稀燃柴油机尾气净化Pt基催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于柴油车辆具有良好的燃油经济性、优异的动力性和较低的CO2排放,在全球范围内得到广泛推广和应用。柴油车排放的污染物主要包括固态颗粒物碳烟(Soot)以及气态的CO、HC和NOx等。柴油发动机在稀燃条件下运行,传统的三效催化剂已不能有效发挥催化净化作用;而且柴油机内Soot和NOx的控制存在trade-off(此消彼长)的关系,一般而言柴油机后处理要采用多种技术集成系统,NOx选择性催化还原(SCR)和颗粒捕集(DPF)技术成为重型柴油车尾气净化研究和应用的焦点。相比之下,对污染物主要为Soot和HC化合物的轻型柴油车的技术研究较少。论文针对轻型柴油车尾气排放控制技术的关键问题,如何提高Soot燃烧的低温活性和HC的低温吸附性能,分别以稀土和钛等为主的复合氧化物为载体的Soot燃烧Pt催化剂以及HC吸附分子筛催化剂开展研究,从催化剂的制备、反应性能和结构特征、反应机理及应用等方面进行了深入研究和探讨。论文的主要研究内容如下:
     论文重点首先针对传统的Soot消除贵金属催化剂成本高易中毒失活的特点,系统研究开发了以稀土(CeO2)、过渡金属(TiO2)和少量贵金属(Pt)活性成分为主的新型soot消除催化剂。
     (1)通过改变合成过程中沉淀顺序的不同,制备一系列的Y2O3-CeO2-TiO2复合氧化物载体(成分比例固定),并与机械混合制备的载体对比,研究其对应催化剂在NO气氛下对碳烟的消除性能。发现沉积顺序不同,催化剂中Ce02及Ti02的衍射强度差别较大,前者衍射峰强度稍小于后者时,催化剂的热稳定性较好,而前者远小于后者时催化剂的热稳定性较差。三种复合氧化物Y2O3/CeO2/TiO2间过弱及过强的相互作用对催化剂的热稳定性及活性均是不利的。影响催化剂活性的参数按重要度排列为:Ce02后沉积>Y与Ce02组合>催化剂的比表面积。O2-TPD及XPS结果表明催化剂中化学吸附的表面活性氧物种(O2-,0-)的量越多,催化剂在NO气氛下对碳烟的消除能力越强。In Situ DRIFT表征证明双齿硝酸盐、吸附NO2和桥式硝酸盐是反应所需的活性中间物种。
     (2)共沉淀法制备不同Ce02基的载体CeO2-LnOx(Ln=La,Y,Pr,Nd:LnOx掺杂量为10wt%),研究其在NO下的碳烟消除性能,结果表明:1)稀土氧化物LnOx (Ln=La, Y,Pr, Nd)的添加能抑制Ce02晶粒长大、大幅提高催化剂的比表而积和提高催化剂表而活性氧物种(O2-,O-)的量,但对催化剂中Pt粒子大小的影响很小;2)催化剂的比表面积越大、孔径分布越规则、Ce02晶面越小、表面活性氧物种(O2,O-)的量越多,催化剂在NO气氛下对碳烟的消除能力越强;3)In Situ DRIFT表征和活性结果证明NO储存的中间物种对碳烟消除的活性顺序为:螯合双齿硝酸盐>桥式双齿硝酸盐>单齿硝酸盐,并且中间物种的量越多,催化剂的活性越强。
     (3)通过引入高比表面积的Al2O3,制备高比表面积的CeO2-TiO2-Al2O3载体。研究Ce、Ti、Al的三者前驱体的沉淀行为,发现载体制备时的沉淀顺序对热稳定性至关重要。进一步研究了铝和铈钛沉淀pH值、晶化温度及模板剂种类等参数的影响,结果显示如合成后的载体XRD谱图只出现单一、较强的TiO2衍射峰,就意味着载体的热稳定性较差,而Ce02和Ti02同时出现较强的衍射峰,则意味着载体的热稳定性较好;另一方面,利用优化合成的高比表面积复合氧化物作为载体制备Pt/CeO2-TiO2-Al2O3催化剂,调控过程合成中的pH研究催化剂体系在NO气氛下对碳烟的消除能力。结果表明催化剂合成过程中的pH值越低,催化剂中贵金属粒子越大、同时催化剂中化学吸附的表面活性氧物种(02-,O-)的量越多,催化剂对碳烟的消除能力越强。In-situ DRIFTs表征证明双齿硝酸盐和吸附N02是反应所需活性中间物种。优化制备的催化剂P3具有优异的抗H2O及抗SO2中毒的性能,具备较好的应用前景。
     论文其次针对稀燃柴油车工作温度低,氧化型Pt催化剂对HC的氧化性能的不足的特点,进一步开展柴油机冷启动条件下HC吸附材料的应用研究。
     (1)通过对比研究HY, HZSM-5和Hp三种分子筛的抗热及抗水热性能,发现Hβ抗热及水热老化性能相对好,并对Hβ进行Ce改性研究。优化工艺参数为Ce3+的离子浓度为0.025mol/L、离子交换时的pH为6、离子交换溶液的温度为50℃和交换二次。在此基础上对Ce改性的分子筛材料进行负载贵金属了研究,发现pH调节对催化剂的甲烷催化氧化活性的影响至关重要,而pH值为6制备的催化剂性能最优。进一步对不同分子筛负载贵金属的条件制备的催化剂的碳烟消除性能进行了研究,结果表明,Ce改性样品的性能要远高于未改性样品的性能,并且也是以过程pH调变为6的样品催化剂性能为最佳。催化剂性能提升的原因是由于催化剂中Ce-Pt之间及分子筛Hp与Pt之间的强相互作用使得催化剂中p活性氧物种的量发生改变,氧物种量越多,活性越强。
     (2)研究改性分子筛、未改性及传统的A1203等三种材料负载贵金属Pt的催化剂的台架活性,发现材料的性质对催化剂的催化活性有较大的影响。由改性的分子筛材料Ce-Hp制备的催化剂的活性最高,空燃比窗口最大,储氧能力也最大。这与贵金属活性组分Pt在外表面的分散度以及氧化还原特性有关,其对CO和THC的起燃温度比由未经改性的Hβ所制备的催化剂的均降低了23℃;相比传统的A1203负载贵金属Pt制备的催化剂的CO和HC的T50分别下降了44℃和42℃。
     论文最后利用前面研究工作的成果,结合我们在柴油车尾气治理催化剂方面的应用经验,设计制备新型催化剂,并与传统催化剂和国外厂家催化剂在柴油车发动机上进行对比试验。发现传统的催化剂的整体性能不如国外厂家生产的催化剂性能,而新研发的催化剂不仅在CO、HC的氧化方面强于同类型的催化剂,在PM消除方面亦优于国外催化剂。
Diesel engine has been widely promotion and application on a global scale because of its good fuel economy, excellent performance and lower CO2emissions. Solid particles (Soot) and CO, HC, NOx are the main pollutant in diesel engine emissions. Because diesel engine is operated in the lean-burn condition, the traditional three-way catalysts (TWCs) could not effectively play a catalytic purification, and the emission control between Soot and NOx has a trade-off relationship in diesel engine, so in general, the after-treatment system of diesel engine need to adopt a variety of technology. NOx selective catalytic reduction (SCR) and particle capture (DPF) become the research and application focus for heavy duty diesel exhaust purification. By contrast, the research about eliminating the light-duty diesel exhaust which the main pollutants are soot and HC compounds is less. For the key problem of light diesel exhaust emission control technology, namely, how to improve the low temperature activity of Soot combustion and HC adsorption.
     The Pt-based catalysts that rare earth and titanium are respectively the main composition in the carrier for soot combustion and HC adsorption of molecular sieve catalyst were studied in this dissertation. The preparation of catalysts, reaction performance, structure characteristics, reaction mechanism and application were also studied and discussed. The main research content is as follows:
     Firstly, because the traditional soot removing precious metal catalyst has the characteristics of expensive and easy to poisoning, new soot eliminate catalysts were developed and the active component is mainly rare earth (CeO2), transition metal (TiO2) and small amounts of precious metals (Pt)
     The aspects of soot eliminate aspects, firstly, the ratio among ternary complex oxides Y2O3-CeO2-TiO2was fixed, through changing the precipitation sequence in the synthesis process to prepare a series of supports to study the soot eliminate performance under NO atmosphere, and the mechanical mixing of supports were also prepared to compare. It is found that the diffraction intensity of CeO2and TiO2vary greatly with different precipitation sequence. The catalysts possess good thermal stability when the intensity of the former slightly less than the latter, while the former is far less than the latter, the thermal stability of catalysts is poor.The too weak or strong interaction among Y2O3-CeO2-TiO2is badly for thermal stability and activity of catalysts. Parameters that affect the catalytic activity arranged by importance is CeO2deposited later> the combination between Y and CeO2> the SBET of catalysts. According to the results of O2-TPD, XPS and activity, It is deduced that the content of chemisorbed surface active oxygen species (O2-, O") is more, the soot eliminate performance under NO atmosphere is better. The results of In-situ DRIFT show that the bidentate nitrates, adsorbed NO2and bridging nitrates are the active intermediate species.
     Secondly, a series of CeO2-LnOx(Ln=La, Y, Pr, Nd:the loading of LnOx is10wt%) were prepared by co-precipitation, and the soot eliminate performance under NO atmosphere was studied carefully. The results could be summarized:(1) The doping of LnOx could inhibit the grain growth of CeO2, greatly increase specific surface area and the content of chemisorbed surface active oxygen species (O2-,O-), but it has little effect on the Pt dispersion in catalysts;(ii) The greater the surface area is, the more orderly the pore size distribution is, the smaller the grains of CeO2are, and the more surface active oxygen species the catalyst has, then the better eliminating performance under NO atmosphere is;(iii) Combination the results of In-situ DRIFTs and activity, the active intermediate NOx species by importance order is chelating bidentate nitrates>bridging bidentate nitrates> mondenate nitrates, in addition, the more intermediate species the catalyst has, the better the activity is.
     The synthesis of high specific surface area support CeO2-TiO2-Al2O3has also been studied. Through study sedimentation behavior of the three precursor (Ce, Ti and Al), it is found that the thermal stability of support is depended on the order of precipitation. Furthermore, the effect of pH of Al and Ce-Ti, crystallization temperature, and the type of template are also been studied. The results show that the supports possess poor thermal stability when the strong intensity of TiO2appears only in XRD spectra, however the strong intensity of both TiO2and CeO2implies that the supports possess good thermal stability. Further, a series of catalysts Pt/CeO2-TiO2-Al2O3were prepared using the supports which prepared by optimized method. By changing the pH of Pt loading process, the soot eliminate performance under NO atmosphere was also studied carefully. The results show that the lower pH of Pt loading process, the catalysts possess bigger Pt particle size, larger amount of chemisorbed surface active oxygen species (O2-, O-) and better activity. Combination the results of In-situ DRIFT and catalytic activity, it is concluded that bidentate nitrates and adsorbed NO2are the active intermediate species. Different concentrations of H2O and SO2resistant test were carried out on the P3catalyst, it is found that the performance changed little before and after poisoning, which implies that the stability of catalyst is good and possesses prospect for industrial applications.
