聚苯胺微纳米结构的制备及其在防腐蚀技术中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了最具有应用前景的导电聚合物—聚苯胺在防腐蚀技术中的应用。根据需求设计合成条件,得到目标产物聚苯胺。分别考察了不同条件下制备出的聚苯胺在缓蚀剂和涂层中的应用。探讨了聚苯胺缓蚀剂的缓蚀机理,分析了聚苯胺涂层浸泡过程的阻抗谱特征。
     以过硫酸铵做氧化剂,选用具有一定缓蚀功能和大分子结构的羧甲基壳聚糖作为掺杂酸,得到了具有一定水溶性的聚苯胺微米小球和微纳米纤维;将掺杂酸改为聚苯乙烯磺酸,进一步提高了产物聚苯胺的水溶性;改变氧化剂的种类,选用氧化电位较低的三氯化铁做氧化剂,得到了具有纳米尺寸的聚苯胺纤维。
     将羧甲基壳聚糖掺杂聚苯胺作为缓蚀剂添加到0.5M盐酸溶液中。分别通过失重实验,多种电化学实验和量化计算等手段测试了聚苯胺在盐酸溶液中的缓蚀效率,探讨了缓蚀机理。结果发现,与一般有机缓蚀剂相比,少量的聚苯胺就可以有效的降低碳钢在盐酸溶液中的腐蚀。
     使用聚苯乙烯磺酸(PSSA)作为掺杂酸得到的水溶性聚苯胺对水性环氧树脂进行改性。盐雾试验加速腐蚀后,通过极化曲线和交流阻抗测试发现,添加少量的聚苯胺就可以有效的提高涂层的防腐蚀性能。
     将三氯化铁作为氧化剂制备出的纳米尺寸的聚苯胺纤维对环氧树脂涂层进行改性。分别将3%和7%聚苯胺改性的环氧涂层与空白环氧涂层的防腐蚀性能进行了对比。通过交流阻抗对各涂层的浸泡过程进行了分析和对比。分析了涂层金属开路电位,阻抗谱图形状,以及采用相应的等效电路解析的阻抗谱参数随浸泡时间的变化。结果发现聚苯胺的加入促进了电极表面金属氧化膜的生成,从而提高了涂层的防护性能。
Polyaniline, being popular for its potential practical applications, was studied for the application in anti-corrosion technologies in this paper. We designed the synthesis conditions attaining object polyaniline. Polyaniline which had different morphologies and characteristics was applied in corrosion inhibitor and coatings respectively. The inhibitive mechanism of polyaniline was discussed. The protective and deterioration process of coating modified by polyaniline was investigated.
     Polyaniline nanofibres and microspheres which had water solubility were synthesized by using Ammonium peroxydisulfate (APS) as oxidant and carboxymenthyl chitosan as doping acid. In order to enhance the water solubility of polyaniline, Polystyrene sulfonic acid (PSSA) was selected as dopant. Besides, polyaniline nanofibers were synthesized while FeCl3.6H2O which had a low oxidation potential was chosen as oxidation.
     Polyanilie doped by Polystyrene sulfonic acid (PSSA) was chosen to modify the water epoxy resin coating. After being accelerated corrosion in salt-fog experiment box, the characteristics of electrode was tested by Tafel polarization curve and electrochemical impedance spectroscopy (EIS). The results indicated that adding a small quality of polyanile could increase the anti-corrosion ability effectively.
     Epoxy resin modified by polyaniline nanofibers was prepared by using FeCl3.6H2O as dopant. Anti-corrosion abilities of epoxy resin and those modified with 3% and 7% polyaniline were compared respectively. Coating deterioration processes were researched by EIS method. EIS parameters in diferent immersing time were attained by using impedance models. In the end, the open circuit potential (OCP) and EIS of coating and iron interface were analyzed. The results obtained showed that a new layer on the iron surface had arisen. We supposed that the polianiline increased the formation of the new layer which was composed of the oxide of iron, and so the protect characteristic of polianiline modified coating increased.
引文
[1]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社, 1984.
    [2] NACE.“Corrosion Costs and Preventive Strategies in the United States”[M].A Supplement to Materials Performance.2002:2-11.
    [3]柯伟主编.中国腐蚀调查报告.北京:化学工业出版社,2003: 237-250.
    [4]侯保荣.海洋腐蚀与防护.北京:科学出版社, 1997.
    [5]侯保荣.海洋腐蚀环境理论及其应用.北京:科学出版社, 1998.
    [6] Kuznetsov Y. I.. Current state of the theory of metal corrosion inhibition. Protection of metals. 2002, 38: 103-111.
    [7] Sathiyanarayanan S, Marikkannu C, Palaniswamy N. Corrosion inhibition effect of tetramines for mild steel in 1M HCl. Applied Surface Science. 2005, 241: 477-484.
