Fe_3Al/Si_3N_4基复合材料的制备及摩擦磨损性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,公路、铁路交通的发展加速了汽车、火车等运输机械高速重载化的进程,从而对制动装置中摩擦材料的性能提出了更高的要求。车辆行驶速度的提升要求摩擦材料能够在较宽的速度、温度范围内具有稳定的摩擦性能。本文针对已有体系中的材料在使用中的某些缺陷,查阅、分析了大量国内外相关文献,在选用Fe_3Al/Si_3N_4作为基体材料研制开发了Fe_3Al/Si_3N_4基复合摩擦材料基复合摩擦材料,本文根据国际上摩擦材料研究及应用情况,主要从新型陶瓷材料配方的开发、优化、摩擦材料综合性能评定、摩擦磨损机制、摩擦过程热—力耦合作用等方面进行了研究。并获得初步成功。论文涉及材料学、热力学、摩擦学等诸多方面,研究内容富有创新性。
     本文针对以下几个方面进行了研究:
     一、用球磨机械合金化工艺制备了Fe_3Al粉体材料,并对Fe_3A1的形成过程和机理进行了研究。也对粉体的制备工艺和随后的热处理过程的必要性,进行了研究,并借用XRD, TEM, SEM, DSC等现代化的测试手段,对Fe_3Al形成过程的组织结构演变及Fe_3Al粉体的形貌进行了表征和测试。研究表明通过球磨机械合金化工艺,能够使A1、Fe元素粉末在球磨过程中使Al原子逐渐溶于Fe中形成无序a-Fe (A1)过饱和固溶体,通过随后在750℃低温退火工艺,无序a相通过A1原子有许重排和筹界移动,转变为有序度较高的DO3结构。通过该工艺,用相对低廉的A1、Fe粉体获得了制备Fe_3Al。采用基于TFDC理论建立的“二原子模型”计算机械合金化过程中Fe相和Al相的应变,结果表明Fe相应变为0.1142,Al相应变为-0.1961,说明Fe相膨胀,Al相收缩,这与XRD测试结果一致。这也为“二原子模型”在机械合金化金属间化合物领域的应用提供了有利证据。
     二、在系统分析欲制备的Fe_3Al/Si_3N_4复合材料结构和性能的基础上,分析计算了组元间的相容性,根据物理和化学相容原理,初步设计了复合材料配方,对它们进行混料。随后对其烧结工艺进行了优化,对其烧结原理进行了探讨。对制备的材料的性能和结构进行了研究,分析了烧结材料的相组成和界面结合方式。分析表明复合材料烧结后界面结合良好,界面处无明显的反应产物存在。发现材料的致密化过程受到原始粉料组成、粒度以及烧结温度、压力、保温时间等多种因素的影响。最佳工艺参数为:烧结温度1320℃,压力10-20MPa,保压10-30min,保温30-60min,此时致密度为90%-95%。烧结过程中未发现晶粒异常长大。
     三、根据摩擦材料的设计原则,选择Fe_3Al/Si_3N_4复合材料作为摩擦材料的基体组元,润滑剂为鳞片石墨,摩擦剂Al2O3。根据热力学原理,考察了Fe_3Al/Si_3N_4基摩擦材料中各组元之间的化学相容性。XRD, SEM, EMPA, TEM以及EDS分析表明,Fe_3Al基复合摩擦材料中的物相主要包括Fe_3Al、石墨、Al2O3、Si_3N_4、MgO,少量AlN。石墨和Al2O3均匀分布于基体。对制备的Fe_3Al/Si_3N_4基复合摩擦材料进行了力学性能测试,着重测试其不同工况条件和不同组元含量下材料的摩擦性能和磨损机理。研究表明加入石墨降低材料的力学性能,主要是因为石墨与其它相的界面是材料破坏的发源地。摩擦过程中,适量的石墨加入也能形成润滑膜。加入少量石墨时复合材料以轻微粘着磨损形式为主,加入大量时,石墨界面缺陷累积,材料力学性能急剧下降。在摩擦过程中,剪切断裂的大量的石墨颗粒的参与,使摩擦复合材料的磨损形式变为带有剥层脱落的剧烈磨粒磨损形式。Fe_3Al/Si_3N_4复合摩擦材料在制动过程中其磨损机制可能有磨粒磨损、粘着磨损、氧化磨损以及疲劳磨损四种形式,以磨粒磨损、氧化磨损和疲劳磨损为主。表现为微切削、微犁沟、点蚀以及剥落。
     四、利用有限元方法对摩擦材料摩擦热—力耦合过程进行了模拟,并在定速式摩擦磨损试验机上测试摩擦材料摩擦过程中摩擦表面温度变化情况。通过模拟结果与定速摩擦温升试验对比,发现模拟结果与试验结果较好吻合,证明有限元方法在摩擦材料摩擦过程热—力耦合分析的可行性,为新型摩擦材料配方的开发、摩擦材料磨损机制的研究提供了理论与试验依据。结果表明:在摩擦材料工作过程中,刹车片前端温度明显高于后端,在表面存在温度梯度,且随着制动压力的提高,摩擦表面最高温度相应提高,表面温度梯度越大。随着制动摩擦时间的推移,摩擦材料表面沿着滑动方向所受的剪切力逐渐增大,制动压力越大,剪切力越大,且增长速度越快。定速摩擦温升试验中,摩擦衬片材料表面温度随着制动摩擦时间的推移逐渐升高,随着制动压力的提高,摩擦表面温度上升速度加快。对比有限元模拟结果发现,模拟表面温度高于定速摩擦升温试验结果,主要是由于有限元模拟过程中忽略了摩擦热以空气对流、辐射、磨损微粒温升等形式的耗散。有限元模拟结果与试验结果中温度随时间的变化趋势基本相同。要得到更加准确的模拟结果,要在模型中增加材料的磨损、化学变化等因素。
     总之,本文尝试性的设计了Fe_3Al/Si_3N_4基复合摩擦材料体系,并试验性证明了设计的可行性,对设计的材料进行了力学性能测试,着重测试了其摩擦磨损性能。测试中,不但考虑其它组元对其摩擦性能的影响,而且模拟测试了该材料在一些复杂工况条件下的摩擦性能。抗氧化性实验和耐腐蚀性试验证明该材料优于传统的铁基摩擦材料,制动试验证明,该材料制动平稳,无明显的“热衰退”现象,是一种有潜在开发价值的摩擦制动材料。
