骨髓间充质干细胞培养、冻存及体外诱导神经干细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物的骨髓中含大量成体干细胞,而且取材方便,成为成体干细胞研究焦点。骨髓间充质干细胞(Marrow mesenchymal stem cells,MSCs)是继造血干细胞(Hematopoietic stem cell,HSCs)之后近年来研究较多的一种骨髓源多能干细胞。MSCs不仅具有强大的增殖分化能力,易于在体外大量繁殖,诱导分化,而且具有向胞外分泌多种细胞因子的特性,参与细胞微环境的构建。体内移植具有低免疫原性,在器官移植、自身免疫性疾病及替代治疗中有广阔的应用前景。
     本文以SD(sprague-dawley)大鼠为实验材料,首先探讨了MSCs的体外分离、扩增的方法。取SD大鼠双侧股骨、胫骨,采用全骨髓法贴壁培养MSCs,以梯度密度接种骨髓细胞。研究结果显示,以0.5~1×107个/mL接种骨髓细胞可以有效缩短原代培养的时间,传代细胞生长状态稳定,P2、P4、P6代生长曲线基本相同。免疫荧光法鉴定表面抗原CD29、CD44阳性表达,不表达造血细胞系表面抗原CD34+。免疫荧光双标鉴定P3代细胞的纯度,其CD29阳性率为97.96±0.35%,CD44阳性表达率为98.14±0.19%。上述结果充分证明本方法适于在体外快速获得大量具有较高生物学活性的高纯度MSCs。
     在此基础上,对MSCs低温冻存进行了研究。以MSCs基本培养基、胎牛血清、DMSO为主要成分,设计不同配比的冻存保护液。以纯化的MSCs(P3),1×106个/mL密度,-80℃冻存7 d后复苏,台盼蓝据染法检测复苏率,结果显示以80%DMEM+10%FBS+10%DMSO作为冻存保护液,复苏率为61.00±3.61%,显著优于其余各组。复苏后的细胞能够在体外增殖,并正常传代。依此方法冻存P4代MSCs,于冻存1、3、6个月后复苏,复苏率分别为61.67±4.41%、61.67±3.33%和65.00±11.54%,差异不显著(P>0.05),复苏后细胞增殖、传代正常。对复苏后传代培养的MSCs行免疫荧光鉴定,其表面抗原CD29与CD44阳性表达,说明冻存后的MSCs仍可保持原有的生物学活性。
     此外,本实验还对MSCs旁分泌作用对NSCs分化的影响进行了研究。以出生24 h的SD大鼠乳鼠作为供体,分离、培养海马源性NSCs,并诱导其分化;以免疫荧光法检测NSCs表面抗原Nestin,神经元表面抗原NSE及星形胶质细胞表面抗原GFAP。研究结果表明,以无血清培养的方法联合应用碱性成纤维细胞生长因子和表皮生长因可以使体外培养的NSCs表现出良好的持续增殖能力,并且能够稳定地传代扩增,且传代后的NSCs表达Nestin阳性。在去除培养液中的生长因子并添加10% FBS后,NSCs能够分化成为NSE阳性表达的神经元和GFAP阳性表达的星形胶质细胞。在建立NSCs培养方法的基础之上,以MSCs条件培养液诱导NSCs分化,并以上述添加FBS的培养液作为对照,7 d后行免疫荧光双标鉴定,发现与对照组相比,MSCs培养液对NSCs向神经元和星形胶质细胞分化具有促进作用。
There exists a large number of adult stem cells in the marrow of mammals. It is convenient to get the experimental materials from mammals. Therefore, the marrow of mammals became the central issue of researches on adult stem cells. The marrow mesenchymal stem cells(MSCs) is one kind of bone marrow-derived multipotent stem cells, and it was studied more in recent years following after researches on hematopoietic stem cells. The MSCs has strong ability of multiplication and differentiation and it is easy to multiply and induced differentiation in vitro. Moreover, it has the characteristic of secreting varied cell facters to the extracellular space, and it is involved in the restructure of cell micro-environment. They have low immunogenicity when transplanted in vivo. Therefore, there are broad application prospects for MSCs in organ transplantation, autoimmune diseases and replacement therapy.