    [8] Vishnudevan M, Natesan M. Inhibition of corrosion of mild steel in acidic solutions using N-benzyldimethylamine. Bulletin of Electrochemistry. 2000, 16: 49-53.
    [9] Aytac A, Ozmen U, Kabasakaloglu M. Investigation of some Schiff bases as acidic corrosion of alloy AA3102. Materials Chemistry And Physics. 2005, 89: 176-181.
    [10] Jayaperumal D, Subramanian P, Palaniswamy N, et al. Studies on Inhibitors for Acidization of Oil-Wells. Bulletin of Electrochemistry. 1995, 11: 313-316.
    [11] Lendvay-Gyorik G, Meszaros G, Lengyel B, et al. Electrochemical and quantum chemical studies on the formation of protective films by alkynols on iron. Corrosion Science. 2003, 45: 1685-1702.
    [12] Pech-Canul M A, Echeverria M. Corrosion inhibition of steel in neutral chloride solutions by mixtures of N-phosphono-methyl-glycine with zinc ions. Corrosion Engineering Science and Technology, 2003, 38: 135-138.
    [13] Giacomelli F C, Giacomelli C, Amadori M F, et al. Inhibitor effect of succinic acid on thecorrosion resistance of mild steel:electrochemical gravimetric and optical microscopic studies. Mater. Chem. and Phy.. 2004, 83: 124- 128.
    [14] Ferreira S, Giacomelli C, Giacomelli F C, et al. Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel. Materials Chemistry and Physics. 2004, 83:129-134.
    [15] Quraishi M A, Ansari F A, Jamal D. Thiourea derivatives as corrosion inhibitors for mild steel in formic acid. Mater. Chem. and Phy.. 2003, 77: 687-680.
    [16] Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of Electrically Conducting Organic Polymers:Halogen Derivatives of Polyacetylene(CH)x. J. Chem. Soc. Chem. Comm.. 1977: 578-579.
    [17] MacDiarmid A G, Chiang J C, Halpern M, et al. "Polyaniline": Interconversion of metallic and insulated forms. Mol. Cryst. Liq. Cryst.. 1985, 121: 173-180.
    [18] Taguchi S, Tanaka T. Fibrous polyaniline as positive active material in lithium secondary batteries. J. Power Sources. 1987, 20(3-4): 249-252.
    [19] Osaka T, Nakajima T, Naoi K, et al. Electroactive Polyaniline Film Deposited from Nonaqueous Organic Media. J. Electrochem. Soc.. 1990, 137(7): 2139-2142.
    [20] Tsutsumi H, Fukuzawa S, Ishikawa M, et al. Layered Polyaniline Composites with Cation-Exchanging Properties for Positive Electrodes of Rechargeable Lithium Batteries. J. Electrochem. Soc.. 1995, 142(1): 3-5.
    [21] Morita M, Miyazaki S, Ishikawa M, et al. Polyaniline -poly[p-styrenesulfonic acid-co-methoxyoligo(ethylene glycol)acrylate] Composite Electrode for All-Solid-State Rechargeable Lithium Battery. J. Electrochem. Soc.. 1995, 142(9): 168-170.
    [22] Macdiarmid A G, Chiang J C, Richter A F, et al. Polyaniline: a new concept in conducting polymers. Synth. Met.. 1987, 18(1-3): 285-290.
    [23] Huang W S, MacDiarmid A G. Polyaniline, a Novel Conducting polymer. J. Chem. Soc. Chem. Commun. Faraday Trans.. 1986, 82(1): 2385-2396.
    [24] Wan M X. Absorption spectra of thin film of polyaniline. J. Polym. Sci. Part A: Polym. Chem.. 1992, 30(4): 543-549.
    [25] Chiang J C, MacDiarmid A G. Polyaniline: Protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 1986, 13(1-3): 193-205.
    [26] Shirakawa Hideki. Nobel Lecture: The discovery of polyacetylene film—the dawning of an era of conducting polymers. Reviews of Modern Physics. 2001, 73(3): 713-718.
    [27] Pron A, Genoud F, Menardo C, et al. The effect of the oxidation conditions on the chemical polymerization of polyaniline. Synth. Met. 1988, 24(3): 193-201.
    [28] Bingham A, Ellis Bryan. Polymerization of aromation amines with ferric chloride to produce thermally stable polymers. J. Polym. Sci: Part A-1. 1969, 7(11): 3229-3244.
    [29] Kumar N, Vadera S R, Jana P C. Synthesis and characterization of FeCl?4-doped poly- aniline. Polymer. 1992, 33(11): 2424-2426.
    [30] Hand R L, Melson R F. The Anodic Decomposition Pathways of Ortho- and Meta- substituted Anilines. J. Electrochem. Soc.. 1978, 125(7): 1059-1069.
