自噬/cathepins激活机制在姜黄素抗内皮细胞缺血再灌注损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究自噬/cathepsins激活机制在姜黄素(curcumin, Cur)抗人脐静脉内皮细胞(HUVEC)在缺血再灌注(ischemia /reperfusion ,I/R)过程中的作用。
     方法:建立缺氧复氧(hypoxia/reoxygenation,H/R)损伤模型,用MTT法观察不同的缺氧和复氧时间对HUVEC的损伤作用以及Cur对HUVEC在H/R模型中的保护作用;应用免疫荧光和Western Blot法观察Cur预给药后H/R对HUVEC的微管相关蛋白LC3、溶酶体酶cathepsin B、cathepsin L、促凋亡蛋白Bax、抗凋亡蛋白Bcl-2表达的影响。Western Blot法检测在H/R过程加入自噬特异性抑制剂3-MA后Bax、Bcl-2的表达。
     结果:单纯缺氧后LC3、Beclin 1、cathepsin B、Bax/Bcl-2表达增强,cathepsin L被激活并发生核转位,H/R后LC3、Beclin 1、cathepsin B、Bax/Bcl-2表达进一步增强,cathepsin L核转位现象更为明显,给与3-MA后,HUVEC单纯缺氧和H/R诱导表达的Bax/Bcl-2比值升高;Cur(1.25~5μmol·L﹣1)可剂量依赖性的保护H/R的HUVEC;Cur预处理后在增强LC3表达的同时,明显抑制cathepsin B和Bax/Bcl-2的表达、并抑制cathepsin L的核转位。
     结论缺氧诱导发生自噬,复氧后自噬表达进一步增强,用3-MA抑制自噬后, Bax/Bcl-2表达升高,说明自噬在单纯缺氧阶段和复氧阶段都是起保护作用的,H/R后cathepsin B、L表达上调,启动凋亡程序。Cur能有效提高HUVEC在H/R损伤中的存活率,并通过诱导其自噬活性、下调cathepsin B、L来抑制Bax/Bcl-2的表达保护内皮细胞。
Aim To investigate the effect of autophagy/cathepsins activation mechanisms on protecting HUVEC against ischemia /reperfusion (I/R) injury directed by curcumin.
     Methods Establish hypoxia/reoxgenation(H/R) model on HUVEC. Using MTT colorimetric assay to observe the injury degree of hypoxia and reoxygenation at the diferent time. Preconditioning with different concentration of Cur, the survival rate of HUVEC subjected to H/R was assessed by MTT colorimetric assay. Pretreated with Cur, the expression of LC3、cathepsin B、cathepsin L、Bax and Bcl-2 was observed by fluorescent staining and Western Blot in HUVEC during H/R process. The level of Bax and Bcl-2 was tested by Western Blot during H/R when 3-methyladenine(3- MA), an inhibitor of autophagy was added.
     Results In the hypoxia phase , the expression of LC3、Beclin 1、cathepsin B and the ratio of Bax /Bcl-2 increased, and the nuclear translocation of cathepsin L was induced; and in the H/R phase ,these proteins just refered further enhanced;Inhibition of autophagy by 3-MA significantly increased the ratio of Bax/Bcl-2 which was induced by H/R. Cur(1.25~5μmol·L﹣1) played a protective role during H/R in HUVEC in a dose-dependent manner . When Cur (5μM) pretreated , LC3 further strengthened , at the same time , the up-regulation of cathepsin B、the ratio of Bax /Bcl-2 and the nuclei-location of cathepsin L was inhibited partly by Cur.
     Conclusions Autophagy was induced by hypoxia and further enhanced by reoxgenation in HUVEC, in vitro. Apoptosis was enhanced by 3-MA suggesting that autophagy is protective against hypoxia and H/R in HUVEC. Cathepsin B and cathepsin L protein up-ragulated and the apoptosis increased. Cur can raised the survival rate of HUVEC in the process of H/R. Cur increased the autophagy activity , down-regulated cathepsin B、L and inhibited the ratio of Bax /Bcl-2 to protect the endothelial cells.
引文
1. Bursch W, Ellinger A, Gerner CH, et al. Programmed Cell Death (PCD): Apoptosis, Autophagic PCD, or Others? Ann. N.Y. Acad. Sci., Dec 2000; 926:
    2. Gronostajski RM, Pardee AB, Goldberg AL. The ATP dependence of the degradation of short- and long-lived proteins in growing fibroblasts. J Biol Chem.1985; 260(6): 3344-9.
