板条状羟基磷灰石及其复合材料的制备和结构性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物材料羟基磷灰石(HAP)的化学组成和结构与人体骨骼和牙齿的主要无机成分类似,具有良好的骨传导性、生物相容性和生物活性,适宜做骨取代物,广泛应用于矫形外科领域和硬组织修复。为了防止HAP修复材料植入体内时发生感染,并改善HAP力学性能上的缺陷,研究合成掺杂抗菌HAP和羟基磷灰石/丝素蛋白复合材料(HAP/SF)。
     本试验采用水热合成法制备具有良好抗菌性能的载银载镧羟基磷灰石(Ag/La/HAP)和载银载镧羟基磷灰石/丝素蛋白复合材料(Ag/La/HAP/SF)。考察反应原料和浓度、水热反应时间和温度、pH值控制剂尿素的加量、模板剂山梨醇对晶体生长、晶体化学组成、晶体尺寸大小和形貌以及稳定性的影响,采用XRD、FTIR、SEM和TEM等分析检测方法对掺杂抗菌HAP和Ag/La/HAP/SF复合材料进行结构性能表征,并采用最小抑菌浓度法(MIC)检测掺杂抗菌HAP的抗菌性能,通过Ⅰ型胶原酶消化法培养成骨细胞反映HAP材料的生物相容性。
     结果表明制备HAP的较好原料为0.1mol/L的CaCl2溶液与等浓度的(NH4)2HPO4溶液,按1g/160ml反应液的比例加入尿素控制pH值,并加入山梨醇作为模板剂,在120℃下水热反应2h以上可以得到结晶良好、晶型稳固、纯度高的HAP晶体,并具有独特的板条状形貌,且为强度较高的单晶体,过度延长反应时间对得到板条状HAP晶体不利。银离子(Ag+)具有很强的抗菌性能,镧离子(La3+)则可以细化晶体并提高晶体的稳定性,这两种离子在水热反应体系中都可以通过共沉淀和离子交换进入HAP当中形成掺杂HAP,载银的关键在于控制反应体系pH值由合成HAP初期的10-11下降至7-8,尿素作为HAP水热反应体系中的pH值控制剂可以实现,载镧则可以在广泛的碱性条件下实现。
     蚕丝由0.5%的Na2CO3溶液按浴比1:50脱胶后,采用三元溶齐(CaCl2、C2H5OH和H2O的摩尔比为1:2:8)溶解丝素蛋白纤维得到丝素蛋白的盐溶液,经透析脱盐得到丝素蛋白溶液(SF),丝素蛋白溶液直接加入水热反应体系中一步合成得到不同复合比例的羟基磷灰石/丝素蛋白(HAP/SF)复合材料。制备的HAP/SF复合材料形貌以板条状为主,还出现了独特的针棒状和晶须,能够显著提高HAP的力学性能,SF所占复合比例的提升将使HAP/SF复合材料容易交联团聚。由抑菌性试验测得Ag/La/HAP对大肠杆菌和金黄色葡萄球菌的最小抑菌浓度为30.32ppm, I型胶原酶消化法在Ag/La/HAP和HAP/SF复合材料压片表面培养的成骨细胞生长良好,也表明所制备的掺杂抗菌HAP和HAP/SF复合材料具有良好的生物相容性。
Hydroxyapatite (HAP) has the similar chemical composition and structure to human bones and teeth in major inorganic components. HAP is widely used as bone substitute materials in the field of orthopedic surgery and hard tissue repair due to its good bone conductivity, biocompatibility and biological activity. A problem, however, is that they create an acidic environment at the implant site that induces an inflammatory response.
