基于CFD方法的先进旋翼气动特性数值模拟及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有非常规桨叶气动外形的先进旋翼的气动特性数值模拟及优化设计方法研究是直升机空气动力学领域富有挑战性的研究课题。本文一方面开展了适合于优化分析的高精度CFD旋翼气动外形计算方法研究,发展了相应的网格技术和流场求解器,进行了桨叶外形参数对旋翼气动性能的影响分析及优化研究。另一方面,提出了“CLOR”先进旋翼的改进设计—“CLOR-II”,开展了悬停、前飞状态气动特性试验研究以及外场气动噪声试验研究。主要工作包括以下几个方面:
     作为前提和背景,本文首先阐述了桨叶气动外形对直升机旋翼流场和气动特性的重要影响,并对直升机旋翼流场数值模拟技术及气动特性研究、旋翼气动外形研究、旋翼气动外形优化设计研究等内容的国内外现状进行了概述,指出了现有研究中存在的不足以及难点,提出了本文拟采用的研究方法和内容。
     根据气动外形优化设计的需要,第二章建立了一种高效、鲁棒的参数化桨叶网格生成方法。同时根据网格特点给出了一个新的快速、自动的运动嵌套网格间单元对应关系判断策略,以用于运动嵌套网格单元判定和贡献单元搜索。
     以桨叶网格生成技术为基础,结合运动嵌套网格技术,本文又发展了适合于悬停和前飞状态旋翼流场数值计算的方法。为更好地模拟旋翼尾迹的影响,空间离散采用了低耗散的Roe-MUSCL计算格式,为计入桨叶近场的粘性影响,采用了鲁棒性好的B-L湍流模型,并采用了对称边界条件、隐式残值光顺、当地时间步长等方法加速流场计算。作为算例验证,应用该方法计算了具有不同桨叶气动外形的旋翼的流场特性,并与可得到的试验结果进行了对比。
     应用上一章建立的流场数值方法,开展了旋翼翼型、后掠、下反等外形参数的影响研究。分别计算了不同弯度、最大弯度位置和厚度等翼型参数对旋翼气动特性的影响,分析了后掠、下反桨尖不同起始位置和变化角度对旋翼气动特性影响的特点。
     然后,将前文建立的CFD方法和代理模型方法相结合展开了旋翼桨叶气动外形的优化研究。分别对旋翼扭转、后掠和下反等参数进行了优化计算与分析,并与参考桨叶进行了对比,验证了优化方法的有效性,得到了一些有意义的结论。
     最后,本文着重开展了“CLOR-II”旋翼气动和噪声试验的研究。设计并制作了矩形、后掠和“CLOR-II”桨尖的模型旋翼,在风洞中测量了悬停及前飞状态的旋翼气动力,并在外场进行了旋翼的悬停噪声试验,对比分析了三种模型旋翼的气动和噪声特点。作为试验的补充,亦采用数值方法对更高桨尖马赫数状态下试验旋翼进行了数值模拟,并对结果进行了进一步分析。
The numerical simulation of aerodynamic characteristics and optimization for advanced rotors withnonconventional aerodynamic-shape blade is a highly challenging subject in the field of HelicopterAerodynamics. On the one hand, the high-accuracy computational fluid dynamics (CFD) method onrotor aerodynamic shape for optimal analysis has been investigated in this thesis, and thecorresponding grid technology and flowfield solver are also developed. Meanwhile, the analysis andoptimization on the effects of blade shape parameters on the rotor aerodynamic performance havebeen done. On the other hand, an improved design of the "CLOR" advanced rotor has beenperformaned and a new modification version, called "CLOR-II", has been put forward. And theexperimental research of aerodynamic characteristics in hover and forward flight as well as theoutdoor noise measurement have been conducted. The major contributions of the author's researchwork are as follow:
     As the background of present work, the important effects of the blade aerodynamic shape onhelicopter rotor flowfield and aerodynamic characteristics are firstly described. The research anddevelopment in the field of numerical simulation of helicopter rotor flowfield and aerodynamiccharacteristics, and the field of the rotor aerodynamic shape and its optimal design are brieflyintroduced. The insufficiency and difficulties in the current researches are also pointed out. In addition,the methods used in the present resaerch are briefly brough forward.
