炭基催化剂担载含NH2化合物的低温NOx选择性催化还原研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以NH3作为NOx还原剂的选择性催化还原(SCR)技术是目前应用最为广泛的脱硝技术。然而,该技术中用作还原剂的NH3具有很强的毒性和腐蚀性,给工业操作及存储造成困难;同时,由于废气中NOx浓度的波动会使脱硝过程中NH3的适宜加入量难以精确控制,容易引起由NH3泄漏造成的二次污染。针对以上问题,本文将含NH2化合物担载于催化剂上系统研究了其低温NOx选择性催化还原反应行为,实现了低温范围内高效且高选择性的NOx还原脱除。
     (1)沥青基球状活性炭(PSAC)担载尿素的NO选择性催化还原反应行为:NO的urea-SCR反应活性显著受到沥青基球状活性炭对NO氧化反应的催化活性的影响。通过计算PSAC上NO的urea-SCR反应和NO氧化反应的表观活化能和反应级数,发现这两个反应具有几乎一致的表观活化能和反应级数,表明NO氧化反应是urea-SCR反应的速率控制步骤。(PSAC上NO的urea-SCR反应的表观活化能为-16.5kJ/mol,NO氧化反应的表观活化能为-15.2kJ/mol;同时,这两个反应均为NO的一级反应,O2的0.5级反应。)进一步的研究表明PSAC上孔径范围在0.5-0.8 nm的微孔催化了NO的氧化反应生成NO2。由NO2不对称分解所产生的吸附态NO3可与PSAC表面担载的尿素迅速反应而被还原为N2。在担载的尿素被完全消耗后,NO2开始释出,且吸附态氮氧化物将逐渐氧化碳表面生成含氧官能团。随后,NO3可以稳定地吸附于被氧化后的碳表面上
     (2)沥青基球状活性炭担载尿素的NO2选择性催化还原反应行为:NO2的urea-SCR反应不依赖于沥青基球状活性炭微孔的催化作用。提高PSAC上尿素的担载量可以增大NO2与尿素的反应几率,因而有利于NO2的urea-SCR反应活性的提高;同时,尿素担载量的提高延长了NOx的脱除时间。此外,反应进气中NO2和O2浓度的升高均有利于urea-SCR反应活性的提高,但当O2进气浓度大于9 vol%时,继续增加O2进气浓度对urea-SCR反应活性的进一步改善作用变得微弱。
     (3)炭气凝胶基Mn-Ce复合催化剂担载三聚氰胺的NO选择性催化还原反应行为:在有气相O2存在的情况下,担载在炭气凝胶基Mn-Ce复合催化剂上的三聚氰胺可以高效且高选择性地将NO还原为N2,从而实现较高的NOx转化率。催化剂上担载的三聚氰胺在SCR反应过程中被完全消耗,没有含N副产物以气体形式释放或在催化剂表面残留。提高炭气凝胶基Mn-Ce复合催化剂上三聚氰胺的担载量可以延长NOx的脱除时间。但高于15wt.%的三聚氰胺担载量会造成催化剂上金属氧化物活性位被严重覆盖,因而有害于NO的melamine-SCR反应活性。高于400℃的催化剂煅烧温度会减弱催化剂上Mn与Ce的氧化物的相互作用,且促使金属氧化物形成更大的晶体颗粒和更加规整的晶型结构,这些结果均有害于NO的melamine-SCR反应活性。反应温度的升高和O2进气浓度的增加均有利于NO在炭气凝胶基Mn-Ce复合催化剂表面的化学吸附生成可与三聚氰胺反应的吸附态N03-,因而有利于催化剂上melamine-SCR反应的进行。
     (4)炭气凝胶基Mn-Ce复合催化剂担载三聚氰胺的NO2选择性催化还原反应行为:NO2与三聚氰胺的反应依赖于炭气凝胶基Mn-Ce复合催化剂的催化作用。高于15wt.%的三聚氰胺担载量和高于400℃的催化剂煅烧温度都有害于NO2的melamine-SCR反应活性。反应温度的升高和O2进气浓度的增加由于都强化了NO2在炭气凝胶基Mn-Ce复合催化剂表面的化学吸附生成可与三聚氰胺反应的吸附态N03-,从而有利于催化剂上melamine-SCR反应的进行。
     (5)低温下melamine-SCR反应的机理研究:通过选取合适的反应温度,SBA-15基Mn-Ce复合催化剂同样可以有效地催化(?)nelamine-SCR反应。SBA-15基Mn-Ce复合催化剂上NOx的吸附和melamine-SCR反应的原位红外研究表明:(1)在没有气相02存在的情况下,NO和NO2均可在SBA-15基Mn-Ce复合催化剂表面化学吸附生成吸附态N03-。气相O2的加入有利于NO在催化剂表面的化学吸附,而对N02的化学吸附影响不大。(2)低温下SBA-15基Mn-Ce复合催化剂上的melamine-SCR反应较为复杂,由多个基元反应组合而成。在反应初期,参与吸附态NOx还原的官能团主要是三聚氰胺分子中的NH2,反应产生N2和H2O;当反应进行到一定程度,由反应中间产物水解和分裂而成的吸附态HNCO开始参与吸附态NOx的还原,生成C02、N2和H2O。
Selective catalytic reduction (SCR) with NH3 is the most widely used method for the removal of NOx. However, NH3 does not appear to be an ideal reducing agent when considering its corrosiveness and toxicity. Furthermore, it is very difficult to exactly control an appropriate NH3 input because of the fluctuating NOx concentration in exhaust gas, which is very likely to cause additional environmental problems due to NH3 slip. Therefore, it is of great significance to develop new SCR technologies with other proper reducing agents as a substitution for NH3. In this work, the low-temperature selective catalytic reduction of NOx with NH2-containing compounds supported on catalysts was systematically studied. The details are shown as follows:
     (1) Low-temperature SCR of NO with urea supported on pitch-based spherical activated carbon (PSAC):NO oxidation to NO2 catalyzed by the 0.5-0.8 nm micropores in PSACs was found to be the rate-limiting step in urea-SCR reaction, which was confirmed by both the apparent activation energy calculations and the kinetics results of urea-SCR reaction and NO oxidation on PSAC. These two reactions gave very similar negative apparent activation energies (-16.5 kJ/mol for urea-SCR reaction and-15.2 kJ/mol for NO oxidation), indicating that the adsorption of reactants on PSAC is of key importance in these two reactions. Moreover, these two reactions were both approximately first order with respect to NO and one-half order with respect to O2. It was found that NO3 from the disproportionation of the produced NO2 was quickly reduced by supported urea into N2. After the complete consumption of supported urea, NO2 started to release, and the carbon surface was gradually oxidized by adsorbed NOx species. NO3 was found to be stably adsorbed on the oxidized carbon surface.
     (2) Low-temperature SCR of NO2 with urea supported on PSAC:The urea-SCR of NO2 was not catalyzed by the micropores in PSACs. Increasing urea loading raised the reaction probabilities of SCR of NO2 by urea, which resulted in significant increase of the SCR activity; moreover, the NOx removal period was extended. It was found that the SCR activity was improved by increasing NO2 or O2 concentration in the feed gas. However, further increase in O2 concentration above 9 vol% made a weak contribution to the improvement of the SCR activity.
     (3) Low-temperature SCR of NO with melamine supported on carbon aerogels-supported MnOx-CeO2 based catalyst:In the presence of gaseous O2, carbon aerogels-supported MnOx-CeO2 based catalyst with 15 wt.% melamine loading exhibited high activity and selectivity in the SCR of NO to N2. It was found that, after the SCR reaction, melamine supported on the catalyst was totally consumed, and no N-containing by-products released as gas or deposited on catalyst surface during the reaction. Increasing melamine loading extended the NOx removal period. However, melamine loading above 15 wt.% markedly decreased the SCR activity due to serious coverage of active sites. The calcination temperature above 400℃caused the decrease of the interactions between the Mn and Ce oxides and increased the crystallinity of the metal oxides. Such changes on the catalyst were found to be harmful to the melamine-SCR activity. Since the increase of O2 feed concentration and reaction temperature both strengthened the chemical adsorption of NO on catalyst surface to form adsorbed NO3- which was reduced to N2 by supported melamine, the melamine-SCR activity increased.
     (4) Low-temperature SCR of NO2 with melamine supported on carbon aerogels-supported MnOx-CeeO2 based catalyst:The melamine-SCR of NO2 was catalyzed by carbon aerogels-supported MnOx-CeO2 based catalyst. Melamine loading above 15 wt.% and calcination temperature above 400℃were both found to be harmful to the SCR activity. Since the increase of O2 feed concentration and reaction temperature both strengthened the chemical adsorption of NO2 on catalyst surface to form adsorbed NO3- which was reduced to N2 by supported melamine, the melamine-SCR activity increased.