     To enhance the mechanical strength and to prevent infection of HAP implants a silver and lanthanum doped hydroxyapatite/silk fibroin composite materials (Ag/La/HAP/SF) composite was synthesized by hydrothermal synthesis method. Silk fibroin fiber was dissolved in the mix solution of ternary solvent (CaCl2, C2H5OH and H2O molar ratio of 1:2:8). After desalination by dialysis it become silk fibroin solution (SF sols) which was directly added into the reaction system to synthesize a different ratio of HAP/SF fibroin composite materials. According to the ratio of urea mass to reaction solution system, 1g/160ml urea was added in reaction solution to control pH value. Sorbitol as a template agent was also used:The phase composition and morphology of HAP and Ag/La/HAP/SF composites were observed using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy (FTIR). The effects of the concentration of starting reactants, reaction time and temperature, pH value, the amount of urea used, the pH control agents, the template agent of sorbitol on the growth, chemical composition, size and morphology as well as the stability of obtained crystal, were investigated. The antibacterial properties of doped antibacterial HAP were detected using the minimum inhibitory concentration method (MIC). The bioactivity and biocompatibility of the metal-ions-doped HAP material were observed through cell culture method of osteoblasts from a mouse.
     The results show that, the better starting materials for preparation of HAP are 0.1mol/L of CaCl2 solution and (NH4)2HPO4 solution. A single HAP crystal with high purity and a unique sheet morphology was obtained by hydrothermal method at 120℃, reacted for 2h. Over-extension of reaction time was not good for formation of the sheet morphology HAP. Silver ions (Ag+) has a strong anti-bacterial properties and lanthanum ions (La3+) can refine and improve the crystal stability of crystal. These two ions in the hydrothermal reaction system can be adopted by co-precipitation and ion exchange into the HAP. The control of pH value is very important for synthesis of Ag-doped HAP. The pH value in reaction system was changed from the starting value 10-11 down to 7-8. Urea was a good agent to control pH value of synthesis solution. We can dope La in HAP crystal under a wide range of alkaline conditions.
     The sheet HAP/SF composites were composed of many unique needle bars and whiskers, which can significantly improve the mechanical properties of HAP. The increase of SF in composite enhance the cross links between HAP crystal and SF. The MIC testing results showed that Ag/La/HAP has efficient antibacterial properties against to Escherichia coli and Staphylococcus aureus and the MIC is 30.32ppm. The osteoblast cells grew well on the Ag/La/HAP and HAP/SF composite surface showed that the prepared doped antibacterial HAP and HAP/SF composite material having a good biocompatibility.
引文
[1]阮建明,邹俭鹏,黄伯云.生物材料学[M].科学出版社,2004,7.
    [2]杨辉.基于抗菌抑菌功效的纳米复合HAP粉体材料的制备与研究[D].西安交通大学博士论文,2008,6.
    [3]张阳德,乐园,赵梓屹.羟基磷灰石骨修复材料[J].中国现代医学杂志,2006,16(1):72-75.
    [4]李玉宝.骨修复纳米生物材料及其发展前景[J].中国国际新材料产业研讨,2004,4,11.
    [5]张亚平,高家诚,王勇.人工关节材料研究与展望[J].世界科技研究与发展,2000,22(1):47.
    [6]Smartt JM JR, Karmacharya J, Gannon, et al. Repair of the immature and mature craniofacial skeleton with a carbonated calcium phosphate cement:assessment of biocompatibility, Osteoconductivity, and remodeling capacity [J]. Plast Reconstr Surg, 2005,115(6):1642-1650.
    [7]顾祖超,李起鸿,赵玉峰,等.自体骨髓基质细胞复合支架材料修复兔尺骨干节断骨缺损的试验研究[J].中华创伤骨科杂志,2004,6(6):651-656.
    [8]Mastrogiacomo M, Muraglia A, Komley V, et al. Tissue engineering of bone:search for a better scaffold[J]. Orthod Craniofac Res,2005,8 (4):277-284.
    [9]Gazdag AR, Lane JM, Glaser D, et al. Alternatives to autogenous bone graft:Efficacy and indications [J]. Am. Acad. Orthop. Surg.,1995,3:1-8.
    [10]Cornu O, DE HJ, Docquier PL, et al. Tibialtubercle elevateon with bone grafts. A compareative study of autographt and allograft[J]. Arch Orthop Trauma Surg,1995,114: 324-329.