     According to the optimal design requirement of blade aerodynamic shape, a kind of high-efficientand robust parametric blade grid generation method has been established in Chapter2. At the sametime, from the characteristic of the grids, a new and efficient judgmental method for thecorresponding relations between overset grids is given, which has been used to the judgment anddonor seaching of overset grids.
     Based on the blade grid generation and moving embeded grid technique, a numerical method isdeveloped to solve the flowfield of helicopter rotors in hover and forward flight. In order to simulatethe effects of rotor wake, the spatial discretization uses the low dissipation Roe-MUSCL scheme. Toconsider viscous effect of blade near field, the robust B-L turbulent model is adopted, and thesymmetrical boundary condition,implemented residual smoothing, local time-stepping are used toaccelerate computations. As a numerical example, the rotor flowfield characteristics for differentblade aerodynamic shapes are calculated by the application of this method, and the numerical resultsare compared with available experimental data for validation purpose.
     By applying the flowfield solver developed, the influence reaserch of the parameters such as rotorairfoil, backward-swept and anhedral angles are carried out. The airfoil parameters, including thecamber, maximum camber location, thickness and so on, are investegated. And the influence of thedifferent blade tips including swept and anhedral angles on the rotor aerodynamic characteristics isanalysed.
     Then, the optimization research of the rotor blade aerodynamic shape is carried out by combiningthe present CFD method with optimal surrogate model. Respectively, the optimal calculation andanalysis of blade parameters on twist, swept and anhedral angles are made and the optimal results arealso compared with the reference blade. The capability of this optimal method is demonstrated, somemeaningful conclusions are also obtained.
     Finally, the aerodynamic and noise experimental research on "CLOR-II" rotor are emphaticallyinvestigated. The three model rotors with rectangular, swept and "CLOR-II" blade-tips are designedand manufactured. The rotor aerodynamic forces are measured at hovering and forward-flightconditions in windtunnle and the hovering rotor noise test is done in the outfield. The rotoraerodynamic and noise characteristics among the three model rotors are compared and analyzed. Asthe supplement of experiments, the numerical method is adopted to calculate the aerodynamics athigher blade-tip Mach number and the results are further analyzed.
引文
[1] Leishman J. G., Principles of Helicopter Aerodynamics. Second Edition, Cambridge: CambridgeUniversity Press,2006.
    [2] Perry F. J., Aerodynamics of the Helicopter World Speed Record. Proceedings of the44th AnnualForum of the American Helicopter Society,1988.
    [3] Gessow A., Myers G. C., Aerodynamics of the Helicopter. New York, Frederick UngarPublishing CO.,1952.
    [4] Johnson W., Helicopter Theory. Princeton: Princeton University Press,1980.
    [5] Shicun W., Generalized Vortex Theory of the Lifting Rotor of Helicopter. AD286576,1961.
    [6] Heyson H. H., Katzoff S., Induced Velocities Near a Lifting Rotor with Nonuniform DiskLoading. NACA-TN-3690,1956.
    [7] Landgrebe A. J., An Analytical and Experimental Investigation of Helicopter Rotor HoverPerformance and Wake Geometry Characteristics. AD0728835,1971.
    [8] Kocurek J. D., Tangler J. L., A Prescribed Wake Lifting Surface Hover Performance Analysis.Journal of the American Helicopter Society,1977,22(1):24-35.
    [9] Clark D. R., Leiper A. C., The Free Wake Analysis a Method for the Prediction of HelicopterRotor Hovering Performance. Journal of the American Helicopter Society,1970,15(1):3-11.