    3. Takeshi N, Kuninori S, YoshinoriO. Yeast autophagosome: de novo formation of a membrane structure. Trend Cell B io, 2002; 12(5) : 231 - 5.
    4. Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun. 2004; 313(2): 453-8.
    5. Anne Hamacher-Brady, Nathan R. Brady, and Roberta A. Gottlieb. Enhancing Macroautophagy Protects against Ischemia/Reperfusion Injury in Cardiac Myocytes. J Biol Chem,2006,281(40):29776—29787.
    6. Dosenko V E,Nagibin V S,Tumanovska L V,Moibenko A A.Protective effect of autophagy in anoxia-reoxygenation of isolated cardiomyecyte. Autophagy,2006,2(4):305—306.
    7. Matsui Y,Takagi H,Qu X,et a1.Distinct role of autophagy in the heart during isehemia and reperfusion : roles of AMPK and Beclin 1 in mediating autophagy.Circ Res,2007,100(6):914—922.
    8. Nakamura Y, Takeda M, Suzuki H, et al. Lysosome instability in aged rat brain. Neurosci Lett. 1989; 97(1-2): 215-20.
    9. Hiroshi Nakanishi. Neuronal and microglial cathepsins in aging and age-related diseases. Aging research reviews. 2003; 2:367-81.
    10. Kornfeld S, Mellman I. The biogenesis of lysosomes. A. Rev. Cell Biol .1989; 5: 483–525.
    11. Ni X, Canuel M, Morales CR. The sorting and trafficking of lysosomal proteins. Histol Histopathol. 2006 , 21:899-913.
    12. NS Nagaraj, N Vigneswaran, and W Zacharias. Hypoxia inhibits TRAIL-induced tumor cell apoptosis: involvement of lysosomal cathepsins . Apoptosis, Jan 2007; 12(1): 125-39.
    13. Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol ,2004, 36(12):2503-2518.
    14. Yoshimori T. Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 2004, 313(2):453-458.
    15. Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeastApg8p, is localized in autophagosome membranes after processing. EMBO J 2000, 19:5720-5728.
    16. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2004, 36: 2445-2462.
    17. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as“Curecumin”: from kitchen to clinic. Biochem Pharmacol 2008;75(4):787–809.
    18. Farhangkhoee H, Khan ZA,Chen S,st a1.Diferential efects of curcumin on vasoactive factors in the diabetic rat heart.Nutr Metab (Lond),2006,27(3):1-8.
    19. Marcu MG, Jung YJ, Lee S, et al. Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem , 2006;2(2):169–74.
    20. Li HL, Liu C, de Couto G, et al. Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest , 2008, 118(3):879–93.
    21. Srivastava R, Srimal RC. Modification of certain inflammationinduced biochemical changes by curcumin. Indian J Med Res, 1985;81: 215–23.
    22.周瑞,徐春红,李军,曹红.姜黄素对缺血/再灌注大鼠海马神经细胞凋亡及NR2A、NR2B表达的影响.中国药理学通报,2008,24(10):1314-1318
    23.张英,黄维义,林燕.姜黄素抗心肌缺血再灌注损伤作用及其机制研究.中国现代医学杂志,2007,17(22):2736-2739
    24.向进见,田夫,沈世强,等.姜黄素对大鼠肝缺血再灌注早期肝组织中氧自由基生成的影响.腹部外科, 2008,21(5):315-316.
    25. Lambert JC, Wang GW, Kang YJ. Zinc inhibition of Caspase-3 activation does not protect HeLa cells from apoptotic cell death. Toxicol Appl Pharmacol. 2001; 175(1): 89-93.
    26. Frederick MA, Roger B, Robert EK, et al. Short Protocols in Molecular Biology,
    3rd ed. Bei jing: Science Press. 1998: 17-24.
    27.赵剑虹,万小云,谢幸.自噬相关基因Beclin 1与肿瘤.国际遗传学杂志,2007,30(1):48-51
    28. Kihara A, Kabeya Y, Ohsumi Y, et al. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep, Apr 2001; 2(4): 330-5.
    29. Tassa A, Roux MP, Attaix D,et a1.ClassⅢphosphoinositide 3-kinase-Beclinl complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes.Biochem J,2003,376:577-586.
    30. Yu L, Alva A, Su H,et al. Regulation of an ATG7-Beclinl program of autophagic cell death by caspase-8.Science,2004,304:1500-l502.
    31. Kim J, Huang WP, Klionsky DJ. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and theautophagy conjugation complex. J Cell Biol 2001, 152(1): 51-64.
