稳健模糊粗糙集模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在数据分析中,模糊粗糙集理论为处理不确定性提供了一种强大的数学工具。近年来,该理论引起了粒计算、机器学习和不确定性推理的广泛关注,然而经典的模糊粗糙集模型对数据噪声敏感的缺陷使得该理论在实际应用中受到了严重的限制。至今设计稳健的模糊粗糙集模型仍然是一个研究热点。本文分别从数据噪声的两类处理方式出发设计稳健的模糊粗糙集模型,具体的研究工作如下:
     分析了现有的粗糙集模型的稳健性及局限性。为了揭示粗糙集理论对数据噪声的敏感性,本文分析了Pawlak粗糙集、邻域粗糙集、模糊粗糙集、变精度粗糙集、邻域一致度、??-精度模糊粗糙集、模糊变精度粗糙集、变精度模糊粗糙集和模糊量化粗糙集的稳健性及局限性,并用实验对理论分析结果进行了验证。
     研究了一种基于软最小超球的模糊粗糙集模型。软最小超球问题是新颖检测的常用方法,本文将这个问题与模糊粗糙集模型结合建立了一种稳健模糊粗糙集模型,分析模型的性质,并用实验验证该模型的稳健性。本文利用基于软最小超球的模糊粗糙集模型的稳健性设计了一个稳健的模糊粗糙策树模型,并用实验对该模型的稳健性进行验证。
     研究了一种基于稳健统计量的模糊粗糙集模型。经典的模糊粗糙集是建立在最小值和最大值的基础之上的,这是导致该模型不稳健的直接原因。本文将稳健统计量的概念与模糊粗糙集结合设计了一种稳健的模糊粗糙集模型。该模型改进了经典模糊粗糙集模型上、下近似隶属度的计算方式,使得即使数据噪声存在隶属度的值也不会产生明显偏差。此外,本文用基于稳健统计量的模糊粗糙集模型的下近似设计了一个稳健的分类模型,并用实验验证了分类模型的稳健性。
     研究了一种稳健的模糊粗糙集模型――软模糊粗糙集。该模型是在软间隔支持向量机的启示下提出的,它将上、下近似隶属度与被忽略的样本数紧密地结合在一起,在增加样本的下近似隶属度或减小样本的上近似隶属度的同时限制了被忽略的样本数。为了验证软模糊粗糙集模型的有效性和稳健性,本文以软模糊粗糙集模型的依赖度函数作为特征评价指标设计了一个特征选择算法,并用数据集在选择的特征子集上的分类精度作为评价验证算法和软模糊粗糙集模型的稳健性。
     从抗噪方式和参数设置方式两方面将稳健模糊粗糙集模型进行了对比分析,并将这些模型应用于太阳耀斑预报中。本文以稳健模糊粗糙集的下近似隶属度作为案例选择和案例推理的理论依据,设计了一个基于案例的太阳耀斑预报模型,对预报模型的有效性进行了实验验证。
Fuzzy rough set theory is claimed to be a powerful mathematical tool for dealingwith uncertainty in data analysis. It has attracted much attention from domains of granularcomputing, machine learning and uncertainty reasoning in the past decade. However, theclassical fuzzy rough set model is sensitive to noise, which makes the theory limited inapplication. Now much work is still focusing on the research of robust fuzzy rough setmodels. It is significant to design robust fuzzy rough set models. In this work, we designrobust fuzzy rough set models in the two ways to handling noisy data. Our work is shownas follows:
     The robustness and limitation of existent rough sets are analyzed. In order to showthe sensitivity of rough set theory to noise, the robustness and limitation of rough setmodels are analyzed, such as Pawlak’s rough sets, neighborhood rough sets, fuzzy roughsets, variable precision rough sets, neighborhood consistency, ??-precision fuzzy roughsets, fuzzy variable precision rough sets, variable precision fuzzy rough sets and vaguelyquantified rough sets. And analyzed results are tested with experiments.