    [10] Miller R. H., A Simplified Approach to the Free Wake Analysis of a Hovering Rotor. Vertica,1982,6(2):89-95..
    [11] Landgrebe A. J., The Wake Geometry of a Hovering Helicopter Rotor and Its Influence onRotor Performance. Journal of the American Helicopter Society,1972,17(4):3-15.
    [12] Caradonna F. X., Isom M. P., Subsonic and Transonic Potential Flow over Helicopter RotorBlades. AIAA Journal,1972,10(12):1606-1612.
    [13] Caradonna F. X., Tung C., Desopper A., Finite Difference Modeling of Rotor Flows includingWake Effects. Journal of the American Helicopter Society,1984,29(2):26-33.
    [14] Chang I. C., Transonic Flow Analysis for Rotors. Part1: Three-Dimensional Quasi-Steady,Full-Potential Calculation. NASA TP2375,1984.
    [15] Strawn R. C., Caradonna F. X., Numerical Modeling of Rotor Flows with a Conservative Formof the Full-Potential Equations. AIAA86-0079,1986.
    [16] Roberts T. W., Murman E. M., Solution Method for a Hovering Helicopter Rotor Using theEuler Equations. AIAA85-00436,1985.
    [17] Agarwal R. K., Deese J. E., Euler Calculations for Flowfield of a Helicopter Rotor in Hover.Journal of Aircraft,1987,24(4):231-238.
    [18] Srinivasan G. R., McCroskey W. J., Navier-Stokes Calculations of Hovering Rotor Flowfields.Journal of Aircraft,1988,25(10):865-874.
    [19] Boniface J. C., Mialon B., Sides J., Numerical Simulation of Unsteady Euler Flow AroundMultibladed Rotor in Forward Flight Using a Moving Grid Approach. Proceedings of the51stAnnual Forum of the American Helicopter Society,1995:821-840.
    [20] Duque E. P. N., Srinivasan G. R., Numerical Simulation of a Hovering Rotor Using EmbeddedGrids. Proceedings of the48th Annual Forum of the American Helicopter Society,1992:429-445.
    [21] Ahmad J., Duque E. P. N., Helicopter Rotor Blade Computation in Unsteady Flows UsingMoving Overset Grids. Journal of Aircraft,1996,33(1):54-60.
    [22] Yang Z., Sankar L. N., Smith M. J., et al., Recent Improvements to a Hybrid Method for Rotorsin Forward Flight. Journal of aircraft,2002,39(5):804-812.
    [23] Berkman M., Sankar L., Berezin C., et al., A Navier-Stokes/Full potential/Free Wake Methodfor Advancing Multi-Bladed Rotors. Proceedings of the53rd Annual Forum of the AmericanHelicopter Society,1997:305-314.
    [24] Hu H., A Multigrid Navier-Stokes CFD Code for Rotor Computations. Computer Methods inApplied Mechanics and Engineering,1998,167(1):127-137.
    [25] Imiela M., High-Fidelity Optimization Framework for Helicopter Rotors. Aerospace Scienceand Technology,2011.
    [26] Hariharan N., Rotary-Wing Wake Capturing: High-Order Schemes Toward MinimizingNumerical Vortex Dissipation. Journal of Aircraft,2002,39(5):822-829.
    [27] Hariharan N., Sankar L. N., High-Order Essentially Nonoscillatory Schemes for Rotary-WingWake Computations. Journal of Aircraft,2004,41(2):258-267.
    [28] Canonne E., Benoit C., Jeanfaivre G., Cylindrical Mesh Adaptation for Isolated Rotors in Hover.Aerospace Science and Technology,2004,8(1):1-10.
    [29] POMIN H., Wagner S., Navier-Stokes Analysis of Helicopter Rotor Aerodynamics in Hover andForward Flight. Journal of Aircraft,2002,39(5):813-821.