    32. Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001, 152(4): 657-667.
    33. Suzuki K, Kirisako T, Kamada Y, et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 2001, 20(21): 5971-81.
    34. Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 2004, 117(13): 2805-2812.
    35. Zhu c, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, et al. The influence of age on apopotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005, 12: 162-176
    36. Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral Ischemia-Hypoxia Induces Intravascular Coagulation and Autophagy. Am J Pathol 2006, 169: 566-583
    37. Guicciardi ME, Bronk SF, Wemeburg NW, et al. cFLIPL prevents TRAIL-induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis. Am J Physiol Gastrointest Liver Physiol. 2007, 292(5): G1337-G1346.
    38. Chen W, Li N, Chen TY, Han YM, et al. The Lysosome-associated Apoptosis-inducing Protein Containing the Pleckstrin Homology (PH) and FYVE Domains (LAPF), Representative of a Novel Family of PH and FYVE Domain-containing Proteins, Induces Caspase-independent Apoptosis via the Lysosomal-Mitochondrial Pathway. J. Biol. Chem., Dec 2005; 280: 40985 - 40995.
    39. Yacoub A, Park MA, Hanna D, et al. OSU-03012 Promotes Caspase-Independent but PERK-, Cathepsin B-, BID-, and AIF-Dependent Killing of Transformed Cells. Mol. Pharmacol., Aug 2006; 70: 589 - 603.
    40. He J, Tohyama Y, Yamamoto K, et al. Lysosome is a primary organelle in B cell receptor-mediated apoptosis: an indispensable role of Syk in lysosomal function. Genes Cells, Jan 2005; 10: 23 - 35.
    41. Cirman T, Oresic K, Mazovec GD, et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem. 2004; 279(5): 3578-87.
    42. Veronika S, Boris T, Sharon LS, et al. Lysosomal protease pathways to apoptosis. J Biol Chem. 2001; 276(5): 3149-57.
    43. Bidere N, Lorenzo HK, Carmona S, et al. Cathepsin D triggers Bax activation,resulting in selective apoptosisinducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis .J Biol Chem,2003,278:31401- 31411.
    44.王翠芬,陈敏,吴旭东,等.溶酶体cathepsin B参与大黄素诱导HK一2细胞凋亡.东南大学学报,2008, 27(6):404-408.
    45.李杰平,何平平,于小华,等.大鼠肺纤维化细胞凋亡及Cathepsin B基因变化的关系.现代生物医学进展, 2007,7(5):696-698
    46. Seyfried D, Han Y, Zheng Z, Day N, Moin K, Rempel S, et al. Cathepsin B and middle cerebral artery occlusion in the rat. J Neurosurg,1997, 87: 716-723.
    47. John Anagli , Kadija Abounit , Paul Stemmer, et a1.Effects of cathepsins B and L inhibition on postischemic protein alterations in the brain. 2008 ,366(1):86-91.
    48. Benchoua A, Braudeau J, Reis A, Couriaud C, Onteniente B. Activation of proinflammatory caspases by cathepsin B in focal cerebral ischemia. J Cereb Blood Flow Metab 2004, 24: 1272-1279.
    49. Tsubokawa T, Solaroglu I, Yatsushige H, Cahill J, Yata K, Zhang JH. Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke 2006, 37: 1888-1894.
    50. Yan BZ, Wang W, Chen LY, et a1.Role of cathepsin B-mediated apoptosis in fulminant hepatic failure in mice. World J Gastroenterol. 2009 , 15(10):1231-6.
    51. Brunk UT, Neuzil J, Eaton JW. Lysosomal involvement in apoptosis. Redox Rep 2001, 6: 91-97.
    52. Cirman T, Oresic K, Mazovec GD. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 2004, 279: 3578-3587.
    53. Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene 2004, 23: 2881-2890.
    54. Bidère N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 2003, 278: 31401-31411.
    55. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 2004, 11: 550-563.
    56. Kenta Fujimoto, Takashi Yamamoto, Takeshi Kitano, et al. Promotion of cathepsin L activity in newt spermatogonial apoptosisinduced by prolactin. Federation of European Biochemical Societies.2002,521:43-46.
    57. Barry Boland, Veronica Campbell.Aβ-mediated activation of the apoptotic cascade in cultured cortical neurones:a role for Cathepsin-L.Neurobiology of Aging,2004,25(1):83-91.