     A soft minimum enclosing ball-based fuzzy rough set model is designed. Soft mini-mum enclosing ball is a state-of-the-art method in novelty detection. It is introduced intofuzzy rough sets to form a robust model, the robustness of which is tested with experi-ments. Moreover, with the proposed model a robust fuzzy rough decision tree model ispresented and tested by experiments.
     A robust statistics-based fuzzy rough set model is introduced. The classical fuzzyrough set model is defined with minimum and maximum, which results in its sensitivityto noise. In this work, three robust statistics are introduced into fuzzy rough sets to designa robust model. The new model is robust to noise by changing the computational ways oflower and upper approximations. Besides, a robust classification model is designed withthe lower approximation of the robust statistics-based fuzzy rough sets, and is tested withexperiments.
     A robust fuzzy rough set model named soft fuzzy rough sets is introduced. It isinspired by soft margin support vector machines. The new model makes trade-off betweenmemberships and numbers of overlooked samples. It enlarges the lower approximations or reduces the upper approximations as well as restricting numbers of samples neglected.In order to test the validity and robustness of soft fuzzy rough sets, a feature selectionalgorithm is designed by taking soft fuzzy dependency as feature evaluation measure andclassification accuracies of data sets on selected features as the evaluation measure of thealgorithm and soft fuzzy rough sets.
     Robust fuzzy rough set models are compared and applied in solar ?are prediction.A case-based prediction model is present. It takes the lower approximation membershipsof robust fuzzy rough sets as theoretical sustainment of case selection and case reasoning.The robustness of the prediction model is tested with experiments.
引文
[1] Pawlak Z. Rough Sets[J]. International Journal of Computer and InformationSciences, 1982, 11:341–356.
    [2] Qian Y H, Liang J Y, Pedrycz W, et al. Positive Approximation: An Accelerator forAttribute Reduction in Rough Set Theory[J]. Artifical Intelligence, 2010, 174:597–618.
    [3] Skowron A, Polkowski L. Rough Sets in Knowledge Discovery[M]. Germany:Springer-Verlag, 1998:351–367.
    [4] Ziarko W P, Rijsbergen C J V. Rough Sets, Fuzzy Sets and Knowledge Discov-ery[M]. USA: Springer-Verlag, 1994:11–20.
    [5] Lin T Y, Liu Q, Huang K J. Rough Sets Neighborhood Systems and Approxima-tion[C]//Methodologies for Intelligent Systems. 1990, 5:130–141.
    [6] Dubois D, Prade H. Rough Fuzzy Sets and Fuzzy Rough Sets[J]. General Systems,1990, 17(2-3):191–209.
    [7]胡清华.混合数据知识发现的粗糙计算模型和算法[D].哈尔滨:哈尔滨工业大学, 2008:17–20,33–65,70–73,159–176.
    [8] Rolka A M, Rolka L. Variable Precision Fuzzy Rough Sets[J]. Transactions onRough Sets I, Lecture Notes in Computer Science, 2004, 3100:144–160.
    [9] Tsang E C C, Chen D G, Yeung D S. Attributes Reduction Using Fuzzy RoughSets[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(5):1130–1141.
    [10] Yueng D S, Chen D G, Tsang E C C, et al. On the Generalization of Fuzzy RoughSets[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(3):343–361.
    [11]周江文.抗差最小二乘法[M].武汉华中理工大学出版社, 1995:1–5,78–79,157.
    [12] Nguyen H S. Approximate Boolean Reasoning: Foundations and Applicationsin Data Mining[C]//Transactions on Rough Sets V, Lecture Notes in ComputerScience. 2006, 4100:344–523.
    [13] Yao Y Y. Information Granulation and Rough Set Approximation[J]. InternationalJournal of Intelligent Systems, 2001, 16(1):87–104.
    [14] Lin T Y. Granular Computing-structures, Representations, and Applica-tions[C]//Lecture Notes in Computer Science. 2003, 2639:16–24.
    [15] Zadeh L. Toward a Theory of Fuzzy Information Granulation and its Centrality inHuman Reasoning and Fuzzy Logic[J]. Fuzzy Sets and Systems, 1997, 19(2):111–127.
