肿瘤相关miRNAs对树突细胞寿命与功能的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树突状细胞(DCs)是免疫系统中功能最强的抗原呈递细胞,是连接固有免疫和获得性免疫的桥梁。在体内,它起着双重作用,既能调节免疫应答,又能引导免疫耐受。在肿瘤免疫中,树突状细胞发挥着重要的作用,一方面,DCs在抑制肿瘤生长中发挥重要作用,另一方面,肿瘤的生长同样也对DCs乃至整个免疫系统的功能有着极其深刻的影响。本论文主要探讨了肿瘤相关miRNAs及其靶基因对树突状细胞功能的调节作用,这些结果将对肿瘤及其免疫相关疾病的治疗产生重要影响。主要结果:
     (1)通过建立体外肿瘤与树突状细胞共培养模型,运用基因芯片结合定量PCR,我们鉴定了在树突状细胞中与肿瘤相关的miRNAs,如miR-22,miR-128和miR-503。
     (2)肿瘤相关miR-22和miR-503通过靶向YWHAZ和Bcl2信号途径调节树突状细胞的存活寿命。肿瘤可利用一系列的免疫抑制手段,例如减少树突状细胞的生存寿命,来减弱免疫反应并限制免疫疗效。我们发现肿瘤上调多个miRNA的表达,如miR-16-1、miR-22、miR-155和miR-503.这些肿瘤相关联的miRNA通过调控凋亡信号途径中的多个分子的表达来影响树灾状细胞的存活。特别地,miR-22靶向调控YWHAZ来干扰PI3K/Akt和MAPK信号途径,而miR-503则下调Bcl2的表达。肿癇相关联的树灾状细胞中miR-22和miR-503表达量上升的后果是树灾状细胞生存寿命的减少。因此,肿瘤相关联的miRNA可以通过靶向调控多种胞内信号分子使得肿瘤环境中的树突状细胞发生凋亡利用miR-22和miR-503的抑制剂可能是改善树灾状细胞抗肿瘤免疫治疗的一个新的策略。
     (3)肿瘤相关miR-22通过靶向p38能够影响树灾状细胞的功能。p38MAPK作为MAPK信号通中中关键的一类,对于树灾状细胞的成熟及激活等都具有至关重要的调节作用。研究发现,在树突状细胞中,miR-22通过作用于p38的3'UTR来调节p38的表达,引起细胞因子IL-6分泌的增多,促使初naiveT细胞向Th17方向分化,增加了机体对抗肿瘤的能力。研究揭示了miR-22可能作为抵抗疾病特别是肿瘤的免疫治疗的靶分子.
     (4) miR-128通过靶向p38调控树突状细胞中IL-6的产生。我们首先利用生物信息学的方法预测了p38可能受到一系列microRNA的调控,进一步利用双荧光素酶报告载体系统证实了miR-128可直接作用于p38基因的3'UTR并抑制p38的表达。而且,转染miR-128可以很显著地降低树突状细胞中p38的蛋白水平,进而引起细胞因子IL-6分泌的增多。这些研究结果为microRNA在自身免疫性疾病、肿瘤等多种疾病的发病与治疗研究中增添了新的依据。
Dendritic cells (DCs) are the strongest antigen presenting cells which connect innate immunity and adaptive immunity. They can regulate the immune response and induce the immune tolerance in vivo. DCs play an important role in tumor immunity. On one hand, DCs inhibit tumor growth. On the other hand, the growth of the tumor impairs the function of DCs and the whole immune system profoundly. In this thesis, we focus on the effect of certain tumor associated miRNAs and their target genes on the survival and function of DCs. Main findings:
     (1) Identification of tumor associated miRNAs in dendritic cells. Through microarray-chip, combined with RT-PCR, we have analyzed the up-and down-regulated miRNAs in tumor associated DCs, which are coclutured with tumor cells, and demonstrated several tumor associated miRNAs, such as miR-22, miR-128and miR-503.
     (2) Tumor-associated miR-22and miR-503modulate the survival and longevity of dendritic cells by targeting YWHAZ and Bcl2signaling pathways. Tumors use a wide array of immunosuppressive strategies, such as reducing the longevity and survival of dendritic cells (DCs), to diminish immune responses and limit the effect of immunotherapy. We found that tumors upregulate the expression of multiple microRNAs (miRNAs), such as miR-16-1, miR-22, miR-155, and miR-503. These tumor-associated miRNAs influenced the survival and longevity of DCs by affecting the expression of multiple molecules that are associated with apoptotic signaling pathways. Specifically, miR-22targeted YWHAZ to interrupt the PI3K/Akt and MAPK signaling pathways, and miR-503downregulated Bcl2expression. The increased expression of miR-22and miR-503in the tumor-associated DCs causes the reduced survival and longevity of DCs. Thus, tumor-associated miRNAs can target multiple intracellular signaling molecules to cause the apoptosis of DCs in the tumor environment. Use of miR-22and miR-503as inhibitors may therefore represent a new strategy to improve DC-based immunothcrapies against tumors.
     (3) Tumor-associated mir-22affects DCs' functions by targeting p38MAPK. p38, a critical molecule of the MAPK signaling pathway, has a crucial role in regulating the maturation and activation of DCs. We demonstrate that mir-22regulates P38's expression by acting on p38's3'-UTR. Transfection of miR-22increase the excretion of cytokine IL-6. DC transfected using miR-22may mediate the differentiation of naive T cell toward Th17cell. In vivo experiments demonstrate that miR-22can promote the immune ability against tumors. Thus, our research suggests that miR-22can be potentially acted as a targeting molecule for tumor immunotherapy.