     As the temperature of lean-burn diesel engine was low and the HC performance for oxide supported Pt based catalyst was not good, the further research work about HC adsorption material which used under the cold start condition is an important part of this paper. The conclusion are following:
     Comparison of the surface area of the three commercial zeolites HY, HZSM-5and Hβ after heat treatment and hydrothermal treatment, it found that the heat resistance and hydrothermal performance of HP are relatively quite good and may play unique advantages in gas purification. The experiments of Ce modified Hβ were also been studied. Combined with the industrial production practice, it ultimately determined that the optimal parameters for Ce3+ion concentration is0.025mol/L, the pH of ion exchange is6, the temperature of ion exchange solution is50℃and the exchange time is2. In addition, after determining the appropriate conditions for the modification of Hβ with Ce, the precious metal load conditions on modified molecular sieve material were studied. It found that the PH adjustment is crucial to the catalytic oxidation activity of methane in the process of loading, of which the pH6is the best. Furthermore, the elimination performance of the catalyst which prepared using different molecular sieve loaded precious metal on soot were been studied, the results show that the performance of Ce modified samples is much better than the performance of the unmodified sample, and the catalyst performance of samples which PH6is the best. The improvement of catalyst performance is due to the strong interaction between the Ce-Pt and zeolite Hp with Pt that makes the amount of β reactive oxygen species in the catalyst changed, the more the oxygen species are, the stronger the activity is.
     The catalytic activity of three catalysts Pt/modified zeolite, Pt/unmodified zeolite and Pt/Al2O3were evaluated on the engine bench, it found that the nature of materials has a great effect on the catalytic activity. The catalyst prepared by Ce modified Hβ has the greatest activity, the largest air-fuel ratio window and oxygen storage capacity. It is relative with the outer surface dispersion of Pt and the redox performance. Compared with the catalysts prepared by the unmodified Hβ, the ignition temperature of CO and THC of the catalyst prepared by modified zeolite reduces by23℃; moreover, compared with Pt/Al2O3, the T50of CO and HC were reduced by44℃and42℃respectively.
     In the last parts of study, the monolithic catalysts have been prepared, combined the conclusion of previous research work and the experience in the application of the diesel exhaust catalyst.Compared with the catalyst from foreign manufacturers and the traditional active coating material catalysts which prepared under the same condition, it is found that the overall performances of traditional catalyst are not as good as the catalyst produced by foreign manufacturers, however, new development catalysts not only have better conversion efficiency for CO, HC than the same type catalyst, but also in PM eliminate. Therefore, the company's technical level had been improved and the company's brand image had been maintained through the applied base research.
引文
[1]向红,梁正文,车用柴油机的发展前景,交通标准化,2006,2(012):141-145
    [2]张正智,中国柴汕乘用车发展现状,汽车情报,2008,2(020):8-11
    [3]司康,发展柴油车是当前汽车行业节能减排的重要选择,交通世界,2008,3(0 16):22-25
    [4]杨冬霞,曹秋娥,赵云昆等,柴油车尾气净化催化技术进展,工业催化,2005,13(3):31-34
    [5]王风艳,吴海波,柴油车的颗粒捕集器,内燃机,2008,3(004):25-28
    [6]李青,李刚,柴油车的排气净化催化剂与有关技术,贵金属,2000,21(4):54-56
    [7]Twigg M V, Progress and future challenges in controlling automotive exhaust gas emissions, Applied Catalysis B Environmental,2007,70(1-4):2-15
    [8]Mul G, Kapteijn F, Moulijn J A, Catalytic oxidation of model soot by metal chlorides, Applied Catalysis B: Environmental,1997,12(1):33-47
    [9]田春芝,柴油汽车微粒排放控制措施,北京汽车,2000,5(002):20-23
    [10]王皓,汽车尾气危害及控制对策探讨,2010,7(1):1 87-189
    [11]马涛,汽车尾气排放与大气污染,汕气田环境保护,2007,17(2):52-53
    [12]何国本,胡顺堂,柴汕机的微粒排放及处理措施,车用发动机,2002,5(005): 43-46
    [13]田柳青,叶代启,柴汕车排气颗粒物的后处理技术,环境污染治理技术与设备,2003,4(010):74-77
    [14]Neeft J P A, Makkee M, Moulijn J A, Diesel particulate emission control, Fuel Processing Technology, 1996,47(1):1-69
    [15]Matti Maricq M, Chemical characterization of particulate emissions from diesel engines:A review, Journal of Aerosol Science,2007,38(11):1079-1118.
    [16]朱春,张旭,车用柴油机排放细颗粒物和超细颗粒物特征与人体健康效应,环境与健康杂志,2010,27(006):549-551
    [17]张光德,车辆颗粒排放物污染与控制措施的探讨,拖拉机与农用运输乍,2004,3(005):7-9
    [18]Shea K M, Truckner R T, Weber R W, et al., Climate change and allergic disease, Journal of allergy and clinical immunology,2008,122(3):443-453
    [19]Bernstein J A, Alexis N, Barnes C, et al., Health effects of air pollution, J. Allergy Clin. Immun.,2004, 114(5):1116-1123
    [20]耿永生,汽车尾气污染及其控制技术,环境科学导刊,2010,29(6):62-69
    [21]Lioy P J, Spektor D, Thurston G, et al., The design considerations for ozone and acid aerosol exposure and health investigations:The Fairview lake summer camp-photochemical smog case study, Environ. Int., 1987,13(3):271-283
    [22]李滨丹,吴宁,探讨汽车尾气污染危害与对策,2009,34(7):174-177
    [23]肖益鸿,蔡国辉,詹瑛瑛等,汽车尾气催化净化技术发展动向,中国有色金属学报,2004,14(1):347-353
    [24]Rosen B N, Sloane G B, Environmental product standards, trade and European consumer goods marketing:Processes, threats and opportunities, The Columbia J. World Bus.,1995,30(1):74-86
    [25]Knecht W, Diesel engine development in view of reduced emission standards, Energy,2008,33(2): 264-271
    [26]Nelson P F, Tibbett A R, Day S J, Effects of vehicle type and fuel quality on real world toxic emissions from diesel vehicles, Atmos. Environ.,2008,42(21):5291-5303
    [27]闫有旺,汽车尾气污染防治技术,化学世界,2007,2(1):127-128
    [28]刘菊荣,宋绍富,汽车尾气净化技术及催化剂的发展,石油化工高等学校学报,2004,17(1):31-35
    [29]瞿梅,陈进富,汽车尾气污染防治技术,石油与天然气化工,2001,30(3):153-156
    [30]褚润,张国珍,谢红刚,纳米技术在净化汽车尾气方面的应用研究,环境科学与管理,2007,32(1):111-113
    [31]臧橱良,李俊,汽车尾气净化催化剂,当代化工,2001,30(4):187-192
    [32]Yang J, Stewart M, Maupin G, et al., Single wall diesel particulate filter (DPF) filtration efficiency studies using laboratory generated particles, Chem. Eng. Sci.,2009,64(8):1625-1634
    [33]Yoshida K, Makino S, Sumiya S, et al., Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust, SAE Paper,892046,1989
    [34]Henein N A, Lai M C D, Singh I, et al., Soc Automot Eng, SP 2001, SP-1592:1(SAE paper, 2001-01-0197).