In recent years, the development of highway and railway has accelerated the process of high speed and loading of transport machines, which deserves higher properties of the friction material in the brake system. Higher speed of vehicles needs stable properties of the friction material in a comparatively larger scale of speed and temperature. This thesis has for the first time in China put forward a theory that friction materials were made by developing a new matrix named Fe3A1/ Si_3N_4-base . This dissertation, based on the study and application of friction materials in the world, is a study on new friction materials from the aspects of development, optimization, assessment of integrated properties of friction materials, friction wear mechanism and coupling of thermal and strength, etc.The composite has been made successfully. The study covers areas such as material science, thermodynamics, tribology and some other disciplines and the research is creative as well as systematical.
     The main contents are as follows:
     Fe_3Al powder was prepared by milling mechanical alloying technology. Relevant studies were conducted on its formation process and mechanism, its technology process and the necessity to apply annealing treatment. The structural evolution of Fe-Al elemental during mechanical alloying process, and the shape of Fe_3Al particle have been investigated and tested by means of XRD, TEM, SEM and DSC. Depending on milling mechanical alloying technology, with the increase in milling time, Al atom can dissolve crystal lattice of Fe, and form disordered a-Fe solid solution. During annealing at 750℃,through Al atom order rearrangement and removing of APS domains, the lower B2 ordered and higher ordered structure were obtained. Making use of the technology, relatively inexpensive Fe and A1 powder were made into Fe_3Al -base to prepare Fe_3Al-base composite.
     Based on systematic analysis of the structure and performance of Fe_3Al/Si_3N_4 materials to prepare, Further analysis and calculation were done on the physical and chemical compatibility between them. A new composite material formula was then developed and these components were mixed. Subsequently sintering technology was optimized and sintering theory was explored. The structure and performance of friction materials prepared were studied, and bond and structure of interface were studied in detail. The composite sintered presented favorable interface in the course of components and no obvious reaction products emerged. It was found that the densification process was affected by the component of original powders, particle size and processing parameters such as sintering temperature, pressure and holding time.The optimal parameters are as follows:sintering temperature 1320℃,pressure 10-20MPa, holding time for pressure 10-30min, holding time for temperature 30-60min, with the density of 90%-95%.