    [30]王立群,乔志德,张茹,直升机旋翼桨叶绕流的欧拉方程计算.西北工业大学学报,1998(4):594-598.
    [31]王立群,宋文萍,张茹,基于动态网格的旋翼流场计算.计算物理,2000(4):367-371.
    [32]杨爱明,乔志德,用运动嵌套网格方法数值模拟旋翼前飞非定常流场.空气动力学学报,2000(4):427-433.
    [33]许和勇,叶正寅,史爱明,基于非结构嵌套网格的旋翼-机身干扰流场数值模拟.西北工业大学学报,2010(6):814-817.
    [34]宋文萍,韩忠华,王立群,等,旋翼桨尖几何形状对旋翼气动噪声影响的定量计算分析.计算物理,2001,18(006):569-572.
    [35] Zhao Q. J., Xu G. H., Zhao J. G., Numerical Simulations of the Unsteady Flowfield ofHelicopter Rotors on Moving Embedded Grids. Aerospace Science and Technology,2005,9(2):117-124.
    [36]曹义华,康凯, Euler方程数值模拟绕悬停旋翼桨叶的流动.北京航空航天大学学报,1999(1):61-63.
    [37]于子文,曹义华.前飞旋翼三维湍流场的数值模拟.北京航空航天大学学报,2006(7):751-755.
    [38]江雄,陈作斌,张玉伦,用双时间法数值模拟悬停旋翼流场(英文).空气动力学学报,1998(3):23-31.
    [39]王适存,徐国华,直升机旋翼空气动力学的发展.南京航空航天大学学报,2001(3):203-211.
    [40] Harrison R., Stacey S., Hansford B., BERP IV-the Design, Development and Testing of anAdvanced Rotor Blade. Proceedings of the American Helicopter Society64th Annual Forum,2008:2524-2543.
    [41] Mosher M., Acoustic Measurements of a Full-scale Rotor with Four Tip Shapes. NASATM85878,1983.
    [42] Spivey R. F., Blade Tip Aerodynamics-Profile and Planform Effects. Preprint,1968,205.
    [43] Spivey W. A., Morehouse G. G., New Insights into the Design of Swept-Tip Rotor Blades. The24th Annual National Forum of the American Helicopter Society,1968.
    [44] Lorber P. F., Stauter R. C., Landgrebe A. J., A Comprehensive Hover Test of the Airloads andAirflow of an Extensively Instrumented Model Helicopter Rotor. Proceedings of the45thAnnual Forum of the American Helicopter Society,1989:281-295.
    [45] Amer K. B., Prouty R. W., Technology Advances in the AH-64Apache Advanced AttackHelicopter. Proceedings of the39th Annual Forum of the American Helicopter Society,1983:550-568.
    [46] Brocklehurst A., Barakos G. N., A Review of Helicopter Rotor Blade Tip Shapes. Progress inAerospace Sciences,2012.
    [47] Desopper A., Lafon P., Ceroni P., et al., Ten Years of Rotor Flow Studies at ONERA. Journal ofthe American Helicopter Society,1989,34(1):34-41.
    [48] Roesch P., Aerodynamic Design of the Aerospatiale SA365N Dauphin2Helicopter. Journal ofthe American Helicopter Society,1982,27(2):27-33.
    [49] Wagner W. J., Comparative Measurements of the Unsteady Pressures and the Tip-VortexParameters of Four Oscillating Wing Tip Models. The10th European Rotorcraft Forum,1984.
    [50] Philippe J. J., ONERA Makes Progress In Rotor Aerodynamics, Aeroelasticity, and Acoustics.Vertiflite,1992,38(5):48-53.
    [51] Kampa K., Enenkl B., Polz G., et al., Aeromechanic Aspects in the Design of the EC135.Journal of the American Helicopter Society,1999,44(2):83-93.