    58. Yin L,Stearns R,Gonzalez-Flecha B.Lysosomal and mitochondrial pathways in H2O2-induced apoptosis of alveolar type II cels.J Cell Biochem,2005,94(3):433-445.
    59. Zhu DM,Uckun FM.Cathepsin inhibition induces apoptotic death in human leukemia and lymphoma cells.Leuk Lymphoma,2000,39(3-4):343-354.
    60. Tang Q, Cai J, Shen D, et a1.Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3beta signaling. J Mol Med. 2009 ,87(3):249-60.
    61. Castino R,Pace D,D6moz M,et a1.Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas.Int J Cancer,2002,97(6):775-779.
    62. Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 2003, 1603:113-128.
    63. Klionsky DJ. Autophagy. Curr Biol 2005, 15(8):R282-R283.
    64. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004, 306:990-995.
    65. Marino G, Lopez-Otin C. Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 2004, 61(12):1439-1454.
    66. Eskelinen EL. Maturation of autophagic vacuoles in mammalian cells. Autophagy 2005, 1(1): 001-010.
    67. Levine B,Yuan J Y.Autophagy in cell death:an innocent convict. J Clin Invest,2005,115(10):2679—88.
    68. Hamacher-Brady A,Brady N R,Gottlieb R A,Gustafsson A B.Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart.Autophagy,2006,2(4):307—309.
    1. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 2003;23(1A):363–98.
    2. Deodhar SD, Sethi R, Srimal RC. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res 1980;71: 632–4.
    3. Satoskar RR, Shah SJ, Shenoy SG. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol 1986;24 (12):651–4.
    4. Holt PR, Katz S, Kirshoff R. Curcumin therapy in inflammatory bowel disease: a pilot study. Dig Dis Sci 2005;50(11):2191–3.
    5. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as“Curecumin”: from kitchen to clinic. Biochem Pharmacol 2008;75(4):787–809.
    6. Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S. Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Ther 2006;111(2):384–99.
    7. Stadler K, Jenei V, von Bolcshazy G, Somogyi A, Jakus J. Increased nitric oxide levels as an early sign of premature aging in diabetes. Free Radic Biol Med 2003;35(10):1240–51.
    8. Hattori R, Sase K, Eizawa H, et al. Structure and function of nitric oxide synthases. Int J Cardiol 1994;47(1 Suppl):S71–75.
    9. Farhangkhoee H, Khan ZA, Mukherjee S, et al. Heme oxygenase in diabetes-induced oxidative stress in the heart. J Mol Cell Cardiol 2003;35(12): 1439–48.
    10. Bengmark S. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr 2006;30(1):45–51.
    11. Brouet I, Ohshima H. Curcumin, an anti-tumour promoter and antiinflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 1995;206(2):533–40.
    12. Farhangkhoee H, Khan ZA,Chen S,st a1.Diferential efects of curcumin on vasoactive factors in the diabetic rat heart[J].Nutr Metab (Lond),2006,27(3):1-8.
    13. Decker RS, Poole AR, Griffin EE, Dingle JT, Wildenthal K. Altered distribution of lysosomal cathepsin D in ischemic myocardium. J Clin Invest 1977;59(5):911–21.
    14. Mathew S, Menon PV, Kurup PA. Changes in glycoproteins inisoproterenol-induced myocardial infarction in rats. Indian J Biochem Biophys 1982;19(1):41–3.
    15. Takahashi S, Barry AC, Factor SM. Collagen degradation in ischaemic rat hearts. Biochem J 1990;265(1):233–41.
    16. Ravichandran LV, Puvanakrishnan R, Joseph KT. Influence of isoproterenol-induced myocardial infarction on certain glycohydrolases and cathepsins in rats. Biochem Med Metab Biol 1991;45(1):6–15.
    17. Srivastava R, Srimal RC. Modification of certain inflammationinduced biochemical changes by curcumin. Indian J Med Res 1985;81: 215–23.
    18. Nirmala C, Puvanakrishnan R. Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 1996;159(2):85–93.
    19. Nirmala C, Puvanakrishnan R. Effect of curcumin on certain lysosomal hydrolases in isoproterenol-induced myocardial infarction in rats. Biochem Pharmacol 1996;51(1):47–51.
    20. Winter CA. Nonsteroid anti-inflammatory agents. Annu Rev Pharmacol 1966;6:157–74.
    21. JEONG GS,OH GS,PAE HO,et a1.Comparative efects of cureuminoids on endothelial heme oxygenase-1 expression:ortho-methoxy groups are essential to enhanee heme oxygenase aetivity and protection[J].Exp Mol Med,2006,31;38(4):393--400.