    [16] Ziarko W P. Variable Precision Rough Sets Model[J]. Journal of Computer andSystem Sciences, 1993, 40:39–59.
    [17] Wong S K M, Ziarko W. Comparison of the Probabilistic Approximate Classifica-tion and the Fuzzy Set Model[J]. Fuzzy Sets and Systems, 1987, 21(3):357–362.
    [18] Yao Y Y. Probabilistic Approaches to Rough Sets[J]. Expert systems, 2003,20(5):287–297.
    [19] Yao Y Y, Wong S K M, Lingras P. A Decision-theoretic Rough SetModel[C]//Methodologies for Intelligent System. 1990:17–25.
    [20] Yao Y Y, Wong S K M. A Decision Theoretic Framework for ApproximatingConcepts[J]. International Journal of Man-Machine Studies, 1992, 37(6):793–809.
    [21] Yao Y Y, Zhao Y. Attribute Reduction in Decision-theoretic Rough Set Models[J].Information Sciences, 2008, 178:3356–3373.
    [22] Cornelis C, Cock M D, Radzikowska A M. Vaguely Quantified RoughSets[C]//Lecture Notes in Artificial Intelligence. 2007, 4482:87–94.
    [23] Lin T Y. Neighborhood Systems and Relational Database[C]//Proceedings of the1988 ACM Sixteenth Annual Conference on Computer Science. 1988:725.
    [24] Morsi N N, Yakout M M. Axiomatics for Fuzzy Rough Set[J]. Fuzzy Sets andSystems, 1998, 100:327–342.
    [25] Jensen R, Shen Q. Fuzzy-rough Attribute Reduction with Application to Web Cat-egorization[J]. Fuzzy Sets and Systems, 2004, 141(3):469–485.
    [26] Shen Q, Jensen R. Selecting Informative Features with Fuzzy-rough Sets andits Application for Complex Systems Monitoring[J]. Pattern Recognition, 2004,37(7):1351–1363.
    [27] Jensen R, Shen Q. Semantics-preserving Dimensionality Reduction: Rough andFuzzy-rough-based Approaches[J]. IEEE Transactions of Knowledge and DataEngineering, 2004, 16(12):1457–1471.
    [28] Jensen R, Shen Q. Fuzzy-rough Data Reduction with Ant Colony Optimization[J].Fuzzy Sets and Systems, 2005, 149(1):5–20.
    [29] Jensen R, Shen Q. Fuzzy-rough Sets Assisted Attribute Selection[J]. IEEE Trans-actions on Fuzzy Systems, 2007, 15(1):73–89.
    [30] Bhatt R B, Gopal M. On Fuzzy-rough Sets Approach to Feature Selection[J]. Pat-tern Recognition Letters, 2005, 26(7):965–975.
    [31] Bhatt R B, Gopal M. On the Extension of Functional Dependency Degree fromCrisp to Fuzzy Partitions[J]. Pattern Recognition Letters, 2006, 27(5):487–491.
    [32] Wang Y F. Mining Stock Price Using Fuzzy Rough Set System[J]. Expert Systemswith Applications, 2003, 24:13–23.
    [33] Mi J S, Zhang W X. An Axiomatic Characterization of a Fuzzy Generalization ofRough Sets[J]. Information Sciences, 2004, 160:235–249.
    [34] Yeung D S, Chen D G, Tsang E C C, et al. On the Generalization of Fuzzy RoughSets[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(3):343–361.
    [35] Fernandez Salido J M, Murakami S. Rough Set Analysis of a General Type ofFuzzy Data Using Transitive Aggregations of Fuzzy Similarity Relations[J]. FuzzySets and Systems, 2003, 139:635–660.
    [36] Zhao S Y, Tsang E C C, Chen D G. The Model of Fuzzy Variable Precision RoughSets[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(2):451–467.