    [31] Yan H, Toshima N. Chemical preparation of polyaniline and its derivatives by using cerium(IV) sulfate. Synth. Met.. 1995, 69(1-3): 151-152.
    [32] Kovacic P, Koch F W. Coupling of Naphthalene Nuclei by Lewis Acid Catalyst- Oxidant. J. Org. Chem.. 1965, 30(12): 3176-3181.
    [33] Toshima N, Yan H, Ishiwatari M. Catalytic Polymerization of Aniline and Its Derivatives by Using Copper (II) Salts and Oxygen. New Type of Polyaniline with Branched Structure. Bull. Chem. Soc. Jpn.. 1994, 67(7): 1947-1953.
    [34] Moon D K, Maruyama T, Osakada K, et al. Chemical Oxidation of Polyaniline by Radical Generating Reagents, O2, H2O2–FeCl3 Catalyst, and Dibenzoyl Peroxide. Chem. Lett.. 1991, 20(9): 1633-1636.
    [35] Armers S, Aldissi M. Potassium iodate oxidation route to polyaniline: an optimiz- ation study. Polymer. 1991, 32(11): 2043-2048.
    [36] Cao Y, Andreatta A, Heeger A J, et al. Influence of chemical polymerization conditions on the properties of polyaniline. Polymer. 1989, 30(12): 2305-2311.
    [37] Genies E M, Tsintavis C, Syed A A, et al. Electrochemical Systems of the PAN. Mol. Cryst., Liq. Cryst.. 1985, 121(2): 181-186.
    [38] Traves J P, Chroboczek J, Devreux F, et al. Transport And Magnetic Resonance Studies of Polyaniline. Mol. Cryst. Liq. Cryst.. 1985, 121(2): 195-197.
    [39]万梅香.微纳米结构的导电聚合物.北京:清华大学出版社, 2008.
    [40] K. Fraoua, M. Delamar, C.P. Andrieux. The effect of the local pH in the slow relaxation of polyaniline. Synthetic Metals.1999,78(2):131-135.
    [41] Stejskal J, Riede A, HlavatáD, et al. The effect of polymerize -tion temperature on molecular weight,crystallinity,and electrical conductivity of polyaniline. Synth. Met.. 1998, 96(1): 55-61.
    [42] Despic.V. P. Parkhutik, in Modern Aspects of Electrochemistry, J. O. Bockris, R. E. White, B. E. Conway, Eds, Plenum, New York, 1989, Vol. 20, Charp. 6.
    [43] Diaz F, Logan J A. Electroactive polyaniline films. J. Electroanal Chem.. 1980, 111(1): 111-114.
    [44] Hernadaz R, Diaz A F, Waltman R, et al. Surface characteristics of thin films prepared by plasma and electrochemical polymerizations. J. Phys. Chem.. 1984, 88(15): 3333-3337.
    [45] Uvdal K, L?gdlund M, Dannetun P, et al. Vapor deposited polyaniline. Synth. Met.. 1989, 29(1): 451-456.
    [46] Angelopoulos M, Shaw J M, Lee K L, et al. Coducting Polymers as Lithograaphic Materials. Polym. Eng. Sci.. 1992, 32: 1535-1538.
    [47] Wan M, Li S. Photo-Induced Doped Polyaniline by the Vinylidene Chloride and Methyl Acrylate Copolymer as Photo Acid Gernerator. China J Polym Sci.. 1997, 15(1): 108-110.
    [48] Frenot A, Chronak Ioannis S. Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science. 2003, 8(1): 64-75.
    [49] Dan L, Wang Y, Xia Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters. 2003, 3(8): 1167-1171.
    [50] Shirator S S, Mori S, Ikezaki K. Wire bonding over insulating substrates by electropolymerization of polypyrrole using a scanning micro-needle. Sens. Actuators B. 1998, 49(1-2): 30-33.
    [51] Jenekhe S A, Chen X L. Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers. Science. 1999, 283(5400): 372-375.
    [52] Huang L, Wang Z, Wang H, et al. Polyaniline nanowires by electropolymeri- zation from liquid crystalline phases. J. Mater. Chem.. 2002, 12(2): 388-391.
    [53] Jerome C, Demoustier-Champagne S, et al. Electrochemical Synthesis of Conju- gated Polymer Wires and Nanotubules. Chem. Eur. J.. 2000, 6(17), 3089-3093.
    [54]万梅香,申有青,黄洁.“反应性自降解模板”制备导电聚合物纳米管/线.中国专利, ZL. 9810099165, 1998.
    [55]黄琨.多功能化的导电聚合物微米/纳米结构的研究.中国科学院化学研究所博士论文. 2004.
    [56]张丽娟.自组装导电聚苯胺微米/纳米结构及其功能化的研究.中国科学院化学研究所博士论文. 2004.