     (5) Mechanism study on low-temperature melamine-SCR:SBA-15-supported MnOx-CeO2 based catalyst was also found to efficiently catalyze the SCR of NOx with supported melamine at proper reaction temperatures. In this work, the systematic in situ FTIR studies on NOx adsorption and melamine-SCR reaction over SBA-15-supported MnOx-CeO2 based catalyst showed that:(1) In the absence of gaseous O2, both NO and NO2 could be chemically adsorbed on catalyst surface to produce adsorbed NO3-. The introduction of O2 in the feed gas benefited the chemical adsorption of NO while had no obvious effect on the chemical adsorption of NO2. (2) The low-temperature melamine-SCR reaction which contains a series of elementary reactions is very complex. At the early stage of the reaction, the functional groups involving in the reduction of adsorbed NO3- were mainly the NH2 groups in melamine molecules, the products contained N2 and H2O. When the NH2 groups were consumed to some extent, the adsorbed HNCO from the hydrolysis and decomposition of reaction intermediates started to participate in the reduction of adsorbed NO3- to produce CO2, N2 and H2O.
引文
[1]李子君,陈淑芬.泰安市城区大气环境质量状况及其评价[J].山东师大学报(自然科学版),2001,16(1):63-67
    [2]陈翠芝,陈伟国.城市主要大气污染物与呼吸系统疾病相关性浅析[J].上海环境科学,1994,13(9):27-30
    [3]Bosch H., Janssen F. Catalytic reduction of nitrogen oxides:a review on the fundamentals and technology[J]. Catalysis Today,1988,2(4):369-532
    [4]Busca G., Lietti L., Ramis G, Berti F. Chemical and mechanistic aspect of the selective catalyticreduction of NOx by ammonia over oxide catalysts:a review[J]. Applied Catalysis. B:Environmental,1998,18(1-2):1-36
    [5]Forzatti P. Environmental catalysis for stationary applications[J]. Catalysis Today,2000, 62(1):51-65
    [6]陈梅倩,何伯述.氨法脱除烟气中气态污染物的应用分析[J].北方交通大学学报,2003,27(4):69-74
    [7]王艳莉.低温同时脱硫脱硝的蜂窝状V2O5/ACH催化剂研究[D].太原:中国科学院山西煤炭化学研究所.2004
    [8]祝社民,李伟峰,陈英文.烟气脱硝技术研究新进展[J].环境污染与防治,2005,27(9):699-703
    [9]林赫.直流电晕放电诱导自由基簇射烟气脱硝试验和机理研究[D].杭州:浙江大学.2002
    [10]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社,2005
    [11]路涛,贾双燕,李晓芸.关于烟气脱硝的SNCR工艺及其技术经济分析[J].现代电力,2005,27(9):699-703
    [12]陈笃慧.SO2和NOx对大气的污染及其净化处理[J].环境科学进展,1997,5(3):29-41
    [13]Hamada H., Kintaichi Y., Sasaki M, Ito T. Silver-promoted Cobalt oxide catalysts for direct decomposition of nitrogen monoxide[J]. Chemistry Letters,1990,19(7):1069-1070
    [14]Tabata K., Misono M. Elimination of pollutant gases-oxidation of CO, reduction and decomposition of NO[J]. Catalysis Today,1999,8(2):249-261
    [15]高凤,杨嘉谟.燃煤烟气脱硝技术的应用与进展[J].环境保护科学,2007,33(3):11-13
    [16]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002
    [17]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996
    [18]Kawamura K. On the Removal of NOx and SO2 in exhaust gas from the sintering machine by electron beam irradiation[J]. Radiation Physics and Chemistry,1980, 16(3):133-138
    [19]魏恩宗,高翔,骆仲泱.电晕放电烟气脱硝机理探讨[J].电站系统工程,2003,19(5):1-3
    [20]张达欣.微波-炭还原法处理一氧化氮的研究[J].高等学校化学学报,1997,18(8):1271-1274
    [21]Long R. Q., Yang R. T., Chang R. Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe-Mn based catalysts[J]. Chemical Communications,2002, 38(5):452-453
    [22]Qi G, Yang R. T., Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J]. Applied Catalysis B: Environmental,2004,51(2):93-106
    [23]Liang X., Li J., Lin Q., Sun K. Synthesis and characterization of mesoporous Mn/Al-SBA-15 and its catalytic activity for NO reduction with ammonia[J]. Catalysis Communications,2007,8(12):1901-1904