    [37] Greco S, Matarazzo B, Slowinski R. Rough Approximation of a Preference Rela-tion by Dominance Relations[J]. European Journal of Operational Research, 1999,117(1):63–83.
    [38] Slowinski R, Greco S, Matarazzo B. Axiomatization of Utility, Outranking andDecision-rule Preference Models for Multiple-criteria Classification Problems un-der Partial Inconsistency with the Dominance Principle[J]. Control and Cybernet-ics, 2002, 31(4):1005–1035.
    [39] Greco S, Matarazzo B, Slowinski R. Rough Sets Methodology for Sorting Prob-lems in Presence of Multiple Attributes and Criteria[J]. European Journal of Oper-ational Research, 2002, 138:247–259.
    [40] Zhu W, Wang F-Y. Reduction and Axiomization of Covering Generalized RoughSets[J]. Information Sciences, 2003, 152:217–230.
    [41] Zhu W, Wang F-Y. On Three Types of Covering-based Rough Sets[J]. IEEE Trans-actions on Knowledge and Data Engineering, 2007, 19(8):1131–1144.
    [42] Li T J. Generalized Fuzzy Rough Approximation Operators Based on Fuzzy Cov-erings[J]. International Journal of Approximate Reasoning, 2008, 43(3):836–856.
    [43] Chandola V, Banerjee A, Kumar V. Anomaly Detection : A Survey[J]. ACMComputing Surveys, 2009, 41(3):1–58.
    [44] Zhu X Q, Wu X D, Yang Y. Error Detection and Impact-sensitive Instance Rank-ing in Noisy Datasets[C]//In Proceedings of 19th National conference on ArtificialIntelligence. 2004:378–383.
    [45] Shewhart W A. Economic Control of Quality of Manufactured Product[M]. NewYork: Van Nostrand Company, 1931.
    [46] Horn P S, Feng L, Li Y, et al. Effect of Outliers and Nonhealthy Individuals onReference Interval Estimation[J]. Clinical Chemistry, 2001, 47(12):2137–2145.
    [47] Stefansky W. Rejecting Outliers in Factorial Designs[J]. Technometrics, 1972,14(2):469–479.
    [48] Abraham B, Chuang A. Outlier Detection and Time Series Modeling[J]. Techno-metrics, 1989, 31(2):241–248.
    [49] Dasgupta D, Nino F. A Comparison of Negative and Positive Selection Algorithmsin Novel Pattern Detection[C]//Proceedings of the IEEE International Conferenceon Systems, Man, and Cybernetics. 2000, 1:125–130.
    [50] Parzen E. On the Estimation of a Probability Density Function and Mode[J]. An-nals of Mathematical Statistics, 1962, 33:1065–1076.
    [51] Jain J K. Data Clustering: 50 Years Beyond K-means[J]. Pattern RecognitionLetters, 2010, 31(8):651–666.
    [52] Smith R, Bivens A, Embrechts M, et al. Clustering Approaches for Anomaly BasedIntrusion Detection[C]//Proceedings of Intelligent Engineering Systems throughArtificial Neural Networks. 2002:579–584.
    [53] Bejerano G, Yona G. Variations on Probabilistic Suffix Trees: Statistical Modelingand Prediction of Protein Families[J]. Bioinformatics, 2001, 17(1):23–43.
    [54] Otey M E, Ghoting A, Parthasarathy S. Fast Distributed Outlier Detection inMixed-attribute Data Sets[J]. Data Mining and Knowledge Discovery, 2006, 12(2-3):203–228.
    [55] Eskin E, Arnold A, Prerau M, et al. A Geometric Framework for UnsupervisedAnomaly Detection: Detecting Intrusions in Unlabeled Data [C]//Applications ofData Mining in Computer Security. 2002:78–100.
    [56] Jiang M F, Tseng S S, Su C M. Two-phase Clustering Process for Outliers Detec-tion[J]. Pattern Recognition Letters, 2001, 22(6-7):691–700.
    [57] He Z, Xu X, Deng S. Discovering Cluster-based Local Outliers[J]. Pattern Recog-nition Letters, 2003, 24(9-10):1641–1650.