    [52] Mantay W. R., Yeager J. W. T., Parametric Tip Effects for Conformable Rotor Applications.NASA-TM-85682,1983.
    [53] Muller R. H. G., Staufenbiel R., The Influence of Winglets on Rotor Aerodynamics. Vertica,1987,11(4):601-618.
    [54] Muller R. H. G., Winglets on Rotor Blades in Forward Flight-A Theoretical and ExperimentalInvestigation. Vertica,1990,14(1):31-46.
    [55] Muller R. H. G., Special Vortices at a Helicopter Rotor Blade. Journal of the AmericanHelicopter Society,1990,35(4):16-22.
    [56] Robinson K., Brocklehurst A., BERP IV. Aerodynamics, Performance, and Flight Envelope.The34th European Rotorcraft Forum,2008.
    [57] Leoni R. D., Black Hawk: The Story of a World Class Helicopter. American Institute ofAeronautics and Astronautics,2007.
    [58] Jepson W. D., HELICOPTER BLADE, United States, United States Patent3822105,1974.
    [59] Landgrebe A. J., Bellinger E. D., Experimental Investigation of Model Variable-Geometry andOgee Tip Rotors. NASA CR-2275,1974.
    [60] Tangler J. L., The Design and Testing of a Tip to Reduce Blade Slap. Proceedings of the31thAnnual Forum of the American Helicopter Society,1975.
    [61] Brocklehurst A., Pike A. C., Reduction of BVI Noise Using a Vane Tip. AHS Specialists'Conference on Aerodynamics, Dynamics and Acoustics,1994.
    [62] Baeder J. D., Passive Design for Reduction of High-Speed Impulsive Rotor Noise. Journal ofthe American Helicopter Society,1998,43(3):222-234.
    [63]徐国华,应用自由尾迹分析的新型桨尖旋翼气动特性研究.博士学位论文.南京航空航天大学,1996.
    [64] Zhao Q. J., Xu G. H., A Study on Aerodynamic and Acoustic Characteristics of AdvancedTip-Shape Rotors. Journal of the American Helicopter Society,2007,52(3):201-213.
    [65]招启军,新型桨尖旋翼流场及噪声数值模拟研究.博士学位论文.南京航空航天大学,2005.
    [66]江雄,肖中云,陈作斌,等,旋翼/机身气动干扰的数值模拟.直升机技术,2007(3):4-10.
    [67]童自力,孙茂,纵列式及横列式双旋翼流动的N-S方程模拟及气动特性的研究.航空学报,1999(6):489-492.
    [68]招启军,徐国华,新型桨尖旋翼悬停气动性能试验及数值研究.航空学报,2009(3):422-429.
    [69]招启军,徐国华,具有特型桨尖旋翼悬停状态气动噪声的初步试验研究.空气动力学学报,2009(3):320-324.
    [70] Walsh J. L., Bingham G. J., Riley M. F., Optimization Methods Applied to the AerodynamicDesign of Helicopter Rotor Blades. NASA-TM-89155,1987.
    [71] Quackenbush T. R., Wachspress D. A., Kaufman A. E., Optimization of Rotor Performance inHover Using a Free Wake Analysis. Journal of Aircraft,1991,28(3):200-207.
    [72] Quackenbush T. R., Wachspress D. A., Kaufman A. E., et al., Performance Optimization forRotors in Hover and Axial Flight. NASA CR-177524,1989.
    [73] Quackenbush T. R., Boschitsch A., Wachspress D., et al., Rotor Design Optimization Using aFree Wake Analysis. NASA CR-1776121993.
    [74] LaMarsh I. I., William J., Walsh J. L., et al., Aerodynamic Performance Optimization of a RotorBlade Using a Neural Network as the Analysis. The4th AIAA/USAF/NASA/OAI Symposiumon Multidisciplinary Analysis and Optimization,1992.