    [11]Delloye C. Bone autographting techniques. In:Surgical Techniques in Orthopaedics and Traumatolog, Editions Scientifiques et Medcales Elsevier, Paris,2000,55-020-D30.
    [12]Fialkov JA, Holy CE, Shoichet MS, et al. In vivo bone engineering in a rabbit femur [J]. J. Craniofac Surg.,2003,14 (3):324-332.
    [13]黄长明,王臻,童星杰,等.大段异体骨移植治疗骨肿瘤[J].中华骨科杂志,2000,207.
    [14]张宏.羟基磷灰石与丝素蛋白生物复合材料研究[D].陕西科技大学硕士论文,2006,6.
    [15]肖兵娟.钛基体生物活性涂层的仿生制备与表征[D].陕西科技大学硕士论文,2009,6.
    [16]王艳,王学荣,刘博林.羟基磷灰石多孔陶瓷的研究[J].长春理工大学学报,2002,25(4):67-69.
    [17]Greenwald AS, Boden SD, Goldberg VM, et al. Bone-graft substitutes:facts, fictions, and applications [J]. J Bone Joint Surg,2001,83A:98-103.
    [18]Den Boer FC, Wippermann BW, Blokhuis TJ, P et al. Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow[J]. J Orthopaed Res,2003,21:521-528.
    [19]Shinichi S, Toshimasa U, Masanorf K, et al. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein[J]. Materials Science and Engineering C,2004,24:341-347.
    [20]Osborn J, Neweselu H. the Material Science of Calcium Phosphate Ceramics [J]. Biomater,1980,1 (1):108-111.
    [21]高景恒.加速我国医用生物材料的研究与开发[J].实用美容整形外科杂志,1998,9(3):113-114.
    [22]田文华.生物材料和医用植入物科学[J].国外医学生物医学工程分册,1997,20(4):253-256.
    [23]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000,120-123.
    [24]张士成,李世普等.磷灰石超微粉对癌细胞作用的初步研究[J].武汉工业大学学报,1996,18(1):5-8.
    [25]杨晓鸿,王志宏.生物陶瓷种植体研究概述—从致密到多孔[J].大自然探索,1998,17(65):51-56.
    [26]郑岳华,侯小妹,杨兆雄.多孔轻基磷灰石生物陶瓷的进展[J].硅酸盐通报,995,(3):20-24.
    [27]Ong, J.L.and Chan, D.C.N. Hydroxyapatite and their use as coating in dental implants:A review Critical Reviews in Biomedical Engineering.2000,28:667A-707A
    [28]Hench L L. Bioceramics:from concept to clinc. J Am Ceramics Soc,1991,74 (7): 1487-1510.
    [29]Gross U. Biocompatibility the interaction of biomaterls and host response. J Dent Educ, 1988,52 (12):798-803.
    [30]J.M.Toth, K.L.Lynch, K.R.Hamson. Fourth World Biomaterials Congrss, Berlin, German,1992.
    [31]Yamasaki H, Sakai H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials,1992,13 (5):308-312.
    [32]Rinamonti, Ugo. Osteoinductiori in porous hydroxyapatite implanted in heteroto-pic sites of different animal models. Biomaterials,1996,17:31-33.
    [33]Driessens FCM, Verbeeck RMH. Relation between Pbysicochemical Solubility and Biodegradation of Calcium Phosphates. Adv.Biomater.1998, (8):105-111.
    [34]Yam Huipin, Yang Zongjian, Joust D.de Bruijin, et al. Material-dependent Bone Induction by Calcium Phosphate Ceramics:a 2.5-year Study in Dog. Biomaterials,2001, 22 (19):2617-2623.
    [35]T Kawasaki, M Niikura, Y Kobayashi. Fundamental Study of Hydroxyapatite High-performance Liquid Chromatography[J]. Journal of Chromatography.1990,515: 125-148.