     (4) miR-128targets p38to regulate the production of IL-6in DCs. Combined with bioinformatics analysis, p38was predicted as potential target of series of microRNAs. In this study, using dual luciferase reporter assays, our results demonstrate that miR-128could repress p38expression by binding to the3UTR of p38in a direct and sequence-specific manner. Moreover, transfection of miR-128mimics significantly decrease the protein level of p38in dendritic cell, and promote production of cytokine IL-6. Furthermore, results obtained in this thesis provide a new evidence for the effect of microRNA on regulating tumor immunity.
     In conclusion, tumor associated miRNAs may affect the survival and longevity and modulate the function of dendritic cells by targeting their targeting molecules. The results not only bring about profound impact on understanding the mechanisms of tumor incidence and development but also on the immunotherapy against tumors.
引文
[1]Rowley D A, Fitch F W. The road to the discovery of dendritic cells, a tribute to Ralph Steinman. Cellular immunology,2012,273:95-98.
    [2]Nossal G J, Abbot A, Mitchell J, et al. Antigens in immunity. XV. Ultrastructural features of antigen capture in primary and secondary lymphoid follicles. The Journal of experimental medicine,1968,127:277-290.
    [3]Unanue E R, Cerottini J C. The immunogenicity of antigen bound to the plasma membrane of macrophages. The Journal of experimental medicine,1970,131:711-725.
    [4]Steinman R M, Cohn Z A. The interaction of soluble horseradish peroxidase with mouse peritoneal macrophages in vitro. The Journal of cell biology,1972,55:186-204.
    [5]Mishell R I, Dutton R W. Immunization of dissociated spleen cell cultures from normal mice. The Journal of experimental medicine,1967,126:423-442.
    [6]Steinman R M. Decisions about dendritic cells:past, present, and future. Annual review of immunology,2012,30:1-22.
    [7]Steinman R M, Cohn Z A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. The Journal of experimental medicine, 1973,137:1142-1162.
    [8]Mosier D E, Coppleson L W. A THREE-CELL INTERACTION REQUIRED FOR THE INDUCTION OF THE PRIMARY IMMUNE RESPONSE in vitro. Proceedings of the National Academy of Sciences of the United States of America,1968,61:542-547.
    [9]Steinman R M. Dendritic cells:understanding immunogenicity. European journal of immunology,2007,37 Suppl 1:S53-60.
    [10]Steinman R M, Cohn Z A. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. The Journal of experimental medicine,1974,139: 380-397.
    [11]Steinman R M, Lustig D S, Cohn'Z A. Identification of a novel cell type in peripheral lymphoid organs of mice.3. Functional properties in vivo. The Journal of experimental medicine, 1974,139:1431-1445.
    [12]Steinman R M, Adams J C, Cohn Z A. Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen. The Journal of experimental medicine,1975,141:804-820.
    [13]Steinman R M, Kaplan G, Witmer M D, et al. Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. The Journal of experimental medicine,1979,149:1-16.
    [14]Trinchieri G. Pillars of immunology:The birth of a cell type. Journal of immunology (Baltimore, Md:1950),2007,178:3-4.
    [15]Chicha L, Jarrossay D, Manz M G. Clonal type Ⅰ interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations. The Journal of experimental medicine,2004,200:1519-1524.
    [16]Wu L, Liu Y J. Development of dendritic-cell lineages. Immunity,2007,26:741-750.
    [17]Diao J, Winter E, Cantin C, et al. In situ replication of immediate dendritic cell (DC) precursors contributes to conventional DC homeostasis in lymphoid tissue. Journal of immunology (Baltimore, Md:1950),2006,176:7196-7206.
    [18]Merad M, Manz M G. Dendritic cell homeostasis. Blood,2009,113:3418-3427.
    [19]Shortman K, Naik S H. Steady-state and inflammatory dendritic-cell development. Nature reviews Immunology,2007,7:19-30.
    [20]Kushwah R, Hu J. Complexity of dendritic cell subsets and their function in the host immune system. Immunology,2011,133:409-419.
    [21]Miloud T, Hammerling G J, Garbi N. Review of murine dendritic cells:types, location, and development. Methods in molecular biology (Clifton, NJ),2010,595:21-42.
    [22]Kamath A T, Pooley J, O'keeffe M A, et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. Journal of immunology (Baltimore, Md:1950),2000, 165:6762-6770.
    [23]Kamath A T, Henri S, Battye F, et al. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood,2002,100:1734-1741.
    [24]Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annual review of immunology,2000,18:767-811.
    [25]Doherty T M, Fisher E A, Arditi M. TLR signaling and trapped vascular dendritic cells in the development of atherosclerosis. Trends in immunology,2006,27:222-227.
    [26]Kadowaki N. Dendritic cells:a conductor of T cell differentiation. Allergology international:official journal of the Japanese Society of Allergology,2007,56:193-199.
    [27]Sanchez-Sanchez N, Riol-Blanco L, De La Rosa G, et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood,2004,104: 619-625.
    [28]Roncarolo M G, Levings M K. The role of different subsets of T regulatory cells in controlling autoimmunity. Current opinion in immunology,2000,12:676-683.
    [29]Billiau A. [Interferon-gamma, the Thl/Th2 paradigm and autoimmune diseases]. Verhandelingen-Koninklijke Academie voor Geneeskunde van Belgie,1998,60:271-285.