    [57] Zhang Z, Wei Z, Wan M. Nanostructures of Polyaniline Doped with Inorganic Acids. Macromolecules. 2002, 35(15): 5937-5942.
    [58] Zhang L X, Zhang L J, Wan M, et al. Polyaniline micro/nanofibers doped with saturation fatty acids. Synth.Met.. 2006, 156(5-6), 454-458.
    [59] Qiu H, Wan M, Matthews B, et al. Conducting Polyaniline Nanotubes by Templ- ate-Free Polymerization. Macromolecules. 2001, 34(4): 675-677.
    [60] Wei Z, Wan M, Lin T, et al. Polyaniline Nanotubes Doped with Sulfonated Carb- on Nanotubes Made Via a Self-Assembly Process. Adv. Mater.. 2003, 15(2): 136-139.
    [61] Wei Z, Zhang L, et al. Self-Assembling Sub-Micrometer-Sized Tube Junctions and Dendrites of Conducting Polymers. Adv. Mater. 2003, 15(2): 1382-1385.
    [62] Zhang L, Long Y, Chen Z, et al. The Effect of Hydrogen Bonding on Self- Assembled Polyaniline Nanostructures. Adv.Funct. Mater.. 2004, 14(7): 693-698.
    [63] Zhang L, Wan M. Self-Assembly of Polyaniline - From Nanotubes to Hollow Microspheres. Adv. Funct. Mater.. 2003, 13(10): 815-820.
    [64] Zhang Z, Wan M, Wei Y. Electromagnetic functionalized polyaniline nanostruc- tures. Nanotechnology. 2005, 16(12): 2827-2832.
    [65] Li X, Wan M, et al. Electromagnetic Functionalized and Core-Shell Micro/Nano- structured Polypyrrole Composites. J.Phys.Chem.B.. 2006, 110: 14623 -14626.
    [66] Zhang X, Manohar S K. Polyaniline nanofibers: chemical synthesis using surf- actants. Chem. Commun.. 2004, 20: 2360-2362.
    [67] Huang J, Virji S, Weiller B H, et al. Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors. J. Am. Chem. Soc.. 2003, 125(2): 314-315.
    [68] Chiou N-R, Epstein A J. Polyaniline Nanofibers Prepared by Dilute Polymeriz- ation. Adv. Mater.. 2005, 17(13): 1679-1683.
    [69] Qu L, Shi G, Chen F, et al. Electrochemical Growth of Polypyrrole Microcon- tainers. Macromolecules. 2003, 36(4): 1063-1067.
    [70] Baipai V, He P, Dia L. Conducting-Polymer Microcontainers: Controlled Synth- eses and Potential Applications. Adv. Funct. Mater.. 2004, 14(2): 145-151.
    [71] Zhang X, Goux Warren J, Sanjeev K, et al. Synthesis of Polyaniline Nanofibers by "Nano- fiber Seeding". J. Am. Chem. Soc.. 2004, 126(14): 4502-4503.
    [72] Lioudmila Doubova, Monica Fabrizio, Giuliano Mengoli, Sergio Valcher. Electrocatalytic oxidation of hydrazine in acid media on polyaniline-filmed vitreous carbon. Electrochimica Acta. 1990, 35(9):1425-1431
    [73] Wessling B. Corrosion prevention with an organic metal ( polyaniline ) : surface ennobling, passivation, corrosion test results. Materials and Corrosion. 1996, 47: 439-445.
    [74] DeBerry W. Modification of the electrochemical and corrosion behavior of stainl- ess steels with an electroactive coating. Electrochemical Society. 1985, 132: 102.
    [75] J.-L. Camalet, J.-C. Lacroix, S. Aeiyach, K.I. et. all. Electrodeposition of polyaniline on mild steel in a two step process. Synthetic Metals. 1999, 102(1-3): 1386-1387
    [76] Wessling B, Posdorfer J. Corrosion Prevention with an Organic Metal (Polyanil- ine): Corro- sion Test Results. Elect rochimica Acta. 1999, (44): 2139 -2147.
    [77] Wessling B, Posdorfer J. Nanostructures of the Dispersed Organic Metal Polyani- line Responsible for Macroscopic Effects in Corrosion Protection. Synthetic Metals. 1999, (102): 1400-1401.
    [78] Wang J. Polyaniline Coatings: Anionic Membrane Nature and Bipolar Structures for Anticorr- osion. Synthetic Metals. 2002, (132): 53-56.
    [79] Li P, Tan T C, Lee J Y. Corrosion Protection of Mild Steel by Electroactive Poly- aniline Coatings. Synthetic Metals. 1997, (88): 237-242.
    [80]中科院导电聚苯胺材料的研发获系列创新成果.综合信息. 2006, (2): 53.