     On the ground of design principle of friction materials, Fe_3Al/Si_3N_4 composite material was chosen as the matrix, with flake graphite as lubricants, as friction particles. The chemical compatibility between the components according to the basic principle of thermodynamics was examined. XRD、SEM、EMPA、TEM and EDS investigations indicated that the main phases in the Fe_3Al/Si_3N_4-based composite friction materials are Fe3A1,graphite, Si_3N_4,AlN,MgO,Graphite and Al2O3 , a small quantity of AlN as impurity. Graphite and Al2O3 were dispersed uniformly in the matrix. Because of its unfavorable interface bonding with other bond,Graphite decreased mechanics capacity. In the course of friction test, graphite can shift into lubricating layer with a low graphite content, composite exhibited slight adhesion abrasion;while with a high graphite content, because of much boundary limitation, mechanics capacity declined sharply. When graphite slice cracked because of cutting to form much graphite particle, wear performance is transformed to heavier particle abrasion with brittle split of materials. The wear forms of the Fe_3Al/Si_3N_4-based friction materials are mainly particle wear, oxidation wear and fatigue wear, exhibiting the micro cutting, micro furrows, dot corrosion and spalling away.
     The coupling of thermal and strength of ceramic friction materials is simulated with finite element method (FEM). And the temperature change of the friction face is tested on friction tester with constant speed. The comparison between the simulation result and the friction experiment with constant speed shows the consistency between the two. This proves the feasibility of finite element method in the analysis of coupling of thermal and strength, which provides theoretical and experimental foundation for the development of new friction materials and the study of wear mechanism of friction materials. The results of friction tests with constant speed show that the temperature of brake lining material surface rises with the passage of time. The higher the pressure is, the faster the temperature rises. It can be found that the temperature of friction interface calculated by FEM is higher the temperature measured in friction test. Ignoring the heat dissipation by means of cross-ventilation, radiation and temperature rising of abrasive particles induces the difference between the results of simulation and test. In order to obtain more exact results by means of simulation, wear and chemical reaction of friction material should be taken into account.
     To sum up, the thesis developed Fe3A1/Si_3N_4-base friction materials, and testified the feasibility of the formula. The experiment tested its mechanics capacity and probed its wear mechanism. The experiment not only explored the effects of other components its friction capacity, but also tested and simulated its friction capacity in complicated working conditions. It is testified that its capability of anti-oxidation and anti-corroding excelled one of Fe-base friction material.Braking test found that the material exhibited excellent braking performance, and possessed great potential in its development as a new friction braking material.
引文
[1] M.G.Jacko, P.H.S.Tsang, S.K.Rhee. Automotive friction materials evolution during the past decade. Wear, 1984, 100: 503-515
    [2] Junichro Yamabe, Masami Takagi, Toshiharu Matsui et al. Development of disc brake rotors for trucks with high thermal fatigue strength. JASE Review, 2002, 23: 105 -112
    [3] M.Eriksson, S.Jacobson. Tribological surfaces of organic brake pads. Tribology international, 2000, 33: 817-827
    [4]俞忠新,黄雅伦,王来芝.我国汽车摩擦材料的现状与发展.武汉汽车工业大学学报,1999,21(1) : 89-91
    [5]黄瑞芬,刘淑英.烧结金属摩擦材料及其工艺研究的发展.兵器材料科学与工程,1999, 22(1) : 66-68
    [6] S.J.Kim, H.Jong. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp.Tribology international, 2000, 33:477-484
    [7]李绍忠,罗成.我国汽车用非石棉摩擦材料的现状.粉末冶金工业,2000,10 (2): 38-41
    [8]邓海金,白新桂,李明等.金属陶瓷汽车离合器摩擦片的研制及应用.机械工程材料,1997,13(3) : 30-33
    [9]钟志刚,邓海金,李明等. Fe含量对Cu基金属陶瓷摩擦材料摩擦磨损性能的影响.材料工程,2002,8: 17-19
    [10]盛钢,马保吉.制动摩擦材料研究的现状与发展.西安工业学院学报,2000,20(1): 127-132
    [11]李静.Fe3Al基复合摩擦材料的制备与研究[D].济南:山东大学,2004.