    [30]Crane I J, Forrester J V. Th 1 and Th2 lymphocytes in autoimmune disease. Critical reviews in immunology,2005,25:75-102.
    [31]Beyer M, Schultze J L. Regulatory T cells in cancer. Blood,2006,108:804-811.
    [32]Dong C. TH17 cells in development:an updated view of their molecular identity and genetic programming. Nature reviews Immunology,2008,8:337-348.
    [33]Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells. Annual review of immunology, 2009,27:485-517.
    [34]Gaffen S L, Kramer J M, Yu J J, et al. The IL-17 cytokine family. Vitamins and hormones, 2006,74:255-282.
    [35]Gaffen S L. Recent advances in the IL-17 cytokine family. Current opinion in immunology, 2011,23:613-619.
    [36]Mcgeachy M J, Cua D J. Th17 cell differentiation:the long and winding road. Immunity, 2008,28:445-453.
    [37]Bevan M J. Helping the CD8+ T-cell response. Nature reviews Immunology,2004,4: 595-602.
    [38]Nishimura T, Kuge S, Watanabe K, et al. [An efficient methods for the induction of human antitumor effector CD4+and CD8+ T cells:their application to tumor immunotherapy]. Human cell,1994,7:131-137.
    [39]Fagiolo E, Toriani-Terenzi C. Th1 and Th2 cytokine modulation by 1L-10/1L-12 imbalance in autoimmune haemolytic anaemia (AIHA). Autoimmunity,2002,35:39-44.
    [40]O'garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends in cell biology,2000,10:542-550.
    [41]Rodriguez-Fernandez J L, Riol-Blanco L, Delgado-Martin C. What is the function of the dendritic cell side of the immunological synapse? Science signaling,2010,3:re2.
    [42]Schmidt S V, Nino-Castro A C, Schultze J L. Regulatory dendritic cells:there is more than just immune activation. Frontiers in immunology,2012,3:274.
    [43]Dzionek A, Sohma Y, Nagafune J, et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. The Journal of experimental medicine,2001,194:1823-1834.
    [44]Cella M, Jarrossay D, Facchetti F, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature medicine,1999,5:919-923.
    [45]Di Domizio J, Blum A, Gallagher-Gambarelli M, et al. TLR7 stimulation in human plasmacytoid dendritic cells leads to the induction of early IFN-inducible genes in the absence of type IIFN. Blood,2009,114:1794-1802.
    [46]Swiecki M, Colonna M. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunological reviews,2010,234:142-162.
    [47]Galon J, Pages F, Marincola F M, et al. The immune score as a new possible approach for the classification of cancer. Journal of translational medicine,2012,10:1.
    [48]Shankaran V, Dceda H, Bruce A T, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature,2001,410:1107-1111.
    [49]Vesely M D, Kershaw M H, Schreiber R D, et al. Natural innate and adaptive immunity to cancer. Annual review of immunology,2011,29:235-271.
    [50]Bernard A, Lamy, Alberti I. The two-signal model of T-cell activation after 30 years. Transplantation,2002,73:S31-35.
    [51]Kretschmer K, Apostolou I, Hawiger D, et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature immunology,2005,6:1219-1227.
    [52]Van Den Heuvel M J, Garg N, Van Kaer L, et al. NKT cell costimulation:experimental progress and therapeutic promise. Trends in molecular medicine,2011,17:65-77.
    [53]Nussenzweig M C, Steinman R M, Gutchinov B, et al. Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. The Journal of experimental medicine,1980,152:1070-1084.
    [54]Strioga M, Schijns V, Powell D J, Jr., et al. Dendritic cells and their role in tumor immunosurveillance. Innate immunity,2013,19:98-111.
    [55]Kukreja A. Protumorigenic Function of Dendritic Cells//Salter R D, Shurin M R. Dendritic Cells in Cancer. Springer US.2009:243-256.
    [56]Gutkin D. Tumor-Infiltrating Dendritic Cells:The Pathologist's Perspective//Salter R D, Shurin M R. Dendritic Cells in Cancer. Springer US.2009:33-55.
    [57]Carlos C A, Dong H F, Howard O M, et al. Human tumor antigen MUC1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Thl type immunity. Journal of immunology (Baltimore, Md:1950),2005,175:1628-1635.
    [58]Conejo-Garcia J R, Benencia F, Courreges M C, et al. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nature medicine,2004,10:950-958.
    [59]Thomachot M C, Bendriss-Vennare N, Massacrier C, et al. Breast carcinoma cells promote the differentiation of CD34+progenitors towards 2 different subpopulations of dendritic cells with CDla(high)CD86(-)Langerin- and CD1a(+)CD86(+)Langerin+phenotypes. International journal of cancer Journal international du cancer,2004,110:710-720.
    [60]Zou W, Machelon V, Coulomb-L'hermin A, et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nature medicine, 2001,7:1339-1346.
    [61]Umansky V, Schadendorf D. Elimination of Dendritic Cells in Cancer//Salter R D, Shurin M R. Dendritic Cells in Cancer. Springer US.2009:89-99.
    [62]Delia Bella S, Gennaro M, Vaccari M, et al. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. British journal of cancer,2003,89:1463-1472.
    [63]Nefedova Y, Huang M, Kusmartsev S, et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. Journal of immunology (Baltimore, Md: 1950),2004,172:464-474.
    [64]Bouillet P, Metcalf D, Huang D C, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science,1999, 286:1735-1738.
    [65]Chen M, Wang Y H, Wang Y, et al. Dendritic cell apoptosis in the maintenance'of immune tolerance. Science,2006,311:1160-1164.