    [81] Roberto M. Torresi, Solange de Souza, et.al. Galvanic coupling between metal substrate and polyaniline acrylic blends: corrosion protection mechanism. Electrochimica Acta. 2005, 50(11): 2213-2218.
    [82] Lu W K, Elsenbaumer R L, Wessling B. Corrosion protection of mild steel by coatings containing polyaniline. Synthetic Metal. 1995, 71: 2163-2166.
    [83]刘军喜,苏光耀,高德淑,等.聚苯胺防腐涂料的制备与性能研究.表面技术, 2005, 34 (1): 50-52.
    [84] Talo A, Passiniemi P, Forsen O, et al. Polyaniline epoxy coating with good anti- corrosion properties. Synthetic Metal. 1997, 85: 1333-1334.
    [85] Wessling B. Passivation of metals by coating with polyaniline: corrosion poten- tial shift and morphological changes. Advanced Materials. 1994, 6: 226-228.
    [86] Santos J R, Atoso L H C, Motheo A J. Investigation of corrosion protection of steel by poly- anilne films. Electrochimca Acta. 1998, 43: 309-313.
    [87] Kinlen P J, Silverman D C, Jefferys C R. Corrosion protection using polyaniline coating formulations. Synthetic Metal. 1997, 85: 1327-1332.
    [88]张其锦,翟焱.聚苯胺的电化学合成实验.大学化学, 1998, 13 (4): 41-43.
    [89] Osterholm S E, Cao Y, Klaveter F, et al. Emulsion polymerization of aniline. Synthetic Metals. 1993, 55-57: 1034-1038.
    [90] Angelopoulos M, Maric, Gelorme, et al. Water soluble electrically conduction polymer, their synthesis and use. USE: 5370825, 1994.
    [91] Samudson L A, Anaynostopoulos A, Alva K S, et al. Biologically derived conducting and water soluble polyaniline. Macromolecules. 1998, 31: 4376.
    [92] Anton J, Dominis, Geoff reg, et al. A dedoping/ redoping study of organic soluble polyaniline. Synthetic Metals. 2002, 129: 165-172.
    [93] Kwan Sik Jang, Hoosung Lee, Bonyjin Moon, et al. Synthesis and characteri- zation of water soluble polypyrrole doped with functional dopants. Synthetic Metals. 2004, 143: 289-294.
    [94] Shoji Ito, Kazuhiko, Seiichi Jeshima, et al. Simple synthesis of water soluble conducting polyaniline. Synthetic Metals. 1998, 96: 161-163.
    [95] Shukla S K, et al. A self-doped conducting polymer“polyanthranilic acid”: An efficient corr- osion inhibitor for mild steel in acidic solution. Corrosion Science. 2008, 50: 2867-2872.
    [96]林卫丽,杜美利,邓宇强.缓蚀水溶性聚苯胺的性能及聚合工艺的研究,腐蚀与防护. 2006, 27(7): 344-348.
    [97] Posdorfer J, Wessl Ingb. Oxidation of copper in the presence of the organic metal polyaniline. Synthetic Metals. 2001, (119): 363-364.
    [98] Fahlman M, Jasty S, Epstain A J. Corrosion protection of iron/steel by emeraldine base polyaniline: an X2 ray photoelectron spectroscopy study. Synthetic Metal. 1997(85): 1323-1326.
    [99]邓宇强,葛岭梅.聚苯胺防腐蚀涂料的研究进展.腐蚀与防护. 2003, 24 (8): 333.
    [100] Schauer T, et al. Protection of iron against corrosion with polyaniline primers. Prog OrgCoat. 1998, 33(1): 20.
    [101] Jain F C, Rosato J J, et al. Formation of an active electronic barrier at Al- semi- conductor interfaces: A novel approach incorrosion prevention. Corrosion. 1986, 42(12): 700.
    [102] Sathyanaraganan S, Dhawan S K. Soluble conducting poly ethoxy aniline as an inhibitor for iron in HCl. Corros. Sci. 1992, (33): 1831-1841.
    [103] Vasta B, Marie A, Teresita. Use of Polyaniline and Its Derivatives in Corrosion Protection of Copper and Silver. J. Electrochem. Soc. 1997 (144): 436-442.
    [104] Zhang Qinghua. Morphology of conductive blend fibers of polyaniline and polyamide-11. Synthetic Metals. 2001, (123): 481-485.
    [105] Dickie R A, Smith A G. How Paint Arrests Rust. Chemtech.. 1980, (1): 31-35.
    [106] Lu W K, Elsebaumer R L, Wessling B. Corrosion protection of mild steel by coating containing polyaniline. Synthetic Metals. 1995, (71): 2163-2166.
    [107] Wei Yen, Wang Jianguo, Jia Xinru, et al. Polyanilineas corrosion protection coatings on cold rolled steel. Polymer. 1995, 36: 4535-4537.