    [58] Breunig M M, Kriegel H P, Ng R T, et al. Optics-of: Identifying Local Out-liers[C]//Principles of Data Mining and Knowledge Discovery, Lecture Notes inComputer Science. 1999, 1704:262–270.
    [59] Breunig M M, Kriegel H P, Ng R T, et al. Lof: Identifying Density-based Lo-cal Outliers[C]//Proceedings of 2000 ACM SIGMOD International Conference onManagement of Data. 2000, 29:93–104.
    [60] Hautamaki V, Karkkainen I, Franti P. Outlier Detection Using K-nearest NeighbourGraph[C]//IEEE Computer Society. 2004, 3:430–433.
    [61] Steinwart I, Hush D, Scovel C. A Classification Framework for Anomaly Detec-tion[J]. Journal of Machine Learning Research, 2005, 6:211–232.
    [62] Kou G, Peng Y, Chen Z X, et al. Multiple Criteria Mathematical Programmingfor Multi-class Classification and Application in Network Intrusion Detection[J].Information Sciences, 2009, 179:371–381.
    [63] Augusteijn M, Folkert B. Neural Network Classification and Novelty Detection[J].International Journal on Remote Sensing, 2002, 23(14):2891–2902.
    [64] Jakubek S, Strasser T. Fault-diagnosis Using Neural Networks with Ellipsoidal Ba-sis Functions[C]//Proceedings of the American Control Conference. 2002, 5:3846–3851.
    [65] Wong W-K, Moore A, Cooper G, et al. Rule-based Anomaly Pattern Detection forDetecting Disease Outbreaks[C]//Proceedings of the 18th National Conference onArtificial Intelligence. 2002:217–223.
    [66] Wong W K, Moore A, Cooper G, et al. Bayesian Network Anomaly Pattern Detec-tion for Disease Outbreaks[C]//Proceedings of the 20th International Conferenceon Machine Learning. 2003:808–815.
    [67] Davy M, Godsill S. Detection of Abrupt Spectral Changes Using Support Vec-tor Machines, an Application to Audio Signal Segmentation[C]//Proceedings ofIEEE International Conference on Acoustics, Speech, and Signal Processing. 2002,2:1313–1316.
    [68] Tax D, Duin R. Support Vector Domain Description[J]. Pattern Recognition, 1999,20(14):1191–1199.
    [69] Roth V. Kernel Fisher Discriminants for Outlier Detection[J]. Neural Computa-tion, 2006, 18(4):942–960.
    [70] Guttormsson S, Marks II R J, El-Sharkawi M. Elliptical Novelty Grouping forOn-line Short-turn Detection of Excited Running Rotors[J]. IEEE Transactions onEnergy Conversion, 1999, 14(1):16–22.
    [71] Ramaswamy S, Rastogi R, Shim K. Effecient Algorithms for Mining Outliersfrom Large Data Sets[C]//Proceedings of the 2000 ACM SIGMOD InternationalConference on Management of Data. 2000, 29:427–438.
    [72] Knorr E M, Ng R T. Finding Intensional Knowledge of Distance-based Out-liers[C]//Proceeding of the 25’th VLDB Conference. 1999:211–222.
    [73] Knorr E M, Ng R T, Tucakov V. Distance-based Outliers: Algorithms and Appli-cations[J]. The VLDB Journal, 2000, 8(3-4):237–253.
    [74] Ando S. Clustering Needles in a Haystack: An Information Theoretic Analysis ofMinority and Outlier Detection[C]//Proceedings of 7th International Conferenceon Data Mining. 2007:13–22.
    [75] Jolliffe I T. Principal Component Analysis[M]. Berlin: Springer, 1986:232–268.
    [76] Chen Y X, Dang X, Peng H X, et al. Outlier Detection with the Kernelized SpatialDepth Function[J]. Artificial Intelligence Review, 2009, 31(2):288–3050.
    [77] Quinlan J R. Induction of Decision Trees[J]. Machine Learning, 1986, 1(1):81–106.