     In this article, SD(sprague-dawley) rats were used as MSCs donors. We investigated the method of isolation and multiplication at first. After getting the bilateral femurs and shinbones of SD rats, we cultured the bone marrow cells by adherent method, and then inoculated marrow cells by the method of density gradient centrifugation. The results showed that it could shorten the time of primary culture effectively with the density of 0.5~1×107cells/mL. The growth of passage cells was stable and the growth curves of P2, P4 and P6 were similar to each other. With immunofluorescence method, it was identified that the surface antigen CD29 and CD44 positive expressed while surface antigen CD34 of hematopoietic cell lines did not express. Double immunofluorescence techniques were used to identify the purity of the P3 cells, The respective positive rates of CD29 and CD44 were 97.96±0.35%and 98.14±0.19%. The above results completely demonstrated that this method was appropriate to gain a large quantity of high purified MSCs in vitro which have high biological activity.
     The cryopreservation of MSCs were studied based on the results above. Using LG-DMEM medium, fetal calf serum and DMSO as the main materials, we designed freezing protection solution that had different mixture ratios. P3 MSCs were stored under the condition of 1×106cells/mL density and -80℃for 7 days and then revived. The thawed rate was detected with trypan blue staining method. The results showed that the thawed rate of group F10(80%DMEM+10%FBS+10%DMSO)was 61.00±3.61%, which was notedly better than the other groups. The thawed MSCs could multiply in vitro and pass on from generation to generation normally. P4 MSCs were stored by this method, and revived after one, three, six months. The thawed rates were 61.67±4.41%, 61.67±3.33%, 65.00±11.54%, here was no significant difference among them (P>0.05). The ultiplication and subcultured of MSCs was normal after thawed. The immunofluorescence identification of MSCs subcultured after thawed showed that the surface antigen CD29 and CD44 positive expressed. It illustrated that the MSCs after cryopreservation still had biological activities.
     In addition, we did research on the influence of the paracrine interactions of MSCs on the differentiation of NSCs. The neonatal SD rats within 24h were used as NSCs donors, We isolated and cultured the hippocampus-derived NSCs, and then induced them to differentiate. NSCs surface antigen Nestin, neuron surface antigen NSE and fibrous astrocyte surface antigen GFAP were detected with the immunofluorescence method. The results indicated that the serum-free culture combined with basic fibroblast growth factor and epidermal growth factor could make NSCs showing good ability of continuing proliferation, passing from generation to generation stably, and the NSCs after passage were Nestin positive expressed. After removing the growth factor and adding 10%FBS, NSCs could differentiate into neuron that NSE positive expressed and astrocyte that GFPA positive expressed. Subsequently, NSCs were induced to differentiate in the MSCs culture solution, and using the above medium which added FBS 10% as a contrast. 7 days later, by means of immunofluorescence techniques, it was identified that the MSCs culture solution had stimulative effect on the differentiation of NSCs into neuron and astrocyte compared with the controls.
引文
[1] Weissman I L, Anderson D J, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations[J]. Annu. Rev. Cell Dev. Biol, 2001, 17: 387-403.
    [2] Smith A G. Embryo-derived stem cells: of mice and men[J]. Annu. Rev. Cell Dev. Biol, 2001, 17: 435-462.
    [3]章静波,宗书东,马文丽.干细胞[M].北京:中国协和医科大学出版社, 2003.
    [4] Lanza R, Gearhart J, Hogan B, et al.干细胞手册[M].北京:科学出版社, 2006.
    [5] Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J]. Proc. Nat. Acad. Sci. USA, 1981, 78(2): 7634-7638.
    [6] Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(9): 154-155.
    [7] Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, l998, 282: 1145-1147.
    [8] Matsui Y, Zsebo K, Hogan BL. M. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture[J]. Cell, 1992, 70: 841-847.
    [9] Resnick J L, Bixler L S, Linzhao Cheng, et al. Long-term proliferation of mouse primordial germ cells in culture[J]. Nature, 1992, 359: 550-551.
    [10]胡火珍.干细胞生物学[M].成都:四川大学出版社, 2005.
    [11]王冬梅,裴雪涛. CD34-造血干细胞研究进展[J].生理科学研究进展, 2001, 32(4): 318-320.
    [12]李莎.造血干细胞研究进展[J].家畜生态学报, 2008, 29(2): 98-101.
    [13] Matsuoka S, Ebihara Y, M Xu, et al. CD34 expression on long-term repopulating hematopoietic stem cells changes during developmental stages. Blood, 2001, 97: 419-425.