    [108] Wrobleskid A, Benicewicz B C. Stabilization of polyaniline solutions. Polymer Preprints. 1994, (35): 267-268.
    [109] Wrobleski D A, BenecewiCZ B C, Thompson K G, et a1. Corrosion resistant coatings from conducting polyaniline. PolymerPreprints. 1994, (35):265-266.
    [110] Pud A A, Shapoval G S, Kamarchik P, et al. Electrochemical behavior of mild steel coated by polyaniline doped with organic sulfonic acids. Synthetic Metals. 1999, (107): 111-115.
    [111] Talo A, Forsen O, Ylasaar I S. Corrosion protective polyaniline epoxy blend coating on mild steel. Synthetic Metals. 1999, (102): 1394-1395.
    [112]曹楚南.腐蚀电化学原理(第2版).北京:化学工业出版社, 2004, 71, 97-98.
    [113] Tüken T, Arslan G, Yazici B, et al. The corrosion protection of mild steel by polypyrrole/polyphenol multilayer coating. Corrosion Science. 2004, 46(11): 2743-2754.
    [114] Nguyen Thi Le H, Garcia B, Deslouis C, et al. Corrosion protection and condu- cting polymers: polypyrrole films on iron. Electrochimica Acta. 2001, 46(26-27): 4259-4272.
    [115] De Paoli M-A, Peres R C D, Panero S, et al. Properties of electrochemically synthesized polymer electrodes--X. Study of polypyrrole/dodecylbenzene sulfonate. Electrochimica Acta. 1992, 37(7): 1173-1182.
    [116] Ozyilmaz A T, Erbil M, Yazici B. Investigation of corrosion behaviour of stain- less steel coated with polyaniline via electrochemical impedance spectroscopy. Progress In Organic Coatings. 2004, 51(1): 47-54.
    [117] Tüken T. Polypyrrole films on stainless steel. Surface and Coatings Technology. 2006, 200(16-17): 4713-4719.
    [118] Mansfeld F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. Journal of Applied Electrochemistry. 1995, 25(3): 187-202.
    [119] Walter G W. A review of Impedance plot methods used for corrosion perfor- mance analysis of painted metals. Corrosion Science. 1986, 26(9): 681-703.
    [120] Meuleman W, Vandenkerckhove R, Temmerman E. Electrochemical investing- ation of automotive coating systems. Mater. Sci. For. 1998, 289-292: 383.
    [121] Stankovic V B M, Zotovic J B, Maksimovic M D. Corrosion behavior of epoxy coatings investigated by EIS. Materials Science Forum. 1998, 289-292: 327.
    [122] Yin K M, Wu H Z. Electrochemical impedance study of the degradation if organic-coated copper. Sur. Coat. Technol.. 1998, 106-167.
    [123] Scantlebury J D, Gali K. The application of AC impedance to study the perfor- mance of lacquered aluminium specimens in acetic acid solution. Prog. Org. Coat.. 1997, 3l (3): 201.
    [124] Zou F, Thierry D. Localized electrochemical impedance spectroscopy for study- ing the degradation of organic coatings. Electrochim. Acta.. 1997, 42: 3293.
    [125] Guillaumin V, Landolt D. Effect of dispersion agent on the degradation of a water borne paint on steel studied by scanning acoustic microscopy and impedance. Corrosion Science. 2002, 44(1): 179-189.
    [126] Gamal Ahmed El-Mahdy, Atsushi Nishikata, Tooru Tsuru. Electrochemical corrosion monitoring of galvanized steel under cyclic wet-dryconditions. Corros- ion Science. 2000, 42: 183-194.
    [127] Furbeth W, Stratmann M. The delamination of polymeric coatings from electrogalvanised steel-a mechanistic approach. Part 1: delamination from a defect with intact zinc layer. Corrosion Science. 2001, 43: 207-227.
    [128] Stratmann M, Streckel H, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-I. Verification of the experimental technique. Corro. Sci.. 1990,30(6/7): 681.
    [129]王佳,水流澈.使用Kelvin探头参比电极技术进行薄液层下电化学测量.中国腐蚀与防护学报. 1995, 15(3): 173.
    [130] Kumar V, German M D,Shin C F著,周洪范等译.弹塑性断裂分析工程方法.北京:国防工业出版社, l985.
    [131] Mill D J, Mabbutt S. Investigation of defects in organic anticorrosive coatings using electrochemical noise measurement. Prog. Org. Coat.. 2000, 39: 41.
    [132] Mojica J, GarclaE, Rodfiguez F J, et a1. Evaluation of the protection against corrosion of a thick polyurethance film by electrochemical noise. Pro. Org. coat.. 2001, 42: 218.