    [35]Heck R M, Farrauto R J, Automobile exhaust catalysts, Appl. Catal. A,2001,221(1-2):443-457
    [36]Matsumoto S I, Recent advances in automobile exhaust catalysts, Catal. Today,2004,90(3-4):183-190
    [37]Forzatti P, Castoldi L, Nova I, et al., NOx removal catalysis under lean conditions, Catal. Today,2006, 117(1-3):316-320
    [38]Van Setten B A A L, Makkee M, Moulin J A, Science and technology of catalytic diesel particulate filters, Catal. Rev.,2001,43(4):489-564
    [39]Haynes B S, Wagner H G, Soot formation, Prog. Energy Combust. Sci.,1981,7(1):229-273
    [40]耿永生,汽车尾气污染及其控制技术,环境科学导刊,2010,29(6):62-69
    [41]Maricq M M, Chemical characterization of particulate emissions from diesel engines:A review, Aerosol Sci.,2007,38(3):1079-1118
    [42]Zelenka P, Cartellieri W, Herzog P, Worldwide diesel emission standards, current experiences and future needs, Appl. Catal. B,1996,10(1-3):3-28
    [43]Wang S, Haynes B S, Catalytic combustion of soot on metal oxides and their supported metal chlorides, Catal. Commun.,2003,4(11):591-596
    [44]Van Doom J, Varloud J, Meriaudeau P, et al., Effect of support material on the catalytic combustion of diesel soot particulates, Appl. Catal. B,1992,1(2):117-127
    [45]Neri G, Bonaccorsi L, Donato A, et al., Catalytic combustion of diesel soot over metal oxide catalysts, Appl. Catal. B,1997,11(2):217-231
    [46]Neefta J P A, Makkeea M, Moulijn J A, Catalysts for the oxidation of soot from diesel exhaust gases. I. An exploratory study, Appl. Catal. B,1996,8(1):57-78
    [47]Issa M, Petit C, Brillard A, et al., Oxidation of carbon by CeO2:Effect of the contact between carbon and catalyst particles, Fuel,2008,87(6):740-750
    [48]Aibak I, Such-Basanez I, Bueno-Lopez A, et al., Comparison of the catalytic activity of MO2 (M= Ti, Zr, Ce) for soot oxidation under NOx/O2, J. Catal.,2007,250(1):75-84
    [49]Setiabudi A, Chen J L, Mul G, et al., CeO2 catalysed soot oxidation:The role of active oxygen to accelerate the oxidation conversion, Appl. Catal. B,2004,51(1):1-19
    [50]齐绍英,用于柴油车排气中碳烟净化的CuO-CeO2复合氧化物催化剂表面活性氧的研究[硕士学位论文],华南理工大学,2011
    [51]张明,MnOx-CeO2复合氧化物用于催化氧化柴油车排气碳烟性能的研究[硕士学位论文],华南理工大学,2010
    [52]Zhang Y H, Zou X T, The catalytic activities and thermal stabilities of Li/Na/K carbonates for diesel soot oxidation, Catal. Commun.,2007,8(2):760-764
    [53]An H M, Mcginn P J, Catalytic behavior of potassium containing compounds for diesel soot combustion, Appl. Catal. B.2006,62(1):46-56
    [54]Pisarello M L, Milt V, Peralta M A, et al., Simultaneous removal of soot and nitrogen oxides from diesel engine exhausts, Catalysis Today,2002,75(2):465-470
    [55]Carrascull A, Lick L D, Ponzi E N, et al., Catalytic combustion of soot with a O2/NO mixture KNO3/ZrO2 catalysts, Catalysis communications,2003,4(3):124-128
    [56]Milt V G, Pissarello M L, Mir6 E E, Abatement of diesel-exhaust pollutants:NOx storage and Soot combustion on K/La2O3 catalysts, Applied Catalysis B:Environmental,2003,41(4):397-414
    [57]朱玲,王学中,郝郑平,Ce/Zr系列催化剂上碳颗粒物燃烧行为,环境科学,2005,26(5):7-11
    [58]Laversin H, Courcot D, Zhilinskaya E, et al., Study of active species of Cu-K/ZrO2 catalysts involved in the oxidation of soot, J.Catal.,2006,241(2):456-464
    [59]Wu X D, Zhou Z, Weng D, et al., Role of stable nitrates stored on BaCoCe in soot catalytic oxidation, Catalysis Communications,2010,11(2):749-752
    [60]Lin F, Wu X D, Weng D, Effect of barium loading on CuOx-CeO2 catalysts:NOx storage capacity, NO oxidation ability and soot oxidation activity. Catalysis Today,2011,175(1):124-132
    [61]Pieta I S, Garcia-Dieguez M, Herrera C, et al., In situ DRIFT-TRM study of simultaneous NOx and soot removal over Pt-Ba and Pt-K NSR catalysts, Journal of Catalysis,2010,270(1):256-267
    [62]李倩,Co, Mn水滑石基复合氧化物催化剂上碳烟和NOx的催化消除[博士学位论文],天津大学,2010
    [63]Fino D, Russo N, Saracco G, et al., The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot, J. Catal.,2003,217(2):367-375
    [64]Hong S S, Lee G D, Catalytic removal of diesel soot particulates over LaMnO3 perovskite-type oxides, Stud. Surf. Sci. Catal.,2006,159(1):261-264
    [65]Hong S S, Lee G D, Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts, Catal. Today,2000,63(2-4):397-404
    [66]Russo N, Furfori S, Fino D, et al., Lanthanum cobaltite catalysts for diesel soot combustion, Appl. Catal. B,2008,83(1-2):85-95
    [67]Russo N, Fino D, Saracco G, et al., Studies on the redox properties of chromite perovskite catalysts for soot combustion, J. Catal.,2005,229 (2):459-469