    [14] Henniker A J. CD90[J]. J Biol Regu Homeost Agents, 2001, 15(4):392-393.
    [15] YIN A H, Miraglia, Esmail D Z et al. AC133, a novel marker for human hematopoietic stem and progenitor cells[J]. Blood, 1997, 90: 5002-5012.
    [16] de Wynter E A, Buck D, Hart C. CD34+AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors[J].Stem Cells, 1998, 16(6): 387-396.
    [17] Matsumoto K, Yasui K, Yamaskita N, et al.In vitro proliferation potential of AC133 positive cells in peripheral blood[J]. Stem Cells, 2000, 18(3): 196-203.
    [18] Pasino M, Lanza T, Marotta F, et al. Flow cytometric and functional characteristic of AC133+ cell from human umbilical cord blood[J]. Br J Haematol, 2000, 108(4): 793-800.
    [19] Ziegler B L, Valtieri M, Porada G A, et al. KDR Receptor: a key marker defining hematoioietic stem cells[J]. Science, 1999, 285: 1553-1557.
    [20] van de Rijn M, Heimfeld S, Spangrude G J, et al. Mouse hematopoietic stem-cell antigen Sca-1 is a member of the Ly-6 antigen family[J]. Proc Natl Acad Sci U S A. 1989, 86: 4634–4638.
    [21] Morrison S J, Weissman I L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype[J]. Immunity. 1994, 1: 661–673.
    [22] Ikuta K, Weissman I L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation[J]. Proc Natl Acad Sci U S A. 1992, 89: 1502–1506.
    [23] Nakauchi H. Hematopoietic stem cells: Are they CD34-positive or CD34-negative[J] Nat Med,1998, 4: 1009-1010.
    [24] Masatake O, Ken-ichi H, Hirofumi H, et al. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell[J]. Science, 1996, 273: 242-245.
    [25]吴祖泽,刘民培,薛惠华.不同来源脾结节生成细胞增殖与分化性能的比较[J].解放军医学杂志, 1984, 9(5): 325-328.
    [26] Eglitis M A, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice[J]. Proc Natl Acad Sci USA, 1997, 94: 4080-4085.
    [27] Jackson K A, Hirschi K, Goodell M A. Hematopoietic stem cells can function as myogenic and endothitial precursors[J]. Blood (suppl), 1999, 91, 10: 135.
    [28] Lagasse E, Connors H, AI-Dhalimy M, et al. Purified hematopoietic stem cell can differentiate into hepatocytes in vivo[J]. Nat Med, 2000, 6: 1229-1234.
    [29] Shi Q, Rafii S,Wu M H D, et al. Evidence for circulating bone marrow-derived endothelial cells[J]. Blood, 1998, 92(2): 362-367.
    [30] Minguell J J, Conget P A, Erices A. Biology and clinical utilization of mesenchymal progenitorcells[J], Braz J Med Biol Res, 2000, 33:881-887.
    [31] Owen M. Marrow stromal stem cells[J]. Cell Sci (suppl), 1988, 10: 63-76.
    [32] Friedenstein A J, Piatetzky-Shapiro, Petrakova K V. Osteogenesis in transplants of bone marrow cells[J]. Embryol Exp Morphol, 1966, 16(3): 381-390.
    [33] Piersma A H, Brockbank K G, Ploemacher R E, et al. Characterization of fibroblastic stromal cells from murine bone marrow[J]. Exp Hematol, 1985, 13(4):237-243.
    [34] Williams J T, Southerland S S, Souza J, et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes[J]. Am Surg, 1999, 65(1): 22-26.
    [35] Conget P A, Minguell J J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells[J]. J cell Physiol, 1999, 181(1): 67-73.
    [36] Pittenger F, Mackay A, Beck S, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284: 143-147.
    [37] Bruder S P, Jaiswal N, Haynesworth S E. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subculativation and following cryopreservation[J]. Cell Biochem, 1997, 64: 278-294.
    [38] Hung S C, Chen N J, Hsieh S L, et al. Isolation and characterization of size sieved stem cells from human bone marrow[J]. Stem Cells, 2002, 20(3): 249-258.
    [39]胡静波,周燕,蒋丹丹,等.体外扩增过程中人骨髓间充质干细胞的增殖与分化规律[J].细胞与分子免疫学杂志, 2006, 22(1): 7-10.