    [133] Granata R D, Kovaleski K J, Scully J R, et a1. Electrochemical impedance:Analysis Society or Testing and Material. Philadelphia, PA, 1993, 462.
    [134] Leidheiser H, Wang Jr W, Igetoft L. The mechanism for the cathodic delamina- tion of organic coatings from a metal surface. Prog. Org. Coat.. 1983, 11: 19.
    [135]张鉴清,张昭,王建明等.电化学噪声的分析与应用-I.电化学噪声的分析原理.中国腐蚀与防护学报. 2001, 21(5): 310.
    [136]范俊华,万美香,朱道本.可溶性导电聚苯胺的研究进展.高分子通报. 1997, 3: 22-27.
    [137]陈德英,尹衍升,程莎,等.羧甲基壳聚糖在酸性溶液中对铝的缓蚀作用.材料开发与应用. 2009, 4: 55-59.
    [138]辛凌云,张校刚.界面扩散聚合法制备樟脑磺酸掺杂聚苯胺纳米管或纳米纤维及其电化学电容行为研究.高分子学报. 2005, 3: 437-441.
    [139] MacDiarmid A G, Chang J C, Halpern M, et al. Mol Cryst Liq Cryst. 1985, 121: 187-194.
    [140] Kim S, Chung I J. Annealing effect on the electrochemical property of polyaniline complexed with various acids. Synth. Met.. 1998, 97(2): 127-133.
    [141] Stejskal J, Kratochvíl P, Radhakrishnan N. Polyaniline dispersions 2. UV-Vis absorption spectra. Synth. Met.. 1993, 61(3): 225-231.
    [142] Xia Y, Wiesinger J M, MacDiarmid A G., et al. Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt: Conformations in Different Solvents Studied by an Ultraviolet/Visible/Near-Infrared Spectroscopic Method. Chem. Mater.. 1995, 7(3): 443-445.
    [143]刘学习,曾幸荣.聚苯乙烯磺酸掺杂聚苯胺的性能.功能高分子学报. 2003, 16 (3): 309-312.
    [144] Martin C R. Membrane-Based Synthesis of Nanomaterials. Chem. Mater.. 1996, 8(8): 1739-1746.
    [145] Pouget J P, Józefowicz M E, Epstein A G, et al. X-ray structure of polyaniline. Macromolecules. 1991, 24(3): 779-789.
    [146] Yano Jun, Nakatani Kazumasa, Harima Yutaka, et al. Bilayer polymer coating containing a polyaniline for corrosion protection of iron. Materials Letters. 2007, 61: 1500-1503.
    [147] Sathiyanarayanan S, Karpakam V, Kamaraj K, et al. Sulphonate doped polyaniline containing coatings for corrosion protection of iron. Surface & Coatings Technology. 2010, 204(9-10): 1426-1431.
    [148] Popovi? M M, Grgur B N, Mi?kovi?–Stankovi? V B. Corrosion studies on electrochemically deposited PANI and PANI/epoxy coatings on mild steel in acid sulfate solution. Progress in Organic Coatings. 2005, 52 (4): 359-365.
    [149]黄美荣,李新贵.可溶性磺化共聚聚苯胺的合成及磺化效应.材料导报,2004,18(1): 46-48.
    [150]李言涛,邵丽艳,吴茂涛,等.海水介质中羧甲基壳聚糖的缓蚀性能研究.腐蚀科学与防护技术. 2008, 20 (6): 432-435.
    [151] Zhang Shengtao, Tao Zhihua, Li Weihua, et al. The effect of some triazole derivatives as inhibitors for the corrosion of mild steel in 1M hydrochloric acid. Applied Surface Science. 2009, 15: 6757-6763.
    [152] Kissi M, Bouklah M, Hammouti B, et al. Effect of surface nanocrystallization on corrosion and corrosion inhibition of low carbon. Applied Surface Science. 2006, 252: 4190-4197.
    [153] Bentiss F, Traisnel M, Gengembre L, et al. Quantitative STM investigation of the phase formation in submonolayer In/Si(111) system. Appl. Surf. Sci.. 1999, 152: 237-241.
    [154] Li Weihua, He Qiao, Pei Changling, et al. Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media. Electrochimica Acta. 2007, 52: 6386-6394.
    [155] Yan Ying, Li Weihua, Cai Lankun, et al. Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1 M HCl solution. Electrochimica Acta. 2008,53: 5953-5960.
    [156] Xu Fengling, Duan Jizhou, Zhang Shufang,et al. The inhibition of mild steel corrosion in 1 M hydrochloric acid solutions by triazole derivative. Materials Letters. 2008, 62: 4072-4074.
    [157] El-Rehim S S A., Ibrahim A M M, Khaled K F. 4-Aminoantipyrine as an inhibitor of mild steel corrosion in HCl solution. J. Appl. Electrochem.. 1999, 29: 593-.