    [36]沈卫,顾燕芳,刘昌胜等.羟基磷灰石的表面特性[J].硅酸盐通报,1996,(1):45-51.
    [37]M Toriyama, A Ravaqlioli, A Krajewski, et al. Synthesis of hydroxyapatite based powders, by mechano-chemical method and their sintering[J]. Journal of the European Ceramic Society,1996,16 (4):429-436.
    [38]SH Rhee. Synthesis of hydroxyapatite via mechanochemical treatment[J]. Biomaterials, 2002,23(4):1147-1152.
    [39]CC Silva, AG Pinheiro, MAR Miranda, et al. Structural properties of hydroxyapatite obtained by mechanosynthesis[J]. Solid State Sciences,2003,5 (4):553-558.
    [40]P Parhi, A Ramanan, AR Ray. A convenient route for the synthesis of hydroxyapatite through a novel microwave-mediated metathesis reaction[J]. Materials Letters,2004,58 (27-28):3610-3612.
    [41]P Parhi, A Ramanan, AR Ray. Synthesis of nano-sized alkaline-earth hydroxyapatites through microwave assisted metathesis route[J]. Materials Letters,2006,60 (2):218-221.
    [42]CC Silva, MPF Graca, MA Valente, et al. Microwave preparation, structure and electrical properties of calcium-sodium-phosphate biosystem [C], Journal of Non-Crystalline Solids,2006,352(32-35).//Glasses and Related Materials 7 Proceedings of the 7th Brazilain Symposium on Glasses and Related Materials and 3rd International Symposium on Non-Crystalline Solids in Brazil:3512-3517.
    [43]冯杰,曹洁明,邓少高.纳米结构羟基磷灰石的微波固相合成新方法[J].无机化学学报,2005,21(6):801-804.
    [44]韩颖超,王欣宇,李世普.纳米级磷灰石粉末制备工艺进展[J].硅酸盐通报,2002,3(7):27-29.
    [45]左奕,李玉宝,魏杰,等.纳米羟基磷灰石的常压合成与表征[J].高技术通讯,2003, 4(4):58-61.
    [46]郭广生,王颖,王志华等.化学沉淀法制备羟基磷灰石纳米粒子[J].化学通报,2004,11(11):830-834.
    [47]宋云京,李木森,温树林等.温度和pH值对羟基磷灰石粉体合成的影响[J].硅酸盐通报,2003,(2):7-10.
    [48]肖秀峰,刘榕芳,张晓勤,等.水热合成纳米羟基磷灰石粉体的研究[J].无机盐工业,2004,36(3):16-18.
    [49]T Hattori. Hydrothermal preparation of calcium hydroxyapatite powders [J]. Journal of the American Ceramic Society,1990,73 (6):1803-1805.
    [50]CH Lin. Hydroxyapatite ceramics from hydro thermally prepared powders [C]. Materials Research Society Symposium proceedings,1994,34 (6):237-242.
    [51]王友法,闫玉华,梁飞,等.水热条件下针状羟基磷灰石单晶体的均相合成[J].硅酸盐通报,2001,(2):30-34.
    [52]徐光亮,聂秩霞,赖振宇.水热合成羟基磷灰石纳米粉体的研究[J].无机材料学报,2002,17(3):601-605.
    [53]M Yoshimura, H Suda, K Okamoto, et al. Hydrothermal synthesis of needlelike hydroxyapatite crystal[J]. Chem Soc Jap,1991,10 (10):1402-1407.
    [54]汪晓霞,张海黔.羟基磷灰石晶须的水热法合成及表征[J].南京航空航天大学学报,2005,37(5):611-615.
    [55]王峰,李木森,邱俊,等.溶胶-凝胶法制备纳米羟基磷灰石粉体的研究进展[J].生物骨科材料与临床研究,2004,1(2):36-38.
    [56]郭广生,孙玉绣,王志华,等.反相微乳液法制备棒状羟基磷灰石纳米粒子[J].化学通报,2005,5(5):368-372.