    [40] de Ugarte D A, Alfonso Z, Zuk P A, et al. Differential expression of stem cell mobilization associated molecules on multi-lineage cells from adipose tissue and bone marrow[J]. Immunol Lett, 2003, 89(23): 267-270.
    [41] Martinez C, Hofmann T J, Marino R, et al. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs[J]. Blood, 2007, 109: 4245-4248.
    [42] Gang E J, Bosnakovski D, Figueiredo C A, et al. SSEA-4 identifies mesenchyma stem cells from bone marrow[J]. Blood, 2007, 109(4): 1743-1751.
    [43] Haynesworth S E, Baber M A, CaPlan A L. Cytokine expression by human marrow-derivedmesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha[J]. Cell Physiol, 1996, 166: 585-592.
    [44] Majumdar M K, Thieda M A, Mosea J D, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells(MSCs) and stromal cells[J]. J Cell Physiol, 1998, 176: 186-192.
    [45] Minguell J J, Erices A, Conget P A. Mesenchymal stem cells[J]. Exp Biol Med, 2001, 226(6): 507-520.
    [46] Friedenstein A J, Gorskaja J F, Kulagina N N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp Hematol, 1976, 4: 267-272..
    [47]贾贵清,张明鸣,杨平,等.不同分离及培养方法对大鼠骨髓间充质干细胞生长增殖和生物学特性的影响[J].四川大学学报, 2009, 40(4): 719 - 723.
    [48]倪玉霞,李澎,李贻奎,等.大鼠骨髓间充质干细胞的分离、培养和鉴定[J].广西医科大学学报, 2009, 2, 26(1): 10-13.
    [49]张本斯,王凡,邓力,等.大鼠骨髓间充质干细胞的分离培养及表型和功能特点[J].四川大学学报(医学版), 2003, 34(4): 738-741.
    [50] Deryugina E I, Muller-Sieburg C E. Stromal cells in long term cultures: keys to the elucidation of hematopoietic development[J]. Crit Rev Immunol, 1993, 13(2): 115-119.
    [51] Deren J A, Kaplan F S, Brighton C T. Alkaline phosphatase production by periosteal cells at various oxygen tensions in vivo[J]. Clin Orthop Rel Res, 1990, 252: 307-312.
    [52] Lennon D P, Edmison J M, Caplan A I. Cultivation of marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis[J]. J Cell Physiol, 2001, 187(3): 345-355.
    [53] Qiu Q, Ducheyne P, Gao H, et al. Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel[J]. Tissue Eng, 1998, 4(1): 19-34.
    [54] Glowacki J, Mizuno S, Greenberger J S. Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture[J]. Cell Transplant, 1998, 7(3): 319-326.
    [55]邱丽燕,王金福.骨髓间充质干细胞的研究进展[J].生物工程学报, 2003, 3, 19(2): 136-140.
    [56]夏冰,王捷,郭立达,等.几种骨髓间充质干细胞体外培养特性的比较[J].中国临床康复, 2006,10(37): 138-140
    [57] Ouyang H W, Cao T, Zou X H, et al. Mesenchymal stem cells sheets revitalize nonviable dense grafts: implications for repair of large bone and tendon defects[ J]. Transplant, 2006, 82(2): 170-174.
    [58]舒朝锋,崔磊,刘伟,等.人骨髓间充质干细胞向软骨细胞诱导分化的实验研究[J].中华创伤骨科杂志, 2004, 6(2): 194-198.
    [59] Pittenger M F, Mackay A M, Beck S C, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
    [60] Pittenger M F, Martin B J. Mesenchymal stem cells and their potential as cardiac therapeutics[J]. Circ Res, 2004, 95(1): 9-20.
    [61] Wang F S, Trester C. Bone marrow cells and myocardial regeneration[J]. Int J Hematol, 2004, 79(4): 322-327.
    [62] Long X, Olszewsk M, Huang W, et al. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells[J]. Stem Cells Dev, 2005, 14(1): 65-69.
    [63] Tao H, Rao R, Ma D D, et al. Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cell-free condition[J]. Dev Growth Differ, 2005, 47(6): 423-433.
    [64] Lange C, Bassler P, Lioznov M V, et al. Hepatocytic gene expression in cultured rat mesenchymal stem cells[J]. Transplant Proc, 2005, 37(1): 276-279.