    [68]Fino D, Fino P, Saracco G, et al., Studies on kinetics and reactions mechanism of La2-xKxCu1-yVyO4 layered perovskites for the combined removal of diesel particulate and NOx, Appl. Catal. B,2003,43(3): 243-259
    [69]Teraoka Y, Nakano K, Shangguan W F, et al., Simultaneous catalytic removal of nitrogen oxides and diesel soot particulate over perovskite-related oxides, Catal. Today,1996,27(1-2):107-113
    [70]Shangguan, W F, Teraoka Y, Kagawa S, Simultaneous catalytic removal of NOx and diesel soot particulates over ternary AB2O4 spinel-type oxides, Appl. Catal. B,1996,8(2):217-227
    [71]Shangguan W F, Teraoka Y, Kagawa S, Promotion effect of potassium on the catalytic property of CuFe2O4 for the simultaneous removal of NOx and diesel soot particulate, Appl. Catal. B,1998,16(2): 149-154
    [72]Rives V, Ulibarri M A, Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxommetalates, Coordin. Chem. Rev.,1999,181(22):105-115
    [73]Wang Z P, Shangguan W F, Su J X, et al., Catalytic oxidation of diesel soot on mixed oxides derived from hydrotalcites, Catal. Lett.,2006,112(3-4):149-154
    [74]王仲鹏,陈铭夏,上官文峰,类水滑石衍生CuAlO催化剂同时去除碳颗粒和氮氧化物,物理化学学报,2009,25(1):79-85
    [75]Wang Z P, Jiang Z, Shangguan W F, Simultaneous catalytic removal of NOx and soot particulate over Co-Al mixed oxide catalysts derived from hydrotalcites, Catal. Commun.,2007,8(11):1659-1664
    [76]Zhang Z L, Zhang Y X, Wang Z P, et al., Catalytic performance and mechanism of potassium-supported Mg-Al hydrotalcite mixed oxides for soot combustion with O2, J. Catal.,2010,271(1):12-21
    [77]Zhang Z L, Zhang Y X, Su Q Y, et al., Determination of intermediates and mechanism for soot combustion with NOx/O2 on potassium-supported Mg-Al hydrotalcite mixed oxides by in situ FTIR, Environ. Sci. Technol.,2011,44(21):8254-8258
    [78]Mul G, Neeft J P A, Kapteijn F, et al., Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst:evaluation of the chemistry and performance of the catalyst, Appl. Catal. B,1995,6(4):339-352
    [79]Jelles S J, Van Setten B A A L, Makkee M, et al., Molten salts as promising catalysts for oxidation of diesel soot:importance of experimental conditions in testing procedures, Appl. Catal. B,1999,21(1): 35-49
    [80]Van Setten B A A L, Van Dijk R, Jelles S J, et al., The potential of supported molten salts in the removal of soot from diesel exhaust gas, Appl. Catal. B,1999,21(1):51-61
    [81]Shimizu K I, Katagiri M, Satokawa S, Sintering-resistant and self-regenerative properties of Ag/SnO2 catalyst for soot Oxidation, Applied Catalysis B:Environmental,2011 108-109(1):39-46
    [82]Ruiz M L, Lick I D, Ponzi M I, et al., Combustion of diesel soot in NO/O2 presence. Cesium nitrate and gold catalysts, Applied Catalysis A:General,2011,392(1):45-56
    [83]Ruiz M L, Lick I D, Leguizamon Aparicio M S, et al., NO Influence on Catalytic Soot Combustion: Lithium Nitrate and Gold Catalysts, Ind. Eng. Chem. Res.,2012,51(3):1150-1157
    [84]Wei Y, Liu J, Zhao Z, et al., Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation, Angew. Chem.,2011,123(10): 2374-2377
    [85]Wei Y, Liu J, Zhao Z, et al., Three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported gold nanoparticles:Synthesis with controllable size and super-catalytic performance for soot oxidation, Energy Environ. Sci.,2011,4(8):2959-2970
    [86]Oi Uchisawa J, Yang R T, Carbon oxidation with platinum supported catalysts, Appl. Catal. B,1998, 18(3-4):L183-L187
    [87]Oi-Uchisawa J, Obuchi A, Enomoto R, et al., Catalytic performance of Pt supported on various metal oxides in the oxidation of carbon black, Appl. Catal. B,2000,26(1):17-24
    [88]Oi-Uchisawa J, Obuchi A, Wang S, et al., Catalytic performance of Pt/MOx loaded over SiC-DPF for soot oxidation, Appl. Catal. B,2003,43(2):117-129
    [89]Setiabudi, Van Setten B L, Makkee M, et al., The influence of NOx on soot oxidation rate:molten salt versus platinum, Appl. Catal. B,2002,35(2):159-166
    [90]Matsuoka K, Orikasa H, Itoh Y, et al., Reaction of NO with soot over Pt-loaded catalyst in the presence of oxygen, Appl. Catal. B,2000,26(2):89-99
    [91]王海虹.车用柴油机尾气催化系统的发展,重型汽车,1999, 50(1):6-8
    [92]Villani K, Vermandel W, Smets K, et al., Platinum Particle Size and Support Effects in NOx Mediated Carbon Oxidation over Platinum Catalysts, Environ. Sci. Technol.,2006,40(5):2727-2733
    [93]Liu S, Wu X D, Weng D, et al., NOx-Assisted Soot Oxidation on Pt-Mg/Al2O3 Catalysts:Magnesium Precursor, Pt Particle Size, and Pt-Mg Interaction, Ind. Eng. Chem. Res,2012,51(5):2271-2279
    [94]Corro G, Fierro J LG, Romero F B, Catalytic performance of Pt-Sn/y-Al2O3 for diesel soot oxidation, Catalysis Communications,2006,7(2):867-874