    [12] Remond Y., W.C., Two experimental methods to measure the damaged subsurface of carbon-carbon brake discs. Applied Composite Materials, 1999. 6: p. 185-201.
    [13] Venkataraman B., S.G., The influence of sample geometry on the friction behaviour of carbon-carbon composites. Acta Materialia, 2002. 50: p. 1153-1163.
    [14] Berthelot J. M., S.Y., Damping analysis of unidirectional glass and Kevlar fibre composites[J]. Composites Science and Technology, 2004. 64: p. 1261-1278.
    [15] Hasim P., N.T., Effect of load and speed on the wear behaviour of woven glass fabrics and aramid fibre-reinforced composites. Wear, 2002. 252: p. 979-984.
    [16] Kim S.J., C.M.H., Lim D.S. et al., Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear, 2001. 251: p. 1484-1491.
    [17] Y., L., Asbestos free brakes and dry cluches reinforced with Kevlar aramid fiber. SAE paper, 1980. 800667
    [18]杨永连,烧结金属摩擦材料.机械工程材料, 1995. 19(6): p. 18-21.
    [19]陈洁,姚萍屏,熊翔,乔卫东, MoS2在铁基摩擦材料烧结过程中的行为研究.非金属矿, 2003. 26(4): p. 50-52
    [20]李世鹏.铜基粉末冶金摩擦材料基体及其摩擦磨损性能研究[D].长沙:中南大学,2004.
    [21]杨亚洲,仿生哑铃型黄麻纤维增强摩擦材料.长春:吉林大学, 2006.
    [22]陈志刚,陈晓虎,刘军. Al2O3基陶瓷摩阻材料的摩擦磨损特性.摩擦学学报,1997, 17(3):267-271
    [23]刘苏.高PV车用摩擦材料的研究.中国公路学报,2001, 14(增):123-126
    [24] Lamarche P E, Mich U. Friction engaging drives with ceramic materials. United States Patent: 4, 533, 032. 1985
    [25] Kettell. Friction element for clutch. United States Patent: 4, 846, 329. 1989.
    [26]陈国良,林均品.有序金属间化合物结构材料,北京:冶金工业出版社,1999
    [27] N.S.Stoloff. Iron aluminides: present status and future prospects. Materials Science and engineering A258, 1998: 1-14
    [28]龚红宇.纳微米Fe3A1/Al2O3复合材料的制备与研究,山东大学博十论文,2002
    [29] Su-Ming Zhu, Makoto Tamura, Kazushi Sakamoto. Characterization of Fe3Al-base intermetallic alloys fabricated by mechanical alloying and HIP consolidation. Materials Science and Engineering A, 2000, 292: 83-89
    [30]范润华,孙康宁,尹衍升等. Fe3A1金属间化合物的机械合金化.机械工程学报,2000, 36(8): 55-60
    [31] Y. Zhang, Y.C., R. He et al., Investigation of tribological properties of brake shoe materials-phosphorous cast irons with different graphite morphologies. Wear, 1993. 166: p. 179-186
    [32]吴培熙,沈健,特种性能树脂基复合材料. 2003,北京:化学工业出版社. 381-395
    [33]刘毅,郦定强,林栋梁.金属间化合物FeAl超塑性变形中的位错特征.金属学报,1996, 32 (3):225-231
    [34]万晓景,朱家红,黄胜标.Fe3Al与水汽及氢气的表面反应.金属学报,1955, 31 (4): 181-185
    [35]余瑞磺.固体与分子经验电子理论.科学通报,1978, 23 ( 3 ): 217-224
    [36] C.G. McKamey, J.A. Horton, C.T. Liu. Effect of Chromium on Properties of Fe3AI. J. Mater. Res., 1989, 4: 1156-1163
    [37] U.Prakash, R.A.Buckley, H.Jones, In: L.A. Johnson, D.P. Pope, J.O. Stiegier eds. Nigh temperature Ordered Intermetallic Alloys. Pittsburgh, P A: Material Research Society. 1991, 213:393-399