    [66]Kushwah R, Hu J. Dendritic cell apoptosis:regulation of tolerance versus immunity. Journal of immunology (Baltimore, Md:1950),2010,185:795-802.
    [67]Pinzon-Charry A, Maxwell T, Mcguckin M A, et al. Spontaneous apoptosis of blood dendritic cells in patients with breast cancer. Breast cancer research:BCR,2006,8:R5.
    [68]Wojas K, Tabarkiewicz J, Jankiewicz M, et al. Dendritic cells in peripheral blood of patients with breast and lung cancer--a pilot study. Folia histochemica et cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society,2004,42:45-48.
    [69]Balkir L, Tourkova I L, Makarenkova V P, et al. Comparative analysis of dendritic cells transduced with different anti-apoptotic molecules:sensitivity to tumor-induced apoptosis. The journal of gene medicine,2004,6:537-544.
    [70]Ma Y, Shurin G V, Peiyuan Z, et al. Dendritic cells in the cancer microenvironment. Journal of Cancer,2013,4:36-44.
    [71]Orsini E, Guarini A, Chiaretti S, et al. The circulating dendritic cell compartment in patients with chronic lymphocytic leukemia is severely defective and unable to stimulate an effective T-cell response. Cancer research,2003,63:4497-4506.
    [72]Bennaceur K, Chapman J, Brikci-Nigassa L, et al. Dendritic cells dysfunction in tumour environment. Cancer letters,2008,272:186-196.
    [73]Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature reviews Immunology,2004,4:941-952.
    [74]Hiltbold E M, Vlad A M, Ciborowski P, et al. The mechanism of unresponsiveness to circulating tumor antigen MUC1 is a block in intracellular sorting and processing by dendritic cells. Journal of immunology (Baltimore, Md:1950),2000,165:3730-3741.
    [75]Hasebe H, Nagayama H, Sato K, et al. Dysfunctional regulation of the development of monocyte-derived dendritic cells in cancer patients. Biomedicine & pharmacotherapy= Biomedecine & pharmacotherapie,2000,54:291-298.
    [76]Tourkova I L, Shurin G V, Ferrone S, et al. Interferon regulatory factor 8 mediates tumor-induced inhibition of antigen processing and presentation by dendritic cells. Cancer Immunol Immunother,2009,58:567-574.
    [77]Sato K, Kawasaki H, Nagayama H, et al. TGF-beta 1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. Journal of immunology (Baltimore, Md:1950),2000,164:2285-2295.
    [78]Takayama T, Morelli A E, Onai N, et al. Mammalian and viral IL-10 enhance C-C chemokine receptor 5 but down-regulate C-C chemokine receptor 7 expression by myeloid dendritic cells:impact on chemotactic responses and in vivo homing ability. Journal of immunology (Baltimore, Md:1950),2001,166:7136-7143.
    [79]Beckebaum S, Zhang X, Chen X, et al. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clinical cancer research:an official journal of the American Association for Cancer Research,2004,10:7260-7269.
    [80]Schwaab T, Weiss J E, Schned A R, et al. Dendritic cell infiltration in colon cancer. Journal of immunotherapy(Hagerstown, Md:1997),2001,24:130-137.
    [81]Hartmann E, Wollenberg B, Rothenfusser S, et al. Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer research,2003, 63:6478-6487.
    [82]Muthuswamy R, Urban J, Lee J J, et al. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer research,2008,68:5972-5978.
    [83]Enk A H, Jonuleit H, Saloga J, et al. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. International journal of cancer Journal international du cancer, 1997,73:309-316.
    [84]Lizee G, Radvanyi L G, Overwijk W W, et al. Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms. Clinical cancer research:an official journal of the American Association for Cancer Research,2006,12:4794-4803.
    [85]Ghiringhelli F, Puig P E, Roux S, et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+regulatory T cell proliferation. The Journal of experimental medicine,2005,202:919-929.
    [86]Gabrilovich D I, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nature reviews Immunology,2012,12:253-268.
    [87]Shurin M R, Naiditch H, Zhong H, et al. Regulatory dendritic cells:new targets for cancer immunotherapy. Cancer biology & therapy,2011,11:988-992.
    [88]Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer,2012, 12:265-277.
    [89]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75:843-854.
    [90]Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell,1993,75:855-862.
    [91]Lagos-Quintana M, Rauhut R, Lendcckel W, et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294:853-858.
    [92]Pasquinelli A E, Reinhart B J, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature,2000,408:86-89.
    [93]Iorio M V, Croce C M. MicroRNAs in cancer:small molecules with a huge impact. Journal of clinical oncology:official journal of the American Society of Clinical Oncology,2009,27: 5848-5856.
    [94]Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Current opinion in cell biology,2009,21:452-460.
    [95]Rusk N. When microRNAs activate translation. Nat Meth,2008,5:122-123.
    [96]Vasudevan S, Tong Y, Steitz J A. Switching from repression to activation:microRNAs can up-regulate translation. Science,2007,318:1931-1934.
    [97]Saito T, Saetrom P. MicroRNAs-targeting and target prediction. New biotechnology,2010, 27:243-249.
    [98]Witkos T M, Koscianska E, Krzyzosiak W J. Practical Aspects of microRNA Target Prediction. Current molecular medicine,2011,11:93-109.
    [99]Pritchard C C, Cheng H H, Tewari M. MicroRNA profiling:approaches and considerations. Nature reviews Genetics,2012,13:358-369.