    [95]Long F J, Sykes K W, The catalysis of the oxidation of carbon, Chim. Phys.,1950,47(1):361-378
    [96]Neumann B, Kroger C, Fingas E, Die was serdampfzersetzung an kohlenstoff mit aktivierenden zusatzen, Zeitschr. Angorgan.Allerneine Chem.,1931,197(1):321-338
    [97]McKee D W, Carbon oxidation catalyzed by low melting point oxide phases, Carbon,1987,25(4): 587-588
    [98]Amariglio H, Duval X, Etude de la Combustion catalytique du graphite, Carbon,1966,4(3):323-332
    [99]McKee D W, Mechanisms of the alkali metal catalysed gasification of carbon, Fuel,1983,62(2):170-175
    [100]Goethel P J, Yang R T, Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession, J. Catal.,1989,119(1):201-214
    [101]Baker R T K, Catalytic gasification of graphite, Chem. Ind.,1982,18:698-702
    [102]Hennig G R, Electron microscopy of reactivity changes near lattice defects in graphite, Chem. Phys. Carbon,1966,2(1):1-49
    [103]Mims C A, Catalytic gasification of carbon:Fundamentals and mechanism, In fundamental issues in control of carbon gasification reactivity; Series NATO ASI. Series E, Appl. Sci., Lahaye J, Ehrburger P, eds.,1991,37(2):383-407
    [104]Baker R T K, Factors controlling the mode by which a catalyst operates in the graphite-oxygen reaction. Carbon,1986,24(6):715-717
    [105]Cooper B J, Thoss J E, Role of NO in diesel particulate emission control, SAE Paper,890404,1989
    [106]Baumgarten E, Schuck A, Oxygen spillover and its possible role in coke burning, Appl. Catal.,1988, 37(1):247-257
    [107]Baker R T K, Chludzinski J J, Catalytic gasification of graphite by chromium and copper in oxygen, Carbon,1981,19(2):75-82
    [108]Mul G, Kapteijn F, Doornkamp C, et al., Transition metal oxide catalyzed carbon black oxidation:A study with 18O2, J. Catal.,1998,179(1):258-266
    [109]Kureti S, Weisweiler W, Hizbullah K, Simultaneous conversion of nitrogen oxides and soot into nitrogen and carbon dioxide over iron containing oxide catalysts in diesel exhaust gas, Appl. Catal. B, 2003,43(3):281-291
    [110]Mosbach S, Celnik M S, Raj A, et al., Towards a detailed soot model for internal combustion engines, Combust. Flame,2009,156(6):1156-1165
    [111]Herck R M, Gulati S, Farrauto R J, The application of monoliths for gas phase catalytic reactions, Chem. Eng. J.,2001,82(1-3):149-156
    [112]Zhang-Steenwinkel Y, Vander-Zande L M, Castricum H L, et al., Microwave-assisted in situ regeneration of a perovskite coated diesel soot filter, Chem. Eng. Sci.,2005,60(3):797-804
    [113]Fino D, Specchia V, Open issues in oxidative catalysis for diesel particulate abatement, Powder Technol., 2008,180(1-2):64-73
    [114]Yoshida K, Makino S, Sumiya S, et al., Simultaneous reduction of NOx and particulate emissions from diesel engine exhaust, SAE Paper,892046,1989
    [115]Robert N C, William C P, Paul M, Laboratory Evaluation of Ultra-short Metal Monolith Ctalyst, SAE Paper 980672,1998
    [116]Day J P, Socha L S, Impact of catalyst support design parameters on automotive emissions, SAE Paper 881590,1988
    [117]Hu Z, Heck R M, High temperature ultra stable close-coupled catalysts, SAE Paper 950254,1995
    [118]Hiemrich M J, Smith L R, Kitowski J, Cold start hydrocarbon collection for advanced exhaust emission control, SAE Paper 920847,1992
    [119]Burke N R, Trimm D L, Howe R F, The effect of silica:alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control, Appl. Catal. B.,2003,46(1): 97-104
    [120]Elangovan S P, Ogura M, Davis M E, SSZ-33:A promising material for use as a hydrocarbon trap, J. Phy. Chem. B.,2004,108(35):13059-13061
    [121]Andrew A. Adarnczy k, Method and apparatus to improve catalyzed hydrocarbon trap efficiency, US 0094035,2004
    [122]张建霞,汽车尾气排放控制前置催化剂及HC捕获剂的研究[硕士学位论文],北京工业大学,2006
    [123]张建霞,沸石分子筛离子交换及其对碳氢化合物的吸附性能研究[硕士学位论文],北京工业大学,2010
    [124]徐如人,庞文琴.分子筛与多孔材料化学.北京:科学出版社,2004,301
    [125]Ruthven D M, Zeolites as selective adsorbents, Chem. Eng. Prog.,1988,84(2):42-50
    [126]Lui Y, Dettling J, Evolution of a Pd/Rh TWC Catalyst Technology, SAE,930249,1993
    [127]Siewert R M, Mitchell P J, Method for reducing methane exhaust emissions from natural gas fueled engines, US 5131224,1992
    [128]Hu Z, Wan C Z, Lui Y K, et al., Design of a novel Pd Three-Way Catalyst:integration of catalytic functions in three dimensions, Catal. Today,1996,30(1-3):83-89
    [129]Deseorme C, Gelin P, Lecuyer C, et al., Palladium-exchanged MFI-type zeolites in the catalytic reduction of nitrogen monoxide by methane Influence of the Si/Al ratio on the activity and the hydrothermal stability, Appl. Catal. B.,1997,13(3-4):185-195