    [75] Le Pape A., Beaumier P., Numerical Optimization of Helicopter Rotor AerodynamicPerformance in Hover. Aerospace Science and Technology,2005,9(3):191-201.
    [76] Morris A. M., Allen C. B., Rendall T. C. S., Development of Generic CFD-Based AerodynamicOptimization Tools for Helicopter Rotor Blades. AIAA2007-3809,2007.
    [77] Xu J. H., Song W. P., Xu R. F., et al., Optimization of Blade Tip Planform for A QuietHelicopter Rotor:2010亚太航空航天技术研讨会,中国陕西西安,2010.
    [78]杨慧,宋文萍,韩忠华,等,旋翼翼型多目标多约束气动优化设计.航空学报,2012(7):1218-1226.
    [79]薛立鹏,张呈林,倾转旋翼气动优化设计.空气动力学学报,2011(4):453-458.
    [80]孙伟,张呈林,直升机桨叶气动外形多目标优化设计.航空动力学报,2011(7):1608-1614.
    [81]蔡伟,基于松弛自由尾迹方法的旋翼性能计算和优化.硕士学位论文.南京航空航天大学,2009.
    [82] Anderson J. D., Wendt J. F., Computational Fluid Dynamics. McGraw-Hill,1995.
    [83] Zhao Q. J., Xu G. H., Zhao J. G., New Hybrid Method for Predicting the Flowfields ofHelicopter Rotors. Journal of Aircraft,2006,43(2):372-380.
    [84] Bousman W. G., Aerodynamic Characteristics of SC1095and SC1094R8Airfoils. NASATP-2003-212265,2003.
    [85] Liseikin V. D., Grid Generation Methods. Second Edition, Dordrecht: Springer,2010.
    [86] Thomson J. F., Warsi Z. U. A., Mastin C. W., Numerical Grid Generation: Foundations andApplications. Amsterdam: Elsevier,1985.
    [87] Godunov S. K., Prokopov G. P., The Use of Moving Meshes in Gas-Dynamical Computations.USSR Computational Mathematics and Mathematical Physics,1972,12(2):182-195.
    [88] Yang C., Aoyama T., Chae S., et al., Blade Planform Optimization to Reduce HSI Noise ofHelicopter in Hover. Proceedings of the64th Annual Forum of the American Helicopter Society,2008,2:893-907.
    [89] Baeder J. D., Gallman J. M., Yu Y. H., A Computational Study of the Aeroacoustics of Rotors inHover. Proceedings of the49th Annual Forum of the American Helicopter Society,1993,1:55-71.
    [90] Slotnick J. P., Kandula M., Buning P. G., Navier-Stokes Simulation of the Space Shuttle LaunchVehicle Flight Transonic Flowfield Using a Large Scale Chimera Grid System. AIAAA94-30980,1994.
    [91] Meakin R. L., Object X-Rays for Cutting Holes in Composite Overset Structured Grids. AIAAA0131051,2001.
    [92] Rogers S. E., Dietz W. E., Suhs N. E., PEGASUS5: An Automated Preprocessor forOverset-Grid Computational Fluid Dynamics. AIAA Journal,2003,41(6):1037-1045.
    [93]李亭鹤,阎超.一种新的分区重叠洞点搜索方法-感染免疫法.空气动力学学报,2001(2):156-160.
    [94]李亭鹤,阎超,李跃军,重叠网格技术中割补法的研究与改进.北京航空航天大学学报,2005(4):402-406.
    [95]杨文青,宋笔锋,宋文萍,高效确定重叠网格对应关系的距离减缩法及其应用.航空学报,2009(2):205-212.
    [96]阎超,计算流体力学方法及应用.北京:北京航空航天大学出版社,2006.
    [97]王博,招启军,徐广,等,一种适合于旋翼前飞非定常流场计算的新型运动嵌套网格方法.空气动力学学报,2012(1):14-21.
    [98] Meakin R. L., A New Method for Establishing Intergrid Communication among Systems ofOverset Grids. AIAA91-1586,1991.
