton exchangemembrane fuel cells with sulfonic acid groups on the end-groups: novel branchedpoly(ether-ketone)s with3,6-ditrityl-9H-carbazole end-groups [J]. Journal of PolymerScience, Part A: Polymer Chemistry,2008,46:3860-3868.
    [9] PARK H S, SEO D W, CHOI S W, et al. Preparation and characterization ofbranched and linear sulfonated poly(ether ketone sulfone) proton exchangeMembranes for fuel cell applications [J]. Journal of Polymer Science, Part A: PolymerChemistry,2008,46:1792-1799.
    [10] WANG L, WANG D, ZHU G M, et al. Synthesis and properties of highlybranched sulfonated poly(arylene ether)s as proton exchange membranes [J].European Polymer Journal,2011,47:1985-1993.
    [11] WANG J, ZHAO C, ZHANG L, et al. Cross-linked proton exchange membranesfor direct methanol fuel cells: Effects of the cross-linker structure on the performances[J]. International Journal of Hydrogen Energy,2012,37:12586-12596.
    [12] WANG L, LI K, ZHU G, et al. Preparation and properties of highly branchedsulfonated poly(ether ether ketone)s doped with antioxidant1010as proton exchangemembranes [J]. Journal of Membrane Science,2011,379:440-448.
    [13] JEONG M H, LEE K S, LEE J S. Cross-linking density effect of fluorinatedaromatic polyethers on transport properties [J]. Macromolecules,2009,42:1652-1658.
    [14] ZHANG G, LI HT, MA W J, et al. Cross-linked membranes with amacromolecular cross-linker for direct methanol fuel cells [J]. Journal of MaterialsChemistry,2011,21:5544-5548.
    [15] KIM D S, ROBERTSON G P, KIM Y S, et al. Copoly(arylene ether)s containingpendant sulfonic acid groups as proton exchange membranes [J]. Macromolecules,2009,42:957-963.
    [1] CHANGKHAMCHOM S, SIRIVAT A. Composite proton exchange membranes ofsulfonated poly(ether ketone ether sulfone)(S-PEKES) and molecular sieve with highmechanical strength for direct methanol fuel cell [J]. International Journal ofPolymeric Materials and Polymeric Biomaterials,2014,63:315-322.
    [2] HE G, LI Y, LI Z, et al. Enhancing water retention and low-humidity protonconductivity of sulfonated poly(ether ether ketone) composite membrane enabled bythe polymer-microcapsules with controllable hydrophilicity-hydrophobicity [J].Journal of Power Sources,2014,248:951-961.
    [3] MABROUK W, OGIER L, VIDAL S, et al. Ion exchange membranes based uponcrosslinked sulfonated polyethersulfone for electrochemical applications [J]. Journalof Membrane Science,2014,452:263-270.
    [4] EASTCOTT J I, EASTON E B. Sulfonated silica-based fuel cell electrodestructures for low humidity applications [J]. Journal of Power Sources,2014,245:487-494.
    [5] ZHAO S, REN J, WANG Y, et al. Electric field processing to control the structureof titanium oxide/sulfonated poly (ether ether ketone) hybrid proton exchangemembranes [J]. Journal of Membrane Science,2013,437:65-71.
    [6] HIRASHIGE T, KAMO T, TSHIKAWA T, et al. Development ofinorganic-organic membranes consisting of ZrO2center dot nH(2)Oand sulfonated-PES for direct methanol fuel cells [J]. Journal of New Materials forElectrochemical Systems,2012,15:83-88.
    [7] CHEN Y N, CHUNG P Y, YEN S C. Conductivity and methanol permeability ofsulfonated polystyrene membrane with dispersed montmorillonite nanoclay [J].Polymer Composites,2012,33:2105-2113.
    [8] YU D M, YOON Y J, KIM T H, et al. Sulfonated poly(arylene ethersulfone)/sulfonated zeolite composite membrane for high temperature protonexchange membrane fuel cells [J]. Solid State Ionics,2013,233:55-61.
    [9] KUMAR G G, KIM A R, NAHM K S, et al. Nafion membranes modified withsilica sulfuric acid for the elevated temperature and lower humidity operation ofPEMFC [J]. International Journal of Hydrogen Energy,2009,34:9788-9794.
    [10] LUU D X, KIM D. Proton conducting electrolyte membranes based on thependant-sulfonated poly(arylene ether ketone)/polyorganosiloxane interpenetratingpolymer networks [J]. Journal of Membrane Science,2013,430:37-43.
    [11] ZUO Z, FU Y, MANTHIRAM A. Novel blend membranes based on acid-baseinteractions for fuel cells [J]. Polymers,2012,4:1627-1644.