    [130]Li Y, Armor J N, Catalytic combustion of methane over palladium exchanged zeolites, Appl. Catal. B., 1994,3(4):275-282
    [131]Niwa M, Nakatsuji T, Methane combustion catalyst, JP 07241470,1995
    [132]Ishihara T, Sumi H, Takita Y, Palladium Ion-exchanged SAPO-5 as a Catalyst for Low Temperature Combustion of Methane, Chem.Lett.,1994,23(8):1499-1502
    [133]Muto K, Katada N, Niwa M, Complete oxidation of methane on supported palladium catalyst:Support effect, Appl. Catal. A.,1996,134(2):203-215
    [134]Maeda H, Kinoshita Y, Reddy K R, et al., Activity of palladium loaded on zeolites in the combustion of methane, Appl. Catal.A,1997,163(1-2):59-69
    [135]Ishikawa A, Komai S, Satsuma A, et al., Solid superacid as the support of a platinum catalyst for low-temperature catalytic combustion, Appl. Catal. A.,1994,110(1):61-66
    [136]Adams K M, Graham G W, Impact of redox conditions on thermal deactivation of NOx traps for diesel, Appl. Catal. B.,2008,80(3-4):343-352
    [137]Casapu M, Grunwaldt J, Maciejewski M, et al., Formation and stability of barium aluminate and cerate in NOx storage-reduction catalysts, Appl. Catal. B.,2006,63(3-4):232-242
    [138]Zanella R, Rodriguez-Gonzalez V, Arzola Y, Au/Y-TiO2 Catalyst:High Activity and Long-Term Stability in CO Oxidation, ACS Catal.,2012,2(1):1-11
    [139]Liu J, Zhao Z, Xu C, et al., Comparative Study on Physicochemical Properties and Combustion Behaviors of Diesel Particulates, Energy Fuels,2010,24(7):3778-3783
    [140]Wei Y C, Liu J, Zhao Z, et al., The catalysts of three-dimensionally ordered macroporous Ce1-xZrxO2 supported gold nanoparticles for soot combustion:The metal-support interaction, Journal of Catalysis, 2012,287(1):13-29
    [141]Sing K S W, Everett D H, Haul R A W, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure. Appl. Chem.,1985,57(4): 603-619
    [142]Ma C Y, Mu Z, Li J J, et al., Mesoporous Co3O4 and Au/Co3O4 Catalysts for Low-Temperature Oxidation of Trace Ethylene, J. Am. Chem. Soc,2010,132(8):2608-2613
    [143]Caballero A, Holgado J P, Gonzalez-delaCruz V M, et al., In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system:hydrogen-induced burial and dig out of metallic nickel, Chem. Commun.2010,46 (3):1097-1099
    [144]Tan R Q, Zhu Y F, Poisoning mechanism of perovskite LaCoO3 catalyst by organophosphorous gas, Appl. Catal. B,2005,58(1-2):61-68
    [145]Zhao Z, Yan X G, Wu Y, et al., Comparative study of Nickel-based provskite-like mixed oxide catalysts for direct decomposition of NO, Appl. Catal. B,1996,8(3):281-297
    [146]Wu X D, Liu S, Lin F, et al., Nitrate storage behavior of Ba/MnOx-CeO2 catalyst and its activity for soot oxidation with heat transfer limitations, Journal of Hazardous Materials,2010,181(1-3):722-728
    [147]Wu X D, Lin F, Xu H B, et al., Effects of adsorbed and gaseous NOx species on catalytic oxidation of diesel soot with MnOx-CeO2 mixed oxides, Applied Catalysis B:Environmental,2010,96(1-2):101-109
    [148]Krishna K, Bueno-Lopez A, Makkee M, et al., Potential rare earth modified CeO2 catalysts for soot oxidation I. Characterisation and catalytic activity with O2, Applied Catalysis B:Environmental,2007, 75(3-4):189-200
    [149]Avila M S, Vignarti C I, Apesteguia C R,et al., Effect of V2O5 loading on propane combustion over Pt/V2O5-Al2O3 catalysts, Catal. Lett,2010,134(1-2):118-123
    [150]Kaspar J, Fornasiero P, Graziani M, Use of CeO2-based oxides in the three-way catalysis, Catal. Today, 1999,50(2):285-198
    [151]Lin F,Wu X D, Weng D, Effect of barium loading on CuOx-CeO2 catalysts:NOx storage capacity, NO oxidation ability and soot oxidation activity, Catal. Today.,2011,175(1):124-132
    [152]Hadjiivanov K I, Identification of neutral and charged NxOy surface species by IR spectroscopy, Catal. Rev,2000,42(1-2):71-144
    [153]Liu J, Zhao Z, Chen Y S, et al., Different valent ions-doped cerium oxides and their catalytic performances for soot oxidation, Catalysis Today,2011,175(1):117-123
    [154]Kustov A L, Makkee M, Application of NOx storage/release materials based on alkali-earth oxides supported on Al2O3 for high-temperature diesel soot oxidation, Appl. Catal. B.,2009,88(3-4):263-271
    [155]Castoldi L, Artioli N, Matarrese R, et al., Study of DPNR catalysts for combined soot oxidation and NOx reduction, Catal. Today,2010,157(1-4):384-389
    [156]Gonzalez I D, Navarro R M, Wen W, et al., A comparative study of the water gas shift reaction over platinum catalysts supported on CeO2, TiO2 and Ce-modified TiO2, Catal. Today,2010,149(3-4):372-379