    [100]O'connell R M, Rao D S, Chaudhuri A A, et al. Physiological and pathological roles for microRNAs in the immune system. Nature reviews Immunology,2010,10:111-122.
    [101]Chen C Z, Li L, Lodish H F, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science,2004,303:83-86.
    [102]Bezman N A, Cedars E, Steiner D F, et al. Distinct requirements of microRNAs in NK cell activation, survival, and function. Journal of immunology (Baltimore, Md:1950),2010,185: 3835-3846.
    [103]Cobb B S, Nesterova T B, Thompson E, et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. The Journal of experimental medicine,2005,201: 1367-1373.
    [104]Koralov S B, Muljo S A, Galler G R, et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell,2008,132:860-874.
    [105]Thai T-H, Calado D P, Casola S, et al. Regulation of the Germinal Center Response by MicroRNA-155. Science,2007,316:604-608.
    [106]Vigorito E, Perks K L, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity,2007,27:847-859.
    [107]Banerjee A, Schambach F, Dejong C S, et al. Micro-RNA-155 inhibits IFN-gamma signaling in CD4+T cells. European journal of immunology,2010,40:225-231.
    [108]Stahl H F, Fauti T, Ullrich N, et al. miR-155 inhibition sensitizes CD4+Th cells for TREG mediated suppression. PloS one,2009,4:e7158.
    [109]Turner M L, Schnorfeil F M, Brocker T. MicroRNAs regulate dendritic cell differentiation and function. Journal of immunology (Baltimore, Md:1950),2011,187:3911-3917.
    [110]Hashimi S T, Fulcher J A, Chang M H, et al. MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood,2009,114:404-414.
    [111]Martinez-Nunez R T, Louafi F, Friedmann P S, et al. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). The Journal of biological chemistry, 2009,284:16334-16342.
    [112]Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science,2007,316:608-611.
    [113]Gracias D T, Katsikis P D. MicroRNAs:key components of immune regulation. Advances in experimental medicine and biology,2011,780:15-26.
    [114]Schickel R, Boyerinas B, Park S M, et al. MicroRNAs:key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene,2008,27:5959-5974.
    [115]Xiao C, Rajewsky K. MicroRNA control in the immune system:basic principles. Cell, 2009,136:26-36.
    [116]Okada H, Kohanbash G, Lotze M T. MicroRNAs in immune regulation-opportunities for cancer immunotherapy. The international journal of biochemistry & cell biology,2010,42: 1256-1261.
    [117]Lu C, Huang X, Zhang X, et al. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kipl, KPC1, and SOCS-1. Blood,2011,117:4293-4303.
    1118] Ceppi M, Pereira P M, Dunand-Sauthier I, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proceedings of the National Academy of Sciences of the United States of America,2009,106: 2735-2740.
    [119]Jurkin J, Schichl Y M, Koeffel R, et al. miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. Journal of immunology (Baltimore, Md:1950),2010,184:4955-4965.
    [120]Kuipers H, Schnorfeil F M, Brocker T. Differentially expressed microRNAs regulate plasmacytoid vs. conventional dendritic cell development. Molecular immunology,2010,48: 333-340.
    [121]Zhang M, Liu F, Jia H, et al. Inhibition of microRNA let-7i depresses maturation and functional state of dendritic cells in response to lipopolysaccharide stimulation via targeting suppressor of cytokine signaling 1. Journal of immunology (Baltimore, Md:1950),2011,187: 1674-1683.
    [122]Kim S J, Gregersen P K, Diamond B. Regulation of dendritic cell activation by microRNA let-7c and BLIMP1. The Journal of clinical investigation,2013,
    [123]Sun Y, Varambally S, Maher C A, et al. Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood,2011,117:6172-6183.
    [124]Liu X, Zhan Z, Xu L, et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIalpha. Journal of immunology (Baltimore, Md:1950),2010,185:7244-7251.
    [125]Zheng J, Jiang H Y, Li J, et al. MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notchl/NF-KB signalling pathways. Allergy,2012,67: 362-370.
    [126]Divito S J, Wang Z, Shufesky W J, et al. Endogenous dendritic cells mediate the effects of intravenously injected therapeutic immunosuppressive dendritic cells in transplantation. Blood, 2010,116:2694-2705.
    [127]Morelli A E, Larregina A T, Shufesky W J, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood,2004,104:3257-3266.
    [128]Kosaka N, Iguchi H, Yoshioka Y, et al.'Secretory mechanisms and intercellular transfer of microRNAs in living cells. The Journal of biological chemistry,2010,285:17442-17452.
    [129]Montecalvo A, Larregina A T, Shufesky W J, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood,2012,119:756-766.
    [130]Elmore S. Apoptosis:a review of programmed cell death. Toxicologic pathology,2007,35: 495-516.
    [131]Hanahan D, Weinberg R A. Hallmarks of cancer:the next generation. Cell,2011,144: 646-674.
    [132]Ulukaya E, Acilan C, Yilmaz Y. Apoptosis:why and how does it occur in biology? Cell biochemistry and function,2011,29:468-480.
    [133]Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Molecular cell, 2002,9:459-470.
    [134]Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer,2002,2:420-430.
    [135]Locksley R M, Killeen N, Lenardo M J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell,2001,104:487-501.
    [136]Eskes R, Desagher S, Antonsson B, et al. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Molecular and cellular biology,2000,20:929-935.
    [137]Brennecke J, Hipfner D R, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell,2003,113:25-36.