    [38]余兴泉,孙扬善,黄海波.轧制加工对Fe3A1基合金组织及性能的影响.金属学报,1995, 31(8): B368-372
    [39]倪瑞澄,孙震.金属间化合物及其粉末冶金材料.粉末冶金技术,1989, 7 ( 4 ): 253-260
    [40] C.G. McKamey, J.H.DeVan, P.E.Tortorelli,and V.K.Sikka. A review of recent developments in Fe3A1-based alloys. J. Mater. Res., 1991,6:1779-1783
    [41]孙扬善. Fe3A1基金属间化合物的性能和应用前景.机械科学与技术,1997, 26 (4 ):33-39
    [42] C.G. Mckamey, C.T.Liu, S.A.David, J.A.Horton, O.H.Pierce and J.J.campbell. Development iron aluminides for coal conveysion system, ORNLITM-10793 (oak Ridge Nationel laboratory, oak Ridge, TN, July 1988)
    [43] O. Ikeda, I. Ohnuma, R. Kainuma. Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe-AI system. Intermatallics, 2001,9: 755-761
    [44]薛群基,杨军,喇培清等.金属间化合物摩擦学研究进展.材料导报,2001,15(7):12-14
    [45]孙扬善,余新泉,薛烽等.Fe3A1金属间化合物的研究.材料导报,2000,14(8):66
    [46]尹衍升,张景德,李嘉.Fe3A1/A1203复合材料梯度涂层的摩擦磨损行为.摩擦学学报,2003,23(5):376-379
    [47] Zhu Zi-xin, Du Ze-yu, Xu Bin-shi, et al. Influence of heat treatment on microstructure and sliding wear behavior of Fe-AI/WC composite coatings. Transactions of Tianjin University, 9(2):93-97
    [48]涂江平,孟亮,刘茂森.有序态Fe3A1合金在水环境中的磨粒磨损行为.摩擦学学报,1998,18(3):215-220
    [49] J.P.Tu, L.Meng, M.S.Liu. Friction and wear behavior of Cu-Fe3Al powder metallurgical composites in dry sliding, wear 220(1998):72-?9
    [50] H.E.Maupin, R.D.Wilson, J.A.Hawk. An abrasive wear study of ordered Fe3A1. Wear, 1992,159: 241-247
    [51] H.E.Maupin, R.D.Wilson,J.A.Hawk. Wear deformation of ordered Fe-Al intermetallic alloys. Wear, 1993, 162: 432-440
    [52]Yong-Suk Kim, Yong-Hwan Kim. Sliding wear behavior of Fe3Al一based alloys. Materials science and engineering A, 1998, 258: 319-324
    [53]D.E.Alman, J.A.Hawk, J.H.Tylczak, et al. Wear of iron-aluminide intermetallic-based alloys and composites by hard particles. Wear, 2001,251:875-884
    [54] J.A.Hawk, D.E.Alman. Abrasive wear of intermetallic-based alloys and composites.Materials science and engineering A, 1997, 239: 899-906
    [55]江东亮.精细陶瓷材料.北京:中国物资出版社, 2000 : 87
    [56]陈力,冯坚,氮化硅陶瓷材料的研究现状及其应用,硬质合金,2002 (4) : 226-229
    [57]于启勋.新型刀具材料——陶瓷[J].机械工程师,2001,(8):67—70.
    [58] Luo X T, Zhang L T, Xu Y D, et al. Microstructure, properties and toughening mechanisms of in-situ toughened Si3N4.In:Yan D S, Fu X R, Shi SX, et al Proceedings of the 5th International Symposium on Ceramic Materials and Components for Engnes [C].Singapore:World Scientific Publishing Co Pte Ltd,1995
    [59] N. Ziegles. ALME. Trans. 100, 267(1932)
    [60]曾汉民.高技术新材料要览.北京:中国科学技术出版社,1993. 129.
    [61] ApinanizE,GaritaonandiaJS,PlazaolaF.JNon crystSolids,2001,287:302.
    [62] BenjaminJS.[J].MetallTrans, 1970, 1:2943.