    [65] P Ping Wang, Jian H Wang, Zhi P Yan, et al. Expression of hepatocyte like phenotypes in bone marrow stromal cells after HGF induction[J]. Biochem Biophys Res Commun, 2004, 320(3): 712-716.
    [66] John M L, P P Wang, Carol K L. et al. Hepatic potential of bone marrow stromal cells: development of in vitro co-culture and intra-portal transplantation models[J]. J Immunol Methods, 2005, 305(1): 39-47.
    [67] Hess D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneration[J]. Nature Biotechnology, 2003, 21(7): 763-770.
    [68] Altman J, Das G D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats[J]. Comp Neurol, 1965, 124: 319-335.
    [69] Frederiksen K, Jat P S, Valtz N, et al. Immortalization of precursor cells from the mammalianCNS.Neuron[J]. 1988, 1: 439-448.
    [70] Temple S. Division and differentiation of isolated CNS blast cells in microculture[J]. Nature, 1989, 340(6233): 471-473.
    [71] Reynolds B A, Weiss A. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science, 1992, 255: 1707-1709.
    [72] Richards L J, Kilpatrick T J, Bartlett P F. De novo generation of neuronal cells from the adult mouse brain[J] . Proc Natl Acad Sci USA, 1992, 89: 8591-8595.
    [73] McKay R. Stem cells in the central nervous system[J]. Science, 1997, 276(5309): 66-71.
    [74] Eriksson P S, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus[J]. Nat Med, 1998, 4(11): 1313-1317.
    [75]罗小丹,沈岳飞.神经干细胞定向诱导分化为多巴胺能神经元的研究进展[J].神经解剖学杂志, 2009, 25(4): 469~473.
    [76] Davis A A, Temple S. A self-renewing multipotential stem cells in embryonic rat cerebral cortex[J]. Nature, 1994, 372: 263-266.
    [77] Tieqiao Wen, Hailong Li, Hongsheng Song, et al. Down-regulation of specific gene expression by double-strand RNA induces neural stem cell differentiation in vitro[J]. Mol Cell Biochem, 2005, 275(1-2):215-221.
    [78] Harrower T P, Tyers P, Hooks Y, et al. Long-term survival and integration of porcine expanded neural precursor cell grafts in a rat model of Parkinson`s disease[J]. Exp Neurol, 2006, 197(1): 56-69.
    [79] Gobbel G T, Choi S J, Beier S, et al. Long-term cultivation of multipotential neural stem cells from adult rat subependyma[J]. Brain Res, 2003, 980(2): 221-232.
    [80] Selkoe D J. Defining molecular targets to prevent Alzheimer disease[J]. Arch Neurol, 2005, 62(2): 192-195.
    [81] Alvarez-Buylla A, Lim D A. For the long run: maintaining germinal niches in the adult brain[J]. Neuron, 2004, 41(5): 683-686.
    [82] Liste I, Garcia-Garcia E, Martinez-Serrano A. The generation of dopam inergic neurons by human neural stem cells is enhanced by Bcl-XL, both in vitro and in vivo[J]. Neurosci, 2004, 24(48): 10786-10795.
    [83] LU L, Zhao C, Liu Y, et al. Therapeutic benefit of TH-engineered mesenchymal stem cells for Parkinson's disease.[J]. Brain Res Brain Res Protoc, 2005, 15(1): 46-51.
    [84] Wong A M, Hodges H, Horsburgh K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia[J]. Brain Res, 2005, 1063(2): 140-150.
    [85] Gage H F. Mammalian neural stem cells[J]. Science, 2000, 287(5457): 1433-1438.
    [86] Vescovi A L, Synder E Y. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo[J]. Brain Pathology, 1999, 9(3): 569-598.
    [87] Lendahl U, Zimmerman L B, Mckay R. CNS stem cells express a new class of intermediate filament protein[J]. Cell, 1990, 60: 585-595.
    [88] Sakakibara S, Imai T, Hamaguchi K, et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell[J]. Dev Biol, 1996, 176: 230-242.
    [89] Uchida N, Buck D W, He D, et al. Direct isolation of human central nervous system stem cells[J]. Proc Natl Acad Sci USA, 2000, 97(26): 14720-14725.