    [12] LI Y, XIE M, WANG X, et al. Novel branched sulfonated poly(ether etherketone)s membranes for direct methanol fuel cells [J]. International Journal ofHydrogen Energy,2013,38:12060-12068.
    [13] KIM D S, LIU B J, GUIVER M D. Influence of silica content in sulfonatedpoly(arylene ether ether ketone ketone) hybrid membranes on properties for fuel cellapplication [J]. Polymer,2006,47:7871-7880.
    [14] ZHANG Y, ZHANG G, WAN Y, et al. Synthesis and characterization ofpoly(arylene ether ketone)s bearing pendant sulfonic acid groups for proton exchangemembrane materials [J]. Journal of Polymer Science, Part A: Polymer Chemistry,2010,48:5824-5832.
    [1] CHANG Z, PU H, ZHAO Z, et al. Preparation and characterization of semi-IPNfluorine containing polybenzimidazole/Nafion composite membrane for fuel cells [J].Fuel Cells,2013,13:1186-1195.
    [2] HE X, HU M, CHEN Y, et al. Hybrid polyelectrolytes based on stable sulfonatedpolynorbornene with higher proton conductivity and lower methanol permeability [J].Journal of Power Sources,2013,242:725-731.
    [3] DANG H S, KIM D. Cross-linked poly(arylene ether ketone) membranessulfonated on both backbone and pendant position for high proton conduction and lowwater uptake [J]. Journal of Power Sources,2013,222:103-111.
    [4] JIANG H, GUO X, ZHANG G, et al. Cross-linked high conductive membranesbased on water soluble ionomer for high performance proton exchange membranefuel cells [J]. Journal of Power Sources,2013,241:529-535.
    [5] DANG H S, KIM D. Cross-linked poly(arylene ether ketone) electrolytemembranes with enhanced proton conduction for fuel cells [J]. International Journalof Hydrogen Energy,2012,37:19007-19016.
    [6] MARANESI B, HOU H, POLINI R, et al. Cross-linking of sulfonated poly(etherether ketone) by thermal treatment: how does the reaction occur [J]. Fuel Cells,2013,13:107-117.
    [7] LI Y, XIE M, WANG X, et al. Novel branched sulfonated poly(ether etherketone)s membranes for direct methanol fuel cells [J]. International Journal ofHydrogen Energy,2013,38:12060-12068.
    [8] ZHANG Y, ZHANG G, WAN Y, et al. Synthesis and characterization ofpoly(arylene ether ketone)s bearing pendant sulfonic acid groups for proton exchangemembrane materials [J]. Journal of Polymer Science, Part A: Polymer Chemistry,2010,48:5824-5832.
    [1] HE G, LI Y, LI Z, et al. Enhancing water retention and low-humidity proton conductivityof sulfonated poly(ether ether ketone) composite membrane enabled by thepolymer-microcapsules with controllable hydrophilicity-hydrophobicity [J]. Journal of PowerSources,2014,248:951-961.
    [2] WU H, SHEN X, CAO Y, et al. Composite proton conductive membranes composed ofsulfonated poly(ether ether ketone) and phosphotungstic acid-loaded imidazole microcapsulesas acid reservoirs [J]. Journal of Membrane Science,2014,451:74-84.
    [3] WANG S, ZHAO C, MA W, et al. Macromolecular cross-linked polybenzimidazole basedon bromomethylated poly (aryl ether ketone) with enhanced stability for high temperature fuelcell applications [J]. Journal of Power Sources,2013,243:5102-5109.
    [4] LEE C H, LEE Y M. Highly proton-conductive thermally rearranged polybenzoxazole formedium-temperature and low-humidity polymer electrolyte fuel cells [J]. Journal of PowerSources,2014,247:286-293.
    [5] ANGIONI S, VILLA D C, DAL B S, et al. Polysulfonation of PBI-based membranes forHT-PEMFCs: a possible way to maintain high proton transport at a low H3PO4doping level[J]. Journal of Materials Chemistry A,2014,2:663-671.
    [6] ZHANG H, LI X, ZHAO C, et al. Composite membranes based on highly sulfonatedPEEK and PBI: morphology characteristics and performance [J]. Journal of MembraneScience,2008,308:66-74.
    [7] FU Y, MANTHIRAM A, GUIVER M D. Acid-base blend membranes based on2-amino-benzimidazole and sulfonated poly(ether ether ketone) for direct methanol fuel cells[J]. Electrochemistry Communications,2007,9:905-910.