    [157]Karakoti A S, King J E S, Vincent A, et al., Synthesis dependent core level binding energy shift in the oxidation state of platinum coated on ceria-titania and its effect on catalytic decomposition of methanol, App). Catal. A.,2010,388(1-2):262-271
    [158]Zhang Y, Li Z, Wen X, et al., Partial oxidation of methane over Ni/Ce-Ti-O catalysts, Chem. Eng. J., 2006,121(2-3):115-123
    [159]Karin C B,Wohlrab S, Rodemerck U, et al., The tremendous effect of trace amounts of Rh on redox and catalytic properties of CeO2-TiO2 and A12O3 in CH4 partial oxidation, Catalysis Communications,2012, 18(1):121-125
    [160]He J J, Meng M, Zou Z Q, et al., High-Temperature NOx Storage and Sulfur-Resistance of the Lithium-Based Lean-Burn NOx Trap Catalyst Pt/Li/TiO2-Al2O3, Catalysis Letters,2010,136(3-4): 234-242
    [161]Maeda N, Urakawa A, Sharma R, et al., Influence of Baprecursor on structural and catalytic properties of Pt-Ba/alumina NOx storage-reduction catalyst, Appl. Catal. B,2011,103(1-2):154-162
    [162]Uchisawa J O, Obuchi A, Zhao Z, et al., Carbon oxidation with platinum supported catalysts. Appl. Catal. B.,1998,18(3-4):183-187
    [163]Hu L J, Boateng K A, Hill J M, Sol-gel synthesis of Pt/Al2O3 catalysts:Effect of Pt precursor and calcination procedure on Pt dispersion, J. Mol. Catal. A.,2006,259(1-2):51-60
    [164]Schmitz P J, Kudla R J, Drews A R, et al., NO oxidation over supported Pt:Impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation, Appl. Catal. B.,2006, 67(3-4):246-256
    [165]Mulla S S, Chen N, Cumaranatunge L, et al., Reaction of NO and O2 to NO2 on Pt:Kinetics and catalyst deactivation, J. Catal.,2006,241(2):389-399
    [166]Setiabudi A, Makkee M, Moulijn J A, The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gases, Appl. Catal. B.,2004,50(3):185-194
    [167]Liotta L F, Catalytic oxidation of volatile organic compounds on supported noble metals, Appl. Catal. B., 2010,100(3-4):403-412
    [168]Li L D, Shen Q, Cheng J, et al., Catalytic oxidation of NO over TiO2 supported platinum clusters I. Preparation, characterization and catalytic properties, Appl. Catal. B.,2010,93(3-4):259-266
    [169]Wei Y, Liu J, Zhao Z, et al., Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation, Angew. Chem.,2011,123(10): 2374-2377
    [170]Wei Y, Liu J, Zhao Z, et al., Three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported gold nanoparticles:Synthesis with controllable size and super-catalytic performance for soot oxidation, Energy Environ. Sci.,2011,4(8):2959-2970
    [171]Fullerton D J, Westwood A V K, Brydson R, et al., Deactivation and regeneration of Pt/y-alumina and Pt/ceria-alumina catalysts for methane combustion in the presence of H2S, Catal. Today,2003,81(2): 659-671
    [172]Kikuchi R, Maeda S, Sasaki K, et al., Low-temperature methane oxidation over oxide-supported Pd catalysts:inhibitory effect of water vapor, Appl. Catal. A:General,2002,232(1):23-28
    [173]Frache A, Palella B I, Cadoni M, et al., CuAPSO-34 catalysts for N2O decomposition in the presence of H2O. A study of zeolitic structure stability in comparison to Cu-SAPO-34 and Cu-ZSM-5, Topics in Catalysis,2003,22(1-2):53-57
    [174]Corro G, Vaquez-Cuchillo O, Banuelos F, et al., An XPS evidence of the effect of the electronic state of PdO in CH4 oxidation on Pd/y-Al2O3 catalysts, Catal. Commun,2007,8(12):1977-1980
    [175]Yoshida H, Nakajima T, Yazawa Y, et al., Support effect on methane combustion ober palladium catalysts, Appl. Catal. B:Environ.,2007,71(1-2):70-79
    [176]Schmal M, Souza M M V M, Alegre V V, et al., Methane oxidation-effect of support, precursor and pretreatment conditions-in situ reaction XPS and DRIFT. Catal. Today,2006,118(3-4):392-401
    [177]Fujimoto K, Ribeiro F H, Avalos-Borja M, et al., Structure and Reactivity of PdOx/ZrO2 Catalysts for Methane Oxidation at Low Temperatures, J. Catal.,1998,179(2):431-442
    [178]Wang C B, Ho C M, Lin H K, et al., Low temperature complete combustion of methane over titania-modified alumina-supported palladium, Fuel,2002,81 (14):1883-1887
    [179]Wang C B, Lin H K, Ho C M, Effects of the addition of titania on the thermal characterization of alumina-supported palladium, J. Mol. Catal. A.,2002,180(1-2):285-291
    [180]Yang L, Kresnawahjuesa O, Gorte R J, A calorimetric study of oxygen-storage in Pd/ceria and Pd/ceria-zirconia catalysts, Catal. Lett.,2001,72(1-2):33-37
    [181]朱保伟,陈宏德,田群等,铈锆固溶物载Pd催化剂的构造特征及其活性,环境化学,2004,23(32):41-45
    [182]薛建波,利用汽车加热器降低汽油机冷启动排放的研究,山东大学学报,2007,3(2):70-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700