    [90]潘良春,尹宗生,王伟,等.胚胎和新生大鼠神经干细胞培养与分化的特性比较[J].中国临床康复, 2006, 10(5): 25-27.
    [91]柯春龙,刘金龙,杨超.胚胎及成年大鼠神经干细胞体外诱导向多巴胺能神经元分化[J].中国老年学杂志, 2007, 27(6): 505-506.
    [92]曹中伟,马虹,曾倩,等.大鼠胚胎脑组织神经干细胞的培养和鉴定[J].解剖科学进展, 2006, 12(1): 29-31.
    [93] Dietrich J, Easterday M C. Developing concepts in neural stem cells[J]. Trends Neurosci, 2002, 25(3): 129-131.
    [94] Galli R, Gritti A, Bonfanti L, et al. Neural Stem cells: an overview[J]. Circ Res, 2003, 92(6): 598-608.
    [95] Gobbel G T, Choi S J, Beier S, et al. Long-term cultivation of multipotential neural stem cells from adult rat subependyma[J]. Brain Res, 2003; 980(2): 221-232.
    [96] Meltzer H, Hatton J D, Sang-U H. Cell type-specific development of rodent central nervous system progenitor cells in culture[J]. Neurosurg, 1998, 88: 93-98.
    [97] Kilpatrick T J, Bartlett P F. Cloning and growth of multipotential neural pre-cursors: requirements for proliferation and differentiation[J]. Neuron, 1993, 10: 255-265.
    [98] Kuhn H G, W inkler J, Kempermann G, et al. Epiderma growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain[J]. J Neurosci, 1997, 17: 5820-5829.
    [99] Craig C G, Tropepe V, Morshead C M, et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain[J]. J Neurosci, 1996, 16: 2649-2658.
    [100] Tanapat P, Gould E. EGF stimulates proliferation of granule cell precursors in the dentategyrus of adult rats[ J]. Soc Neurosci Abstr, 1997, 23: 317-327.
    [101] Matsumoto K, Terakawa M, Nakajima T, et al. Extremely rapid and intense induction of apoptosis in human eosinophils by anti-CD30 antibody treatment in vitro[J]. J Immunol, 2004, 172(4): 2186-21931.
    [102] Maric D, Maric I, Chang Y H, et al. Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation[J]. J Neurosci, 2003, 23(1): 240-2511.
    [103]纪家武,王玮.神经干细胞诱导分化的研究进展[J].解剖与临床, 2004, 9(4): 286-288.
    [104] Kallos M S, Behie L A. Inoculation and growth conditions for high-cell-density expansion of mammalian neural stem cells in suspension bioreactors[J]. Biotechnol and Bioeng, 1999, 63(4): 473-483.
    [105]赵志英,胡海涛,师社会,等.新生大鼠脑源性神经干细胞培养方法的优化[J].中国修复重建外科杂志, 2005, 19(7): 544-547.
    [106] Zheng X S, Yang X F, Liu W G, et al. A novel method for culturing neural stem cells[J]. In Vitro Cell Dev Biol Anim, 2007, 43(5/6): 155-158.
    [107] Sen A, Kallos M S, Behie L A. New tissue dissociation protocol for scaled-up production of neural stem cells in suspension bioreactors[J]. Tissue Eng, 2004, 10(5/6): 904-913.
    [108] Low H P, Savarese T M, Schwartz W J. Neural precursor cells form rudimentary tissue-like structures in a rotating-wall vessel bioreactor [J]. In Vitro Cell Dev Biol Anim, 2001, 37(3): 141-147.
    [109] Svendsen C N, ter Borg M G, Armstrong R J E, et al. A new method for the rapid and long term growth of human neural precursor cells[J]. J Neurosci Methods, 1998, 85(2): 141-152.
    [110] Svendsen C N, Caldwell M A, Ostenfeld T. Human neural stem cells: isolation, expansion and transplantation[J]. Brain Pathol, 1999, 9(3): 499-513.
    [111] Gaiano N, Fishell G. Transplantation as a tool to study progenitors within the vertebrate nervous system[J]. Neurobiol, 1998, 36: 152-161.
    [112] Bjornson C R, Rietze R L, Reynolds B A, et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo[J]. Science, 1999, 283: 534-537.