    [138]Xu P, Vernooy S Y, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Current biology:CB,2003,13:790-795.
    [139]Cimmino A, Calin G A, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America,2005, 102:13944-13949.
    [140]Linsley P S, Schelter J, Burchard J, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Molecular and cellular biology,2007,27: 2240-2252.
    [141]Welch C, Chen Y, Stallings R L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene,2007,26:5017-5022.
    [142]Subramanian S, Thayanithy V, West R B, et al. Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours. The Journal of pathology,2010,220:58-70.
    [143]Subramanian S, Steer C J. MicroRNAs as gatekeepers of apoptosis. Journal of cellular physiology,2010,223:289-298.
    [144]Inomata M, Tagawa H, Guo Y M, et al. MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood,2009,113:396-402.
    [145]Petrocca F, Visone R, Onelli M R, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer cell,2008,13: 272-286.
    [146]Li J, Huang H, Sun L, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clinical cancer research:an official journal of the American Association for Cancer Research,2009,15:3998-4008.
    [147]Park J K, Lee E J, Esau C, et al. Antisense inhibition of microRNA-21 or-221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas,2009,38:e190-199.
    [148]He L, Hannon G J. MicroRNAs:small RNAs with a big role in gene regulation. Nature reviews Genetics,2004,5:522-531.
    [149]Kumar S, Blake S M. Pharmacological Potential of p38 MAPK Inhibitors//Pinna L, Cohen P W. Inhibitors of Protein Kinases and Protein Phosphates. Springer Berlin Heidelberg.2005: 65-83.
    [150]Lawrence M C, Jivan A, Shao C, et al. The roles of MAPKs in disease. Cell Res,2008,18: 436-442.
    [151]Clevers H. Wnt/β-Catenin Signaling in Development and Disease. Cell,2006,127: 469-480.
    [152]Jiang J, Hui C C. Hedgehog signaling in development and cancer. Developmental cell, 2008,15:801-812.
    [153]Kopan R, Ilagan M X. The canonical Notch signaling pathway:unfolding the activation mechanism. Cell,2009,137:216-233.
    [154]Schmierer B, Hill C S. TGFbeta-SMAD signal transduction:molecular specificity and functional flexibility. Nature reviews Molecular cell biology,2007,8:970-982.
    [155]Harvey K, Tapon N. The Salvador-Warts-Hippo pathway-an emerging tumour-suppressor network. Nat Rev Cancer,2007,7:182-191.
    [156]Barolo S, Posakony J W. Three habits of highly effective signaling pathways:principles of transcriptional control by developmental cell signaling. Genes & development,2002,16: 1167-1181.
    [157]Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nature reviews Molecular cell biology,2010,11:252-263.
    [158]Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends in biochemical sciences,1993,18:128-131.
    [159]Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature,2008,456:980-984.
    [160]Sayed D, Rane S, Lypowy J, et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Molecular biology of the cell,2008,19:3272-3282.
    [161]Huang T H, Wu F, Loeb G B, et al. Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. The Journal of biological chemistry,2009,284:18515-18524.
    [162]Fujita S, Ito T, Mizutani T, et al. miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. Journal of molecular biology,2008,378: 492-504.
    [163]Yin Q, Wang X, Mcbride J, et al. B-cell receptor activation induces BIC/miR-155 expression through a conserved AP-1 element. The Journal of biological chemistry,2008,283: 2654-2662.
    [164]Ichimura A, Ruike Y, Terasawa K, et al. MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of K562 cells. Molecular pharmacology,2010,77:1016-1024.
    [165]Terasawa K, Ichimura A, Sato F, et al. Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC 12 cells. The FEBS journal,2009,276:3269-3276.
    [166]Ikeda Y, Tanji E, Makino N, et al. MicroRNAs associated with mitogen-activated protein kinase in human pancreatic cancer. Molecular cancer research:MCR,2012,10:259-269.
    [167]Zhu Q Y, Liu Q, Chen J X, et al. MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. Journal of immunology (Baltimore, Md:1950),2010, 185:7435-7442.
    [168]Zheng D, Radziszewska A, Woo P. MicroRNA 497 modulates interleukin 1 signalling via the MAPK/ERK pathway. FEBS Letters,2012,586:4165-4172.
    [169]Zhang Z, Luo X, Ding S, et al. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett,2012,586:20-26.
    [170]De Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine & growth factor reviews,2004,15:1-11.
    [171]Butz H, Racz K, Hunyady L, et al. Crosstalk between TGF-beta signaling and the microRNA machinery. Trends in pharmacological sciences,2012,33:382-393.
    [172]Braun J, Hoang-Vu C, Dralle H, et al. Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene,2010,29:4237-4244.
    [173]Zhong H, Wang H R, Yang S, et al. Targeting Smad4 links microRNA-146a to the TGF-beta pathway during retinoid acid induction in acute promyelocytic leukemia cell line. International journal of hematology,2010,92:129-135.
    [174]Rogler C E, Levoci L, Ader T, et al. MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology,2009,50:575-584.
    [175]Shan H, Zhang Y, Lu Y, et al. Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovascular research,2009,83:465-472.
    [176]Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes,2011,60:280-287.
    [177]Gal H, Pandi G, Kanner A A, et al. MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochemical and biophysical research communications,2008,376: 86-90.
    [178]Lai E C, Tam B, Rubin G M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes & development,2005,19:1067-1080.
    [179]Kennell J A, Gerin I, Macdougald O A, et al. The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proceedings of the National Academy of Sciences,2008,
    [180]Ferretti E, De Smaele E, Miele E, et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. The EMBO journal,2008,27: 2616-2627.