    [8] LI H, ZHANG G, ZHAO C, et al. Composite membranes based on a novel benzimidazolegrafted PEEK and SPEEK for fuel cells [J]. International Journal of Hydrogen Energy,2012,37:19007-19016.
    [9] PRICE C C, SNYDER W H. Solvent effects in the base-catalyzed isomerization of allyl topropenyl ethers [J]. Journal of the American Chemical Society,1961,83:1773-1773.
    [10] KESSLIN G, ORLANDO C M. Cleavage reaction of2-butenyloxy derivatives withpotassium t-butoxide [J]. The Journal of Organic Chemistry,1966,31:2682-2684.
    [11] LI Y, XIE M, WANG X, et al. Novel branched sulfonated poly(ether ether ketone)smembranes for direct methanol fuel cells [J]. International Journal of Hydrogen Energy,2013,38:12060-12068.
    [12] ZHANG Y, SHAO K, ZHAO C, et al. Novel sulfonated poly(ether ether ketone) withpendant benzimidazole groups as a proton exchange membrane for direct methanol fuel cells[J]. Journal of Power Sources,2009,194:175-181.
    [13] LI Y, WANG X, XIE M, et al. Proton conducting electrolyte membranes derived fromnovel branched sulfonated poly(ether ether ketone)s with benzimidazole sulfonic acidpendants via thiol-ene click chemistry [J]. International Journal of Hydrogen Energy,2013,38:16276-16285.
    [14] ZHANG Y, ZHANG G, WAN Y, et al. Synthesis and characterization of poly(aryleneether ketone)s bearing pendant sulfonic acid groups for proton exchange membrane materials[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2010,48:5824-5832.
    [1] HOU H, VONA M L D, KNAUTH P. Building bridges:crosslinking of sulfonatedaromatic polymers-a review [J]. Journal of Membrane Science,2012,423-424:113-127.
    [2] LU W, SHAO Z G, ZHANG G, et al. Cross linked poly(vinylbenzyl chloride) with amacromolecular crosslinker for anion exchange membrane fuel cells [J]. Journal of PowerSources,2014,248:905-914.
    [3] TANG W F, LING Y, CHEN S S, et al. Synthesis and properties of proton exchangemembranes based on cross-linked block sulfonated poly(arylene ether sulfone) s [J]. ChemicalJournal of Chinese Universities-Chinese,2013,34:2661-2666.
    [4] ZHAO D, LI J, SONG M K, et al. A durable alternative for proton exchange membrane:sulfonated poly(benzoxazole thioether sulfone)s [J]. Advanced Energy Materials,2011,1:203-211.
    [5] HAN S Y, PARK J, KIM D. Proton-conducting electrolyte membranes based onorganosiloxane network/sulfonated poly(ether ether ketone) interpenetrating polymernetworks embedding sulfonated mesoporous benzene-silica [J]. Journal of Power Sources,2013,243:850-858.
    [6] ABDRASHITOV E F, BOKUN V C, KRITSKAYA D A, Synthesis and properties of thePVDF-based proton exchange membranes with incorporated cross-linked sulphonatedpolystyrene for fuel cells [J]. Solid State Ionics,2013,251:9-12.
    [7] YANG J, XU Y, ZHOU L, et al. Hydroxyl pyridine containing polybenzimidazolemembranes for proton exchange membrane fuel cells [J]. Journal of Membrane Science,2013,446:318-325.
    [8] WANG J, YU H, LEE M H, et al. Characterization of molecular interaionic and intraioniccrosslinkable sulfonated poly(ether ether ketone-alt-benzimidazole) membrane [J]. Journal ofApplied Polymer Science,2012,124:3175-3183.
    [9] LI J, YU H. Synthesis and characterization of sulfonated poly(benzoxazole ether ketone)sby direct copolymerization as novel polymers for proton exchange membranes [J]. Journal ofPolymer Science, Part A: Polymer Chemistry,2007,45:2273-2286.
    [10] LI H, ZHANG G, MA W, et al. Composite membranes based on a novel benzimidazolegrafted PEEK and SPEEK for fuel cells [J]. International Journal of Hydrogen Energy,2010,35:11172-11179.
    [11] TSANG E M W, ZHANG Z N, SHI ZQ, et al. Considerations of macromolecularstructure in the design of proton conducting polymer membranes: graft versus diblockpolyelectrolytes [J]. Journal of the American Chemical Society,2007,129:15106-15107.
    [12] KREUER K D, PADDISON S J, SPOHR E, et al. Transport in proton conductors forfuel-cell applications: simulations, elementary reactions, and phenomenology [J]. ChemicalReviews,2004,104:4637-4678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700