    [158] Ashassi-Sorkhabi H, Majidi M R, Seyyedi K. Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution. Appl. Surf. Sci.. 2004, 225: 176-185.
    [159] Asan A, Kabasakaloglu M, siklan M I, et al. Corrosion inhibition of brass in presence of terdentate ligands in chloride solution. Corros. Sci.. 2005, 47: 1534-1544.
    [160] Tao Z H, Tao Z S, Li W H, et al. Corrosion inhibition of mild steel in acidic solution by some oxo-triazole deriv-atives. Corros. Sci.. 2009, 51: 2588-2595.
    [161] Yurta A, Ulutas S, Dal H, Applied Surface Science. 2006, 253: 919-925.
    [162] Li Y, Zhao P, Liang Q. Material Corrosion and Control Conference of Shandong, Qingdao.
    [163] Li W, Zhao X, Liu F, et al. Investigation on inhibition behavior of S-triazole-triazole derivatives in acidic solution. Corrosion Science. 2008, 50: 3261-3266.
    [164] Zhang S G, Lei W, Xia M Z, et al. QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index. Journal of Molecular Structure: THEOCHEM. 2005, 732:173-182.
    [165] Xiao-Ci Y, Hong Z, Ming-Dao L, et al. Quantum chemical study of the inhibition properties of pyridine and its derivatives at an aluminium surface. Corrosion Science. 2000, 42:645-653.
    [166]齐连惠,张继群.基于神经网络的酸洗缓蚀剂构效关系研究.腐蚀科学与防护技术. 2001, 13(1): 24-28.
    [167] Khaled K F. Experimental and theoretical study for corrosion inhibition of mild steel in hydrochloric acid solution by some new hydrazine carbodithioic acid derivatives. Applied Surface Science. 2006, 252: 4120- 4128.
    [168]赵维,夏明珠,雷武,等.有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究.中国腐蚀与防护学报. 2002, 22(4): 217-220.
    [169] Riggs O L, JR, Rsdd F J. Physical and Chemical study of an Organic Inhibitor for HydrogenSulphide Attack. Corrosion, 1963, 19. (1): It -8t
    [170] Fukui K. Theory of Orientation and Stereo selection. New York: Springer-Verlag. 1975.
    [171]张士国,杨频.用量子化学密度泛函理论研究环状含氮化合物分子结构与缓蚀性能的关系.中国腐蚀与防护学报. 2004, 24(4): 240-244.
    [172] Blank Werner J. Novel polyurethane polyols for waterborne and high solids coatings. Progress in Organic Coatings. 1992, 20 (3-4): 235-259.
    [173] Mirgel Volker. New resin systems for high performance waterborne coatings, Progress in Organic Coatings. 1993, 22(1-4): 273-277.
    [174] Nobel M L, Picken S J, Mendes E. Waterborne nanocomposite resins for automotive coating applications. Progress in Organic Coatings. 2007, 58 (2-3): 96-104.
    [175]李幕英,刘国旭,荆旺等.水性工业涂料的发展现状及趋势.现代涂料与涂装. 2010, 13(1): 35-37.
    [176] Sapurina I, Stejskal J, Spírkova M, et al. Polyurethane latex modified with polyaniline. Synth. Met.. 2005, 151: 93-99.
    [177] Pereira da Silva Jose E, Cordoba de Torresi Susana I, Torresi Roberto M. Polyaniline acrylic coatings for corrosion inhibition: the role played by counter-ions. Corrosion Science. 2005, 47: 811-822.
    [178]杨小刚.聚苯胺纳米结构的制备及其防腐性能的研究.中国科学院海洋研究所博士论文. 2008.
    [179] Y. Chen, X.H. Wang , J. Li, J.L. Lu, F.S. Wang. Long-term anticorrosion behaviour of polyaniline on mild steel。Corrosion Science 49 (2007) 3052–3063。
    [180]李玉峰.聚苯胺/蒙脱土复合防腐蚀涂层的制备及性能研究.西北师范大学博士论文. 2005.
    [182] S.R. Taylor,Incentives for using local electrochemical impedance methods in the investigation of organic coatings,Progress in Organic Coatings, 43 (2001), 141–148
    [183]张金涛,浙江大学博士学位论文,有机涂层中水传输和涂层失效机制的电化学研究,2005
    [181]赵霞.有机涂层失效过程的电化学阻抗谱响应特征研究.中国海洋大学博士论文. 2007.
    [184] P. L. Bonora, F. Deflorian, L. Fedrizzi, Electrochemical impedance spectroscopy as a toolfor investigating underpaint corrosion, Electrochim. Acta, 1996,41: 1073-1082
    [185]张鉴清,曹楚南.腐蚀科学与防护技术, 1994, 6(4): 318-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700