    [113] Galli R, Borello U, Gritti A, et al. Skeletalmyogenic potential of human and mouse neural stem cells[J]. Nat Neurosci, 2000, 3: 986-991
    [114] Clarke D L, Johansson C B, Willbertz J, et al. Generalized potential of adult neural stem cells[J]. Science, 2000, 288: 1660-1663.
    [115] Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells[J]. Science, 2000, 289(5485): 1754-1757.
    [116] Clavin N W, Fernandez J, Schonmeyr B H, et al. Fractionated doses of ionizing radiation confer protection to mesenchymal stem cell pluripotency[J]. Plastic & Reconstructive Surgery, 2008; 122(3): 739-748.
    [117]王刚,吕同德,马静,等.大鼠骨髓MSCs表面分子检测及诱导分化研究[J].中国实验诊断学, 2008, 12(3): 12-15.
    [118] Vaquero J, Zurita M, Oya S, et al. Cell therapy using bone marrow stromal cells in chronic paraplegic rats: systemic or local administration[J]. Neurosci Lett, 2006, 398(1-2): 129-134.
    [119] Flax J D, Aurora S, Yang C, et al. Engraftable human neural stem cells respond to decepmental cues, replace neurons, and express foreign genes[J]. Nat Biotechnol, 1998, 16(11): 1033.
    [120] Thomas T, Gori F Khosla S, et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes[J]. Endocrinol, 1999, 140(4): 1630-1638.
    [121] Kim D H, Yoo K H, Choi K S, et al. Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell[J]. Cytokine, 2005, 31(2): 119-126.
    [122]赵智刚,唐晓琼,黎纬明,等.冻存前后骨髓间充质干细胞的生物学特性和支持造血的研究[J].中国实验血液学杂志, 2006, 14(2): 304-307.
    [123]沈兴,余更生,田杰,等.兔骨髓间充质干细胞体外分离培养及冻存研究[J].实用医学杂志, 2006, 22(9): 996-997.
    [124]庞全海,张慧茹,华进联,等.山羊骨髓间充质干细胞生物学性能鉴定及诱导分化为心肌细胞的研究[J].中国农学通报, 2005, 21(5): 1-4.
    [125] Nicol A, Nieda M, Donaldson C, et al. Cryopreserved human bone marrow stroma is fully functional in vitro[J]. Br J Haematol, 1996, 94(2): 258-265.
    [126]沈华萍,丁春梅,迟占有,等.不同降温速率对脐血干细胞冷冻复苏后生物学特性的影响[J].生物工程学报, 2003, 19( 4): 489-492.
    [127]薛庆善.体外培养的原理与技术[M].北京:科学出版社, 2003.
    [128]杨亚东,张文元,房国坚,等.大鼠骨髓间充质干细胞的分离培养纯化及冻存[J].实用医学杂志, 2005, 21(16): 1739-1741.
    [129]樊艳,张卫泽,陈永清,等.成人脂肪间充质干细胞冻存前后的生物学特性[J].中国组织工程研究与临床康复, 2008, 12(25): 4882-4886.
    [130]项盈,贾冰冰,沈丹,等.冻存复苏后骨髓间充质干细胞体外扩增和多向分化潜能研究[J].浙江大学学报(工学版), 2006, 40(11): 2016-2020.
    [131] Kawasaki H M, Izuseki K N, Ishikaw A S, et a1. Induction of mid-brain dopam inergic neurotechnique from ES cells by stromal cell-derived inducing activity[J]. Neuron, 2000, 28: 31-40.
    [132]赵宇,谢鹏,朱晓峰.大鼠神经干细胞中PI3-K /AKT信号转导通路的研究[J].上海交通大学学报(医学版), 2009, 29(10): 1191-1195.
    [133]高亮,曹莉,苏志达,等.体外培养的嗅上皮神经干细胞具有多潜能性[J].第二军医大学学报, 2009, 30(9): 985-989.
    [134]柴勇,杨成,石增立,等.胚胎大鼠脊髓神经干细胞的培养及鉴定[J].神经解剖学杂志, 2009, 25(3), 339-342.
    [135]李明新,阚世廉,张建国.无血清条件下体外分离培养鼠胚胎脑组织神经干细胞[J].中国组织工程研究与临床康复, 2009, 13(14): 2696-2700.
    [136] Hongjun Song, Stevens C F, Gage F H. Astroglia induce neurogenesis from adult neural stem cells[J]. Nature, 2002, 417(2): 39-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700