    [57]肖凤娟,杨惠芳,徐华.Triton X-100,/正己醇/环己烷反相微乳液体系合成纳米羟基磷灰石[J].材料科学与工程学报,2006,24(2):274-277.
    [58]任卫,李世普,王友法,等.微乳液法制备纳米羟基磷灰石的机理[J].材料研究学报,2004,18(3):257-264.
    [59]黄紫洋,刘榕芳,肖秀峰.电泳沉积羟基磷灰石生物陶瓷涂层的研究进展[J].硅酸盐学报,2003,31(6):591-597.
    [60]窦晓晨,李全利,周健.骨组织修复材料仿生合成的研究现状[J].医学综述,2009,15(20):3048-3051.
    [61]徐巍巍.丝素蛋白/羟基磷灰石梯度多孔复合材料的制备及其性能[D].苏州大学硕士论文,2007,5.
    [62]林红,陈宇岳, 盛家镛.蚕丝纤维在医学上的开发与应用前景[J].丝绸,2001,9:40-43.
    [63]蒲丛丛,何建新.蚕丝在生物材料中的应用[J].山东纺织科技,2008,4:41-44.
    [64]陈传杰,刘志斐,娄齐年.蚕丝蛋白的开发利用及其产业化前景[J].北方蚕丝,2008,29(1):7-8.
    [65]刘爱莲.浅析柞蚕丝素蛋白的营养护肤功效[J].辽宁丝绸,2003,1:24-26.
    [66]徐浩,闫玉华.纳米羟基磷灰石复合材料在骨组织工程中的应用[J].生物骨科材料与临床研究,2006,3(3):47-49
    [67]王刚.纳米相羟基磷灰石/丝素蛋白生物复合材料的制备及其结构特征的研究[D].天津工业大学硕士论文,2007,12.
    [68]何江涛,蒋电明.纳米羟基磷灰石复合材料的研究进展[J].川北医学院学报,2006,21(4):362-364
    [69]卢志华,孙康宁,李爱民.羟基磷灰石复合材料的研究现状与发展趋势[J].材料导报,2003,9:197-199.
    [70]朱武,朱东波,周科朝,等.羟基磷灰石复合骨替代材料的研究现状与发展趋势[J].材料导报,2005,11:344-347.
    [71]邓连霞,朱良均,张海萍,等.蚕丝的综合利用概述[J].北方蚕丝,2009,30(2):11-13.
    [72]王江,左奕,杨维虎,等.纳米羟基磷灰石-丝素蛋白仿生矿化材料的制备研究[J].无机化学学报,2009,24(2):264-268.
    [73]卢神州,李明忠,白伦.羟基磷灰石/丝素蛋白纳米复合颗粒的制备[J].丝绸,2006,2:17-19.
    [74]杨辉,张林,张宏,等.丝素蛋白/羟基磷灰石复合材料的制备及性能表征[J].复合材料学报,2007,24(3):141-146.
    [75]丰强,闵思佳,张海萍,等.不同结构丝素蛋白对羟基磷灰石结晶的调控作用[J].蚕业科学,2008,34(3):472-476.
    [76]沈宝甄,符新,王江.HA/SF复合材料的制备及表征[J].广东化工,2008,8:27-29.
    [77]曹惠,陈新,邵正中.羟基磷灰石/丝素蛋白复合纤维的制备及其矿化研究[J].化学学报,2008,66(18):2059-2064.
    [78]王刚,姚金波,周旭光,等.“一步法”制备纳米相丝素蛋白/羟基磷灰石生物复合材料[J].复合材料学报,2008,25(6):136-139.
    [79]赵勇,曾泉,陈静,等.三维丝素蛋白/羟基磷灰石支架的生物学性能[J].四川大学学报,2008,45(4):859-863.
    [80]刘琳,孔祥东,蔡玉荣.纳米羟基磷灰石/丝素蛋白复合支架材料的降解特性及生物 相容性研究[J].化学学报,2008,66(16):1919-1923.