    [181]Martello G, Zacchigna L, Inui M, et al. MicroRNA control of Nodal signalling..Nature, 2007,449:183-188...
    [182]Kato M, Putta S, Wang M, et al. TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nature cell biology,2009,11: 881-889.
    [183]Choi W Y, Giraldez A J, Schier A F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science,2007,318:271-274.
    [184]Coley W B. The treatment of inoperable sarcoma with the 'mixed toxins of erysipelas and bacillus prodigiosus.:Immediate and final results in one hundred and forty cases. Journal of the American Medical Association,1898, XXXI:456-465.
    [185]Lesterhuis W J, Haanen J B, Punt C J. Cancer immunotherapy-revisited. Nature reviews Drug discovery,2011,10:591-600.
    [186]Topalian S L, Weiner G J, Pardoll D M. Cancer immunotherapy comes of age. Journal of clinical oncology:official journal of the American Society of Clinical Oncology,2011,29: 4828-4836.
    [187]Nahta R, Esteva F J. Herceptin:mechanisms of action and resistance. Cancer letters,2006, 232:123-138.
    [188]Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood,2005,105:1815-1822.
    [189]Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature,2011,480: 480-489.
    [190]Boon T, Coulie P G, Van Den Eynde B J, et al. Human T cell responses against melanoma. Annual review of immunology,2006,24:175-208.
    [191]Galon J, Costes A, Sanchez-Cabo F, et al. Type, Density, and Location of Immune Cells Within Human Colorectal Tumors Predict Clinical Outcome. Science,2006,313:1960-1964.
    [192]Fujii S, Takayama T, Asakura M, et al. Dendritic cell-based cancer immunotherapies. Archivum immunologiae et therapiae experimentalis,2009,57:189-198.
    [193]Gilboa E. DC-based cancer vaccines. The Journal of clinical investigation,2007,117: 1195-1203.
    [194]Tuyaerts S. Dendritic cell therapy for oncology roundtable conference. Journal of immune based therapies and vaccines,2011,9:1.
    [195]Zhong H, Shurin M R, Han B. Optimizing dendritic cell-based immunotherapy for cancer. Expert review of vaccines,2007,6:333-345.
    [196]Morrison B, Steel J, Gregory M, et al. Genetically Modified Dendritic Cells in Cancer Immunotherapy//Salter R D, Shurin M R. Dendritic Cells in Cancer. Springer US.2009: 347-363.
    [197]Shurin M R, Gregory M, Morris J C, et al. Genetically modified dendritic cells in cancer immunotherapy:a better tomorrow? Expert opinion on biological therapy,2010,10:1539-1553.
    [198]Welters M J, Kenter G G, De Vos Van Steenwijk P J, et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proceedings of the National Academy of Sciences of the United States of America,2010,107:11895-11899.
    [199]Garg S, Oran A, Wajchman J, et al. Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo. Nature immunology,2003, 4:907-912.
    [200]Kara P P, Ayhan A, Caner B, et al. Analysis of dendritic cells in sentinel lymph nodes of patients with endometrial and patients with cervical cancers. International journal of gynecological cancer:official journal of the International Gynecological Cancer Society,2009, 19:1239-1243.
    [201]Ito M, Minamiya Y, Kawai H, et al. Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. Journal of immunology (Baltimore, Md:1950),2006,176: 5637-5643.
    [202]Riedl S J, Salvesen G S. The apoptosome:signalling platform of cell death. Nature reviews Molecular cell biology,2007,8:405-413.
    [203]Chen M, Huang L, Shabier Z, et al. Regulation of the lifespan in dendritic cell subsets. Molecular immunology,2007,44:2558-2565.
    [204]Downward J. PI 3-kinase, Akt and cell survival. Seminars in cell & developmental biology, 2004,15:177-182.
    [205]Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science,1995,270:1326-1331.
    [206]Tsang T Y, Tang W Y, Chan J Y, et al. P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR-16 and Bcl-2 expressions in hepatocellular carcinoma cells. Apoptosis:an international journal on programmed cell death,2011,16: 524-535.
    [207]Carletti M Z, Fiedler S D, Christensoh L K. MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biology of reproduction,2010,83:286-295.
    [208]Bergamaschi A, Katzenellenbogen B S. Tamoxifen downregulation of miR-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene,2012, 31:39-47.
    [209]Um S H, Mulhall C, Alisa A, et al. Alpha-fetoprotein impairs APC function and induces their apoptosis. Journal of immunology (Baltimore, Md:1950),2004,173:1772-1778.
    [210]Peguet-Navarro J, Sportouch M, Popa I, et al. Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. Journal of immunology (Baltimore, Md:1950),2003,170:3488-3494.
    [211]Kanto T, Kalinski P, Hunter O C, et al. Ceramide mediates tumor-induced dendritic cell apoptosis. Journal of immunology (Baltimore, Md:1950),2001,167:3773-3784.
    [212]Ishida A, Ohta M, Toda M, et al. Mucin-induced apoptosis of monocyte-derived dendritic cells during maturation. Proteomics,2008,8:3342-3349.
    [213]Matsue H, Takashima A. Apoptosis in dendritic cell biology. Journal of dermatological science,1999,20:159-171.
    [214]Kim S G, Jong H S, Kim T Y, et al. Transforming growth factor-beta 1 induces apoptosis through Fas ligand-independent activation of the Fas death pathway in human gastric SNU-620 carcinoma cells. Molecular biology of the cell,2004,15:420-434.