    [99] Noonan K. W., Bingham G. J., Aerodynamic Characteristics of Three Helicopter Rotor AirfoilSections at Reynolds Numbers From Model Scale to Full Scale at Mach Numbers From0.35to0.90. NASA-TP-1701,1980.
    [100] Anderson J. D., Fundamentals of Aerodynamics. McGraw-Hill New York,2001.
    [101] Baldwin B., Lomax H., Thin-Layer Approximation and Algebraic Model for SeparatedTurbulent Flows. AIAA1978-257,1978.
    [102] Roe P. L., Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes.Journal of Computational Physics,1981,43(2):357-372.
    [103] Venkatakrishnan V.. On the Accuracy of Limiters and Convergence to Steady StateSolutions. AIAA93-0880,1993.
    [104] Harten A., Hyman J. M., Self Adjusting Grid Methods for One-Dimensional HyperbolicConservation Laws. Journal of Computational Physics,1983,50(2):235-269.
    [105] Strawn R. C., Ahmad J., Computational Modeling of Hovering Rotors and Wakes, AIAA2000-0110,2000.
    [106] Swanson R. C., Turkel E., White J. A., An Effective Multigrid Method for High-SpeedFlows. Communications in Applied Numerical Methods,1992,8(9):671-681.
    [107] Enander R., Karlsson A. R., Implicit Explicit Residual Smoothing in Multigrid Cycle. AIAAA95-21271,1995.
    [108] Zhao Q. J., Xu G. H., Wang S. C., Calculation of Helicopter Rotor Flapping Angles andComparison with Measured Data.航空学报,2000,13(2):75-79.
    [109]黄水林.纵列式直升机双旋翼气动干扰特性的理论与试验研究.博士学位论文.南京航空航天大学,2009.
    [110] Peterson R., Full-scale Hingeless Rotor Performance and Loads. NASA TM110356,1995.
    [111] Schultz K. J., A Parametric Wind Tunnel Test on Rotorcraft Aerodynamics andAeroacoustics (Helishape): Test Procedures and Representative Results. Aeronautical Journal,1997,101(1004):143.
    [112] Steijl R., Barakos G. N., Badcock K. J., A CFD Framework for Analysis of HelicopterRotors. International Journal for Numerical Methods in Fluids,2006,51:819–847.
    [113] Caradonna F. X., Laub G. H., Tung C., An Experimental Investigation of the ParallelBlade-Vortex Interaction. NASA TM-86005,1984.
    [114] Biava M., Bindolino G., Vigevano L., Single Blade Computations of Helicopter Rotors inForward Flight. AIAA A0314047,2003.
    [115] Heffernan R., Gaubert M., Structural and Aerodynamic Loads and PerformanceMeasurements of an SA349/2Helicopter with an Advanced Geometry Rotor, NASA TM-88370,1986.
    [116] Potsdam M., Yeo H., Johnson W., Rotor Airloads Prediction Using LooseAerodynamic/Structural Coupling. AD A523729,2004.
    [117] Abhishek A., Datta A., Chopra I., Prediction of UH-60A Structural Loads Using MultibodyAnalysis and Swashplate Dynamics. Journal of Aircraft,2009,46(2):474.
    [118] Sitaraman J., Baeder J. D., Chopra I., Validation of UH-60Rotor Blade AerodynamicCharacteristics Using CFD. Proceedings of the59th Annual Forum of the American HelicopterSociety,2003:1452-1468.
    [119]李萍,庄开莲,李静,国外直升机旋翼翼型研究综述.直升机技术,2007(3):103-109.
    [120] Wilby P. G., The Development of Rotor Airfoil Testing in the UK. Journal of the AmericanHelicopter Society,2001,46(3):210-220.
    [121] Ladson C. L., Center L. R., Computer Program to Obtain Ordinates for NACA Airfoils.National Aeronautics and Space Administration, Langley Research Center,1996.