    [63] C.Suryanarayana. Mechanical alloying and milling. Progress in Materials Science, 2001, 46:1一184
    [64] P. S. Gilman, J.S. Benjamin. Mechanical alloying. Ann. Rev. Mater. Sci.,1983, 13:279-284
    [65]王笑天.机械合金化与新材料开发.兵器材料科学与工程,1990, 9: 13-17
    [66]杨君友.材料制备新技术一机械合金化.材料导报,1994. 2: 11-15
    [67]师昌绪.新型材料与材料科学,北京:科学出版社,1988
    [68] Anil Saigal, Weiguo Yang. Analysis of milling of iron aluminides. Journal of materials processing technology, 2003, 132:149-156
    [69] B. L. Huang, R. J. Perez, E. J. Lavernia. Formation of supersaturated solid solutions by mechanical alloying. Nanostruct. Mater.,1996, 7(1):67-79
    [70] N. S. Stoloff. Iron aluminides:Present status and future prospects. Mater. Sci. 1998, A258:1一14
    [71] B.L. Huang, R.J. Perez, E.J. Lavernia. Formation of supersaturated solid solutions bymechanical alloying [J]. Nanostruct. Mater, 7(1996) 67~79.
    [72] C. Suryanarayana, Mechanical alloying and milling [J]. Pro. Mater Sci, 46(2001) 1~184.
    [73] S. Gedevanishvili, S.C. Deevi, Processing of iron aluminides by pressureless sintering through Fe+Al elemental route [J], Mater. Sci. Eng A325 (2002) 163~167.
    [74]陈国良,林均品。有序金属间化合物结构材料[M]。北京:冶金工业出版社,1999:252。
    [75]程开甲,程漱玉。TFD模型和余氏理论在材料设计中的应用[J]。自然科学进展,3(1993)417
    [76]李世春。TFDC相图[J]。自然科学进展,13(2003)1154~1157。
    [77]曾竟成,罗青,唐羽章著.复合材料理化性能.长沙:国防科技大学出版社,1998
    [78]贾成厂,李文霞,郭志猛,赵军编著.陶瓷基复合材料导论.北京:冶金工业出版社,1998
    [79]孙康宁,张景德,尹衍升合金化对金属间化合物价电子结构的影响.科学通报,1997, (21)
    [80]孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料[M].北京:机械工业出版社,2003
    [81]尹衍升,施忠良,刘俊友.铁铝金属间化合物一合金化与成分设计,上海:上海交通人学出版社,1996
    [82] M. Zinkevich, N. Matterm. Thermodynamic modeling of the Fe-Mo-Zr system. Acta Mater., 2002, 50:3373-3383.
    [83] R. Hultgren, P.D. Desai, D.T. Hawkin, M. Gleiser, K.K. Kelley. Selected values of thermodynamic properties of alloys. ASM, Metals Park, OH, 1973, pp.234-237: 909-910.
    [84]梁英教,车荫昌主编。无机物热力学数据手册。沈阳:东北大学出版社,1993:43-431
    [85]虞觉奇等编译.二元合金状态图集,上海:上海科学技术出版社,1987
    [86]黄培云.粉末冶金原理,北京:冶金工业出版社,1982
    [87]王盘鑫.粉末冶金学,北京:冶金工业出版社,1997
    [88]果世驹.粉末烧结理论,北京:冶金工业出版社,1997
    [89]谭训彦.特种陶瓷工艺学[M].济南:山东大学,2000
    [90]李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002
    [91]叶瑞伦,方永汗,陆佩文.无机材料物理化学[M].北京:中国建筑工业出版社,1986
    [92]施剑林.固相烧结II一一粗化与致密化关系及物质传输途径.硅酸盐学报,1997, 25 (6 ):657-667
    [93]高瑞平,李晓光,施剑林,周玉等.先进陶瓷物理与化学原理及技术,北京:科学出版社,2001
    [94]范润华.Fe3Al金属间化合物材料的强韧化机制研究.山东工业大学博士学位论文,1998
    [95] P. Murray. Ceramic fabrication process, Ed. W. D. Kingery, Wiley, New York, 1958
    [96]陈魁.试验设计与分析[M].北京:清华大学出版社,2005:78-83