    [215]Chen M, Huang L, Wang J. Deficiency of Bim in dendritic cells contributes to overactivation of lymphocytes and autoimmunity. Blood,2007,109:4360-4367.
    [216]Xing H, Zhang S, Weinheimer C, et al.14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. The EMBO journal,2000,19:349-358.
    [217]Nellist M, Goedbloed M A, De Winter C, et al. Identification and characterization of the interaction between tuberin and 14-3-3zeta. The Journal of biological chemistry,2002,277: 39417-39424.
    [218]Powell D W, Rane M J, Chen Q, et al. Identification of 14-3-3zeta as a protein kinase B/Akt substrate. The Journal of biological chemistry,2002,277:21639-21642.
    [219]Dong S, Kang S, Gu T L, et al.14-3-3 Integrates prosurvival signals mediated by the AKT and MAPK pathways in ZNF198-FGFR1-transformed hematopoietic cells. Blood,2007,110: 360-369.
    [220]Cory S, Adams J M. The Bcl2 family:regulators of the cellular life-or-death switch. Nat Rev Cancer,2002,2:647-656.
    [221]Gautier E L, Huby T, Saint-Charles F, et al. Enhanced dendritic cell survival attenuates lipopolysaccharide-induced immunosuppression and increases resistance to lethal endotoxic shock. Journal of immunology (Baltimore, Md:1950),2008,180:6941-6946.
    [222]Hou W S, Van Parijs L. A Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nature immunology,2004,5:583-589.
    [223]Nopora A, Brocker T. Bcl-2 controls dendritic cell longevity in vivo. Journal of immunology (Baltimore, Md:1950),2002,169:3006-3014.
    [224]Satthaporn S, Robins A, Vassanasiri W, et al. Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother,2004,53:510-518.
    [225]Yanagimoto H, Takai S, Satoi S, et al. Impaired function of circulating dendritic cells in patients with pancreatic cancer. Clinical immunology (Orlando, Fla),2005,114:52-60.
    [226]Cubillos-Ruiz J R, Baird J R, Tesone A J, et al. Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective immunity against ovarian cancer. Cancer research,2012,72:1683-1693.
    [227]Dubois B, Bridon J M, Fayette J, et al. Dendritic cells directly modulate B cell growth and differentiation. Journal of leukocyte biology,1999,66:224-230.
    [228]Gerosa F, Baldani-Guerra B, Nisii C, et al. Reciprocal activating interaction between natural killer cells and dendritic cells. The Journal of experimental medicine,2002,195: 327-333.
    [229]Kim R, Emi M, Tanabe K. Cancer immunosuppression and autoimmune disease:beyond immunosuppressive networks for tumour immunity. Immunology,2006,119:254-264.
    [230]Rabinovich G A, Gabrilovich D, Sotomayor E M. Immunosuppressive strategies that are mediated by tumor cells. Annual review of immunology,2007,25:267-296.
    [231]Yang J, Yi Q. Signaling Pathways Mediating Dendritic Cell Dysfunction in Cancer//Salter R D, Shurin M R. Dendritic Cells in Cancer. Springer US.2009:129-142.
    [232]Wang S, Yang J, Qian J, et al. Tumor evasion of the immune system:inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood,2006,107: 2432-2439.
    [233]Olson J M, Hallahan A R. p38 MAP kinase:a convergence point in cancer therapy. Trends in molecular medicine,2004,10:125-129.
    [234]Bradham C, Mcclay D R. p38 MAPK in development and cancer. Cell cycle (Georgetown, Tex),2006,5:824-828.
    [235]Lujambio A, Lowe S W. The microcosmos of cancer. Nature,2012,482:347-355.
    [236]Schoof C R, Botelho E L, Izzotti A, et al. MicroRNAs in cancer treatment and prognosis. American journal of cancer research,2012,2:414-433.
    [237]Xie X, Lu J, Kulbokas E J, et al. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature,2005,434:338-345.
    [238]Chang T C, Yu D, Lee Y S, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature genetics,2008,40:43-50.
    [239]Anderson P. Post-transcriptional control of cytokine production. Nature immunology,2008, 9:353-359.
    [240]Cargnello M, Roux P P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and molecular biology reviews:MMBR,2011, 75:50-83.
    [241]Conti H R, Shen F, Nayyar N, et al. Th17 cells and 1L-17 receptor signaling are essential for mucosal host defense against oral candidiasis. The Journal of experimental medicine,2009, 206:299-311.
    [242]Chung N P, Chen Y, Chan V S, et al. Dendritic cells:sentinels against pathogens. Histology and histopathology,2004,19:317-324.
    [243]Aiba S, Manome H, Nakagawa S, et al. p38 Mitogen-activated Protein Kinase and Extracellular Signal-regulated Kinases Play Distinct Roles in the Activation of Dendritic Cells by Two Representative Haptens, NiC12 and 2,4-dinitrochlorobenzene. J Investig Dermatol,2003, 120:390-399.
    [244]Cannon M, Goyne II, Stone P B, et al. Modulation of p38 MAPK signaling enhances dendritic cell activation of human CD4+Th17 responses to ovarian tumor antigen. Cancer Immunol Immunother,2013,1-11.
    [245]Raman M, Chen W, Cobb M H. Differential regulation and properties of MAPKs. Oncogene,2007,26:3100-3112.
    [246]Goodman W A, Levine A D, Massari J V, et al. IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. Journal of immunology (Baltimore, Md:1950),2009, 183:3170-3176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700