    [78] Zhu X Q, Wu X D, Chen S. Eliminating Class Noise in LargeDatasets[C]//Proceedings of the 20th ICML International Conference on MachineLearning. 2003:920–927.
    [79] Huber P J. Robust Statistics[M]. New York: Wiley, 1998:5–10.
    [80]文援兰.航天器精密轨道抗差估计理论与应用的研究[D].郑州:中国人民解放军信息工程大学测绘学院, 2001:10–13.
    [81]高倩.鲁棒数据校正理论与应用研究[D].上海:上海交通大学, 2007:18–20.
    [82]吴江飞.星载GPS卫星定轨中若干问题的研究[D].上海:中国科学院上海天文台, 2006:55–56.
    [83] Vapnik V N. Statistical Learning Theory[M]. USA: John Wiley and Sons,1998:393–303.
    [84] Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis[M]. England:Cambridge University, 2004:212–231.
    [85] Pontil M, Mukherjee S, Girosi F. On the Noise Model of Support Vector MachineRegression[J]. Journal of the American Statistical Association, 1998, 69:1651.
    [86]张文修,姚一豫,梁怡.粗糙集与概念格[M].西安交通大学出版社, 2006:257.
    [87] Hu Q H, Zhang L, Chen D G, et al. Gaussian Kernel Based Fuzzy Rough Sets:Model, Uncertainty Measures and Applications[J]. International journal of ap-proximate reasoning, 2010, 51(4):453–471.
    [88]张文修,吴伟志,梁吉业,等.粗糙集理论与方法[M].北京:科学出版社,2001:123–125.
    [89] Katzberg J D, Ziarko W. Variable Precision Extension of Rough Sets[J]. Funda-menta Informaticae, 1996, 27:155–168.
    [90] Dash M, Liu H. Consistency Based Search in Feature Selection[J]. Artificial intel-ligence, 2003, 151(1-2):155–176.
    [91] Potvin C, Roff D A. Distribution-free Statistical Methodscs: Viable Alternatives toParametric Statistics[J]. Ecology, 1993, 74(6):1627–1628.
    [92] Duda R, Hart P, Stork D. Pattern Classification and Scene Analysis[M]. New York:Wiley, 1973:271–272.
    [93] Kalousis A, Prados J, Hilario M. Stability of Feature Selection Algorithms: AStudy on High-dimensional Spaces[J]. Knowledge and Information Systems, 2007,12(1):95–116.
    [94] Wang Q, Shen Y, Zhang Y. A Quantitative Method for Evaluating the Performancesof Hyperspectral Image Fusion[J]. Knowledge and Information Systems, 2007,12(1):95–116.
    [95] Wang Q, Shen Y, Zhang J Q. Nonlinear Correlation Measure for MultivariableData Set[J]. Physica D-nonlinear Phenomena, 2005, 200(3-4):287–295.
    [96] Hu Q H, Liu J F, Yu D R. Stability Analysis on Rough Set Based Feature Eval-uation[C]//Rough Sets and Knowledge Technology, Lecture Notes in ComputerScience. 2008, 5009:88–96.
    [97] Chen Y X, Dang X, Peng H X, et al. Outlier Detection with the Kernelized SpatialDeopth Function[J]. IEEE Transactions on Pattern Analysis and Machine intelli-gence, 2009, 31:288–305.
    [98] Wu M R, Ye J P. A Small Sphere and Large Margin Approach for Novelty DetectionUsing Training Data with Outliers[J]. IEEE Transactions on Pattern Analysis andMachine intelligence, 2009, 31(11):2088–2092.
    [99] Hoffmann H. Kernel PCA for Novelty Detection[J]. Pattern Recognition, 2007,40:863–874.
    [100] Segata N, Blanzieri E, Delany S J, et al. Noise Reduction for Instance-based Learn-ing with a Local Maximal Margin Approach[J]. Journal of Intelligent InformationSystems, 2010, 35(2):301–331.