    22. TAKAHASHI T, MORITA K,AKAGI R,et a1.Heme oxygenase-1;a novel therapeutic target in oxidative tisue injuries.Curr Med Chem,2004,11(12):1545—1561.
    23.黄维义,张英,严丽,等.血红素氧合酶-1高表达抗兔心肌缺血再灌注损伤研究.中国现代医学杂志,2006,16(10): 1477—1479.
    24. SCAPAGNINI G,COLOMBRITA C,AMADIO M,et a1.Curcumin activates defensive genes and protects neurons against oxidative stress.Antioxid Redox Signal,2006,8(3-4):395-403.
    25.张英,黄维义,林燕.姜黄素抗心肌缺血再灌注损伤作用及其机制研究.中国现代医学杂志,2007,17(22):2736-2739
    26. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 2003;65:45–79.
    27. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 2006;7 (8):589–600.
    28. Kolodziejczyk SM, Wang L, Balazsi K, DeRepentigny Y, Kothary R, Megeney LA. MEF2 is upregulated during cardiac hypertrophy and is required for normalpost-natal growth of the myocardium. Curr Biol 1999;9(20):1203–6.
    29. Paradis P, MacLellan WR, Belaguli NS, Schwartz RJ, Schneider MD. Serum response factor mediates AP-1-dependent induction of the skeletal alpha-actin promoter in ventricular myocytes. J Biol Chem 1996;271(18):10827–33.
    30. Herzig TC, Jobe SM, Aoki H, et al. Angiotensin II type1a receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload. Proc Natl Acad Sci U S A 1997;94 (14):7543–8.
    31. Hasegawa K, Lee SJ, Jobe SM, Markham BE, Kitsis RN. cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 1997;96(11):3943–53.
    32. Backs J, Olson EN. Control of cardiac growth by histone acetylation/deacetylation. Circ Res 2006;98(1):15–24.
    33. ClaytonAL,HazzalinCA,Mahadevan LC. Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 2006;23(3):289–96.
    34. Miyamoto S, Kawamura T, Morimoto T, et al. Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 2006;113(5):679–90.
    35. Yao TP, Oh SP, Fuchs M, et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 1998;93(3):361–72.
    36. Gusterson RJ, Jazrawi E, Adcock IM, Latchman DS. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem 2003;278(9):6838–47.
    37. Yanazume T, Hasegawa K, Morimoto T, et al. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol 2003;23(10):3593–606.
    38. Marcu MG, Jung YJ, Lee S, et al. Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem 2006;2(2):169–74.
    39. Li HL, Liu C, de Couto G, et al. Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest 2008;118(3):879–93.
    40. Morimoto T, Sunagawa Y, Kawamura T, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 2008;118(3):868–78.
    41.史立宏,王守训,高尔.核因子-κB的活化与动脉粥样硬化的启动.中国病理生理杂志,2003,19(11):1527-1531
    42. Wilson SH,Best PJ,Edwards WD,et a1.Nuclear factor-kappaB immunoreactivjty is present in human coronary plaque and enhanced in patients with unstable angina pectofis.Atherosclereosis,2002,160(1):147-153
    43.赵志光,谢丽微,王宗敏.姜黄素抗兔动脉粥样硬化作用的研究.浙江中西医结合杂志,2008,18(2):67-68
    44.周志斌,郭毅,王思鸿,等.基质金属蛋白酶9及转化生长因子β1在人动脉粥样硬化斑块的表达及其与斑块稳定性的关系.中国动脉硬化杂志,2006,14(3):217-220
    45. Fruebis J,Conzalez V, Silvestre M,et al .Effect of probucol treatment on gene expresion of VCAM -I,M CP-I,and M .CSF in the aortic wall of LDL receptor-deficient rabbit during early atherogenesls[J].Arterioscler Throrab Vase Biol,1997,17;1289-1302
    46.张丽,梁中琴,顾振纶.姜黄素对内皮细胞的保护作用及机制研究[J].中国药理通讯,2003,20(2):56
    47. Amaswami G, Chai H,Yao Q,et a1.Curcumin blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries[J] J Vasc Surg,2004,40(6):1216-1222
    48. Quiles J L,Mesa M D,Ramirez-Tonosa C L,et a1.Curcuma longa extract supplementation reduces oxidative stress and artenuates aortic fatty streak developmentin rabbits[J].A rterioscler Thromb Vasc Biol,2002,22(7):1225-1231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700