    [122] Lim J. W., Chopra I., Aeroelastic Optimization of a Helicopter Rotor. Journal of theAmerican Helicopter Society,1989,34(1):52-62.
    [123] Leishman J. G., Syal M., Aerodynamic Optimization Study of a Coaxial Helicopter Rotor.Proceedings of the65th Annual Forum of the American Helicopter Society,2009:223-246.
    [124] Rocchetto A., Poloni C., A Hybrid Numerical Optimization Technique Based on Geneticand Feasible Direction Algorithms for Multipoint Helicopter Rotor Blade Design. The21stEuropean Rotorcraft Forum,1995.
    [125] Zibi J., An Optimization Method Applied to the Aerodynamics of Helicopter Rotor Blades.The21st European Rotorcraft Forum,1995.
    [126] Dumont A., Le Pape A., Peter J., et al., Aerodynamic Shape Optimization of HoveringRotors Using a Discrete Adjoint of the RANS Equations. Proceedings of the65th AnnualForum of the American Helicopter Society,2009:247-257.
    [127] Lee S. W., Kwon O. J., Aerodynamic Shape Optimization of Hovering Rotor Blades inTransonic Flow Using Unstructured Meshes. AIAA Journal,2006,44(8):1816-1825.
    [128] Queipo N. V., Haftka R. T., Shyy W., et al., Surrogate-Based Analysis and Optimization.Progress in Aerospace Sciences,2005,41(1):1-28.
    [129]陈魁,试验设计与分析.清华大学出版社有限公司,2005.
    [130] Bates S. J., Sienz J., Toropov V. V., Formulation of the Optimal Latin Hypercube Design ofExperiments Using a Permutation Genetic Algorithm, AIAA2004-2011,2004.
    [131]穆雪峰,姚卫星,余雄庆,等,多学科设计优化中常用代理模型的研究.计算力学学报,2005(5):608-612.
    [132] Simpson T. W., Booker A. J., Ghosh D., et al., Approximation Methods in MultidisciplinaryAnalysis and Optimization: a Panel Discussion. Presented at the Third ISSMO/AIAA InternetConference on Approximation in Optimization,2004:302-313.
    [133] Buhmann M. D., Radial Basis Functions. Acta Numerica2000,2000,9(1):1-38.
    [134] Sitaraman J., CFD Based Unsteady Aerodynamic Modeling for Rotor Aeroelastic Analysis.PhD. Dissertation, University of Maryland,2003.
    [135]徐国华,高正,悬停状态下模型旋翼噪声试验的初步研究.空气动力学学报,1996,14(1):68-72.
    [136]林永峰,刘平安,陈文轩,等,三维桨尖旋翼桨叶表面压力测量试验.南京航空航天大学学报,2011,18(3):346-350.
    [137]杨卫东,邓景辉,直升机后掠桨尖旋翼气弹稳定性研究.南京航空航天大学学报,2003,35(3):248-252.
    [138]宋辰瑶,基于尾迹分析的旋翼旋转噪声计算及桨-涡干扰噪声研究.博士学位论文.南京航空航天大学,2010.
    [139] Brentner K. S., Farassat F., An Analytical Comparison of the Acoustic Analogy andKirchhoff Formulation for Moving Surfaces. NASA20040110264,1997.
    [140] George A. R., Helicopter Noise: State-of-the-Art. Journal of Aircraft,1978,15(11):707-715.
    [141] Farassat F., The Evolution of Methods for Noise Prediction of High Speed Rotors andPropellers in the Time Domain. Recent Advances in Aerodynamics,1986,1:129-147.
    [142] Song W. P., Han Z. H., Qiao Z. D., Prediction of Hovering Rotor Noise Based on
    Reynolds-Averaged Navier–Stokes Simulation. Journal of Aircraft,2007,44(4):1391-1395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700