    [101] Xiong H, Pandey G, Steinbach M, et al. Enhancing Data Analysis with Noise Re-moval[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18:304–319.
    [102] Tsang I W, Kwok J T, Cheung P M. Core Vector Machines: Fast Svmtraining onLarge Data Sets[J]. Journal of Machine Learning Research, 2005, 6:363–392.
    [103] Tsang I W, Kwok J T, Zurada J M. Generalized Core Vector Machines[J]. IEEETransactions on Neural Networks, 2006, 17(5):1126–1140.
    [104] Welzl E. Smallest Enclosing Disks (balls and Ellipsoids)[C]//New Results and NewTrends in Computer Science, Lecture Notes in Computer Science. 1991, 555:359–370.
    [105] Badoiu M, Clarkson K L. Optimal Core Sets for Balls[J]. Computational Geome-try, 2008, 40(1):14–22.
    [106] Badoiu M, Har-Peled S, Indyk P. Approximate Clustering via CoreSets[C]//Proceeding STOC’02 Proceedings of the thiry-fourth annual ACM sym-posium on Theory of computing. 2002:250–257.
    [107] Wu M, Ye J. A Small Sphere and Large Margin Approach for Novelty DetectionUsing Training Data with Outliers[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2009, 31(11):2088–2092.
    [108] Chung F L, Deng Z H, Wang S T. From Minimum Enclosing Ball to Fast FuzzyInference System Training on Large Datasets[J]. IEEE Transactions on Fuzzy Sys-tems, 2009, 17(1):173–184.
    [109] Cervantesa X O, J Lia, Yub W, Li K. Support Vector Machine Classification forLarge Data Sets via Minimum Enclosing Ball Clustering[J]. Neurocomputing,2008, 71(14):611–619.
    [110] Deng Z H, Chung F L, Wang S T. FRSDE: Fast Reduced Set Density Estima-tor Using Minimal Enclosing Ball Approximation[J]. Pattern Recognition, 2008,41:1363–1372.
    [111] Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis[M]. England:Cambridge University, 2004:196–211.
    [112] Nielsen F, Nock R. Approximating Smallest Enclosing Balls[C]//ComputationalScience and ITS Applications, Lecture Notes in Computer Science. 2004,3045:147–157.
    [113] Zhou G L, Toh K C, Sun J. Efficient Algorithms for the Smallest Enclosing BallProblem[J]. Computational Optimization and Applications, 2005, 30(14):147–160.
    [114] Chaudhuri P. Multivariate Location Estimation Using Extension of R-estimatesThrough U-statistics Type Approach[J]. The Annals of Statistics, 1992,20(2):897–916.
    [115]戴鹏.货车典型故障图像识别算法研究[D].哈尔滨:哈尔滨工业大学,2010:18–26.
    [116] Hoaglin D C, Mosteller F, Tukey J M. Understanding Robust and Exploratory DataAnalysis[M]. John Wiley and Sons, 1983:404–433.
    [117] Japkowicz N, Stephen S. The Class Imbalance Problem: A Systematic Study[J].Intelligent Data Analysis, 2002, 6:429–449.
    [118] Dasarathy B V. Nearest Neighbor NN Norms: NN Pattern Classification Tech-niques[J]. IEEE Computer Society, 1990:1–30.
    [119] Cover T M, Hart P E. Nearest Neighbor Pattern Classification[J]. IEEE Transac-tions on Information Theory, 1967, 13(1):21–27.
    [120] Contreira D B, Rodrigues F S, Makita K, et al. An Experiment to Study Solar FlareEffects on Radio-communication Signals[J]. Advances in Space Research, 2005,36(12):2455–2459.
    [121]黄鑫.基于序列数据的太阳耀斑预报方法研究[D].哈尔滨:哈尔滨工业大学,2010:1–26,82–84.
    [122] McIntosh P. The Classification of Sunspot Groups[J]. Solar Physics, 1990,125(2):251–267.
    [123] Leka K D, Barnes G. Photospheric Magnetic Field Properties of Flaring VersusFlare-quiet Active Regions. I. Data, General Approach, and Sample Results[J].The Astrophysical Journal, 2003, 595:1277–1288.