    [81]张林.羟基磷灰石抗菌涂层的制备与表征[D].陕西科技大学硕士论文,2007,5.
    [82]Fleming J E, Cornell C N, Muschler G F. Bone, cells and matrices in orthopedic tissue engineering Orthopedic[J]. Clinics North Am,2000,31 (3):357-374.
    [83]钟方丽,曹宏斌等.生物材料表面灭菌进展[J].材料导报,2000,8:43-44.
    [84]肖清华,李博文.载银无机抗菌剂的研究现状和发展趋势[J].中国非金属矿导报,1999,6:5-7.
    [85]曾冬冬,孙春宝,丁浩.无机抗菌剂及其加工品抗菌效力评价[J].化工新材料,2000,29(2):17-20.
    [86]周凤娟,许时婴.可溶性丝素蛋白的结构研究[J].丝绸,2003,8:23-25.
    [87]张雨青.蚕丝脱胶方法的比较分析[J].蚕业科学,2002,28(1):75-79.
    [88]朱正华,朱良均,陆旋.丝素蛋白粉制备工艺研究[J].氨基酸和生物资源,2003,25(3):37-40.
    [89]倪莉,王璋,许时婴,等.酶法水解丝素的研究[J].食品与发酵工业,2000,26(1):20-23.
    [90]傅师申,陈铁楼,阳道允,等.CaCl2法丝素溶解工艺的研究[J].丝绸,1999,8:31-33.
    [91]Ajisawa A. Dissolution of silk fibroin with calciumchloride/ethanol aqueous solution[J]. Seric Sci Jpn,1998,67 (2):91-94.
    [92]王建南,季小琴,裔洪根.氯化钙微溶解过程中桑蚕丝的晶态结构研究[J].江苏蚕业,2004,1:6-8.
    [93]杨正文.纳米羟基磷灰石的制备及陶瓷力学性能的研究[D].吉林大学硕士学位论文,2005,6.
    [94]鄂征.组织培养和分子细胞学技术[M].北京:北京出版社,1995:11-76.
    [95]谢菁,徐殿胜,陆兵,等.丝素蛋白作为生物材料的基础研究[J].华东理工大学学报(自然科学版),2006,32(4):412.
    [96]杨维虎,左奕,张利,等.制备条件影响碳酸羟基磷灰石晶格的计算分析[J].无机化学学报,2009,25(2):223-230.
    [97]W Chen, Y Liu, HS Courtney, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating[J]. Biomaterials,2006, 27 (32):5512-5517.
    [98]阮洪江,范存义,郑学斌,等.载银羟基磷灰石抗菌涂层抗菌性能及对成骨细胞影响的体外试验[J].科学通报,2009,54(1):60-65.
    [99]E Verne, S Di Nunzio, M Bosetti, et al. Surface characterization of silver-doped bioactive glass[J]. Biomaterials,2005,26 (25):5111-5119.
    [100]KS Oh, KJ Kim, YK Jeong, et al. Cytotoxicity and antimicrobial effect of Ag doped hydroxyapatite[J]. Key Engineering Materials,264-268 (Ⅲ) Euro Ceramics Ⅷ,2004: 2107-2110.
    [101]RJ Chung, MF Hsieh, CW Huang, et al. Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol-gel coatings[J]. Journal of Biomedical Materials Research-Part B Applied Biomaterials,2006,76(1):169-178.
    [102]P Schaad, P Gramain, F Gorce, et al. Dissolution of synthetic hydroxyapatite in the presence of lanthanum ions[J]. J. Chem. Soc. Faraday Transactions,1994,90 (22): 3405-3408.
    [103]张玉梅,付涛,徐可为,等.含镧羟基磷灰石的细胞毒性研究[J].牙体牙髓牙周病学杂志,2000,10(3):152-154.
    [104]王莉,张亚峰,李春忠.羟基磷灰石/丝素蛋白复合故材料的生物相容性[J].华东理工大学学报(自然科学版),2007,1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700