    [97]李云雁,胡传荣等.试验设计与数据处理[M].北京:化学工业出版社,2005:87-92
    [98]曹献坤,杨晓燕.新型摩擦材料配方设计及优化[J].非金属矿,2004(4):50
    [99]孙康宁,Fe3Al/ Al2O3复合材料的制备与组织性能研究.哈尔滨工业大学博士学位论文, 1999
    [100]尹衍升,李嘉,孙康宁.Fe-Al/ Al2O3陶瓷基复合材料.材料导报,2003, 17(2):73-75
    [101]李静,Fe3Al基复合摩擦材料的制备与研究.山东大学博士学位论文,2004
    [102]王扬卫,于晓东等.热处理温度对Si3N4p/Al复合材料组织和性能的影响.2007:1-6
    [103]张明哲,刘勇兵,杨晓红.车用摩擦材料的摩擦学研究进展.摩擦学学报,1999, 19 ( 4 ) 379-384
    [104] M.Eriksson, F.Bergman, S.Jacobson. On the nature of tribology contact in automotives. Wear,2002, 252: 26-36
    [105] Kazuhiro Doi, Takahiro Mibe, Hiromichi Matsui, et al. Brake judder reduction technology-brake design technique including friction material formulation. JASE review, 2000, 21:497-502
    [106]温诗铸.摩擦学原理,北京:清华大学出版社,1990
    [107]全永听.工程摩擦学,杭州:浙江大学出版社,1994
    [108]郑林庆。摩擦学原理,北京:高等教育出版社,1994
    [109] D.Severin, S.Dorsch. Friction mechanism in industrial brakes. Wear, 2001,249: 771-779
    [110] Koji Kato. Wear in relation to friction-a review. Wear, 2000, 241:151-157
    [111]张永振.钢铁摩擦副干滑动摩擦学特性研究,西安交通大学博士学位论文
    [112] R.L.Deuis, C.Subramanian, J.M.Yellup. Abrasive wear of aluminium composites-a review. Wear, 1996, 201:132-144
    [113] D.E.Alman, J.A.Hawk. The abrasive wear of sintered titanium matrix-ceramic particle reinforced composites. Wear, 1999, 225: 629-639
    [114] D.E.Alman, J.H.Tylczak, J.A.Hawk. An assessment of the erosion resistance of iron-aluminide cermets at room and elevated temperatures. Materials science and engineering A, 2002, 329: 602-609
    [115]万怡灶,王玉林,成国祥等.A1203/Cu合金复合材料的磨损特性研究.材料工程,1997,11:6-8
    [116]陈跃.颗粒增强铝基复合材料干滑动摩擦磨损特性研究,西安交通大学博十学位论文
    [117]安琦.刹车装置摩擦片磨损理论探讨.润滑与密封
    [118] M.L.Johnson, D.E.Mikkola. Cavitation erosion and abrasive wear of Ni3Al alloys. Intermetallics, 1995, 3: 389-396
    [119] W.M.Rainforth. Microstructural evolution at the worn surface: a comparation of metals and ceramics. Wear, 2000, 245: 162-177
    [120] T.R.Chapman,D.E.Niesz,R.T.Fox,T.Fawcett.Wear-resistant aluminum-boron-carbidecermets for automotive brake applications. Wear, 1999, 236: 81-87
    [121].郭新涛,复合材料摩擦片热衰退机理初步研究.玻璃钢/复合材料, 2002. 6(15-16)
    [122].屈钧利,工程结构的有限元方法. 2004,西安:西北工业大学出版社.
    [123].翁荣周,传热学的有限元方法. 2000,广州:暨南大学出版社.
    [124].姚仲鹏,王.,张习军,传热学. 1995,北京:北京理工大学出版社.
    [125].袁伟,鼓式制动器温升计算模型及其应用研究. 2003,长安大学:西安.
    [126].鲁道夫, L.,汽车制动系统的分析和设计. 1985,北京:机械工业出版社.
    [127].Day, A.J., T.J. Newcomb, The Dissipation of Friction Energy from the Interface of an Annular Disc Brake. Proc. Instn. Mech. Engrs., 1984. 198D(11): p. 201-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700