    [124] Cui Y M, Li R, Zhang L Y, et al. Correlation between Solar Flare Productivity andPhotospheric Magnetic Field Properties[J]. Solar Physics, 2006, 237(1):45–59.
    [125] Cui Y M, Li R, Wang H N, et al. Correlation between Solar Flare Productivityand Photospheric Magnetic Field Properties Ii. Magnetic Gradient and MagneticShear[J]. Solar Physics, 2007, 242(1):1–8.
    [126] Miller R, Hillsburgh R. WOLF-A Computer Expert System for Sunspot Classifica-tion and Solar Flare Prediction[J]. Knowledge-based Systems in Astronomy, 1989,329:107–120.
    [127] Wheatland M. A Bayesian Approach to Solar Flare Prediction[J]. The Astrophys-ical Journal, 2004, 609:1134–1139.
    [128] Leka K D, Barnes G. Photospheric Magnetic Field Properties of Flaring VersusFlare-quiet Active Regions. Iv. a Statistically Significant Sample[J]. The Astro-physical Journal, 2007, 656:1173–1186.
    [129] Leka K D, Barnes G. Photospheric Magnetic Field Properties of Flaring VersusFlare-quiet Active Regions. Ii. Discriminant Analysis[J]. The Astrophysical Jour-nal, 2003, 595:1296–1306.
    [130] Barnes G, Leka K D, Schumer E A, et al. Probabilistic Forecasting of Solar Flaresfrom Vector Magnetogram Data[J]. Space Weather, 2007, 5(9).
    [131] Li R, Wang H N, He H, et al. Support Vector Machine Combined with K-nearestNeighbors for Solar Flare Forecasting[J]. Chinese Journal of Astronomy and As-trophysics, 2007, 7:441–447.
    [132] Wang H N, Cui Y M, Li R, et al. Solar Flare Forecasting Model Supported withArtificial Neural Network Techniques[J]. Advances in Space Research, 2008,42(9):1464–1468.
    [133] Yu D R, Huang X, Wang H N, et al. Short-Term Solar Flare Prediction Using aSequential Supervised Learning Method[J]. Solar Physics, 2009, 255:91–105.
    [134] Yu D R, Huang X, Wang H N, et al. Short-Term Solar Flare Level Prediction Usinga Bayesian Network Approach[J]. The Astrophysical Journal, 2010, 710:869–877.
    [135] Huang X, Yu D R, Hu Q H, et al. Short-Term Solar Flare Prediction Using PredictorTeams[J]. Solar Physics, 2010, 263:175–184.
    [136] Wheatland M S. Evidence for Departure from a Power-law Flare Size Distributionfor a Small Solar Active Region[J]. The Astrophysical Journal, 2010, 710(2):1324–1334.
    [137] Scherrer P H, Bogart R S, Bush R I, et al. The Solar Oscillations Investigation-michelson Doppler Imager[J]. Solar Physics, 1995, 162:129–88.
    [138] Li Y, Shiu S C K, Pal S K. Combining Feature Reduction and Case Selection inBuilding Cbr Classifiers[J]. IEEE Transactions on Knowledge and Data Engineer-ing, 2006, 18:415–429.
    [139] Li Y, Shiu S C K, Pal S K, et al. A Rough Set-based Case-based Reasoner forText Categorization[J]. International Journal of Approximate Reasoning, 2006,41:229–255.
    [140] Bartlett M. Contingency Table Interactions[J]. Supplement to the Journal of theRoyal Statistical Society, 1935, 2(2):248–252.
    [141] Simpson E. The Interpretation of Interaction in Contingency Tables[J]. Journal ofthe Royal Statistical Society. Series B (Methodological), 1951:238–241.
    [142] Kohavi R. A Study of Cross-validation and Bootstrap for Accuracy Estimationand Model Selection[C]//International Joint Conference on Artificial Intelligence.1995, 14:1137–1145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700