    [24]Segura Y, Chmielarz L., Kustrowski P., Cool P., Dziembaj R., Vansant E. F. Characterisation and reactivity of vanadia-titania supported SBA-15 in the SCR of NO with ammonia[J]. Applied Catalysis B:Environmental,2005,61(3):69-78
    [25]Carja G, Kameshima Y, Okada K., Madhusoodana C. D. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3[J]. Applied Catalysis B:Environmental, 2007,73(1-2):60-64
    [26]Kustov A. L., Hansen T. W., Kustova M., Christensen C. H. Selective catalytic reduction of NO by ammonia using mesoporous Fe-containing HZSM-5 and HZSM-12 zeolite catalysts:An option for automotive applications[J]. Applied Catalysis B:Environmental, 2007,76(3-4):311-319
    [27]Qi G, Yang R. T., Chang R. Low-temperature SCR of NO with NH3 over USY-supported manganese oxide-based catalysts[J]. Catalysis Letters,2003,87(1-2):67-71
    [28]Kijlstra W. S., Brands D. S., Smit H. I., Poels E. K., Bliek A. Mechanism of the Selective Catalytic Reduction of NO by NH3 over MnOx/Al2O3[J]. Journal of Catalysis,1997, 171(l):219-230
    [29]Huang J., Tong Z., Huang Y, J. Zhang. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J]. Applied Catalysis B:Environmental,2008,78(3-4):309-314
    [30]B. Jiang. Liu Y, Wu Z. Low-temperature selective catalytic reduction of NO on MnOO/TiO2 prepared by different methods[J]. Journal of Hazardous Materials,2009, 162(2-3):1249-1254
    [31]Wu Z., Jiang B., Liu Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental,2008,79(4):347-355
    [32]Wu Z., Jin R., Liu Y., Wang H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catalysis Communications:Environmental, 2008,9(13):2217-2220
    [33]Tang X., Hao J., Yi H., Li J. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts[J]. Catalysis Today,2007,126(3-4): 406-411
    [34]Ouzzine M., Cifredo G. A., Gatica J. M., Harti S., Chafik T., Vidal H. Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO:Effects of preparation variables[J]. Applied Catalysis A:General,2008, 342(1-2):150-158
    [35]Lazaro M. J., Boyano A., Galvez M. E., Izquierdo M. T., Garcia-Bordeje E., Ruiz C., Juan R., Moliner R. Novel carbon based catalysts for the reduction of NO:Influence of support precursors and active phase loading[J]. Catalysis Today,2008,137(2-4):215-221
    [36]Huang B., Huang R., Jin D., Ye D. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catalysis Today,2007,126(3-4):279-283
    [37]Wang Y, Zhu A., Zhang Y, Au C. T., Yang X., Shi C. Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction[J]. Applied Catalysis B:Environmental,2008,81 (1-2):141-149
    [38]Machida M., Kurogi D., Kijima T. MnOx-CeO2 Binary Oxides for Catalytic NOx-Sorption at Low Temperatures. Selective Reduction of Sorbed NOX[J]. Chemistry of Materials,2000,12(10):3165-3170
    [39]Palomares A. E., Uzcategui A., Corma A. NOx storage/reduction catalysts based in cobalt/copper hydrotalcites[J]. Catalysis Today,2008,137(2-4):261-266
    [40]Ross J. R. H., Clancy P. The use of copper catalysts for the selective reduction of NO with methanol[J]. Catalysis Today,2007,137(2-4):146-156
    [41]Yeom Y. H., Li M., Sachtler W. M. H., Weitz E. Low-temperature NOx reduction with ethanol over Ag/Y:A comparison with Ag/γ-Al2O3 and BaNa/Y[J]. Journal of Catalysis, 2007,246(2):413-427
    [42]Yeom Y, Li M., Savara A., Sachtler W., Weitz E. An overview of the mechanisms of NOx reduction with oxygenates over zeolite and γ-Al2O3 catalysts[J]. Catalysis Today, 2008,136(1-2):55-63
    [43]Tamm S., Ingelsten H. H., Skoglundh M., Palmqvist A. E. C. The influence of gas phase reactions on the design criteria for catalysts for lean NOx reduction with dimethyl ether[J]. Applied Catalysis B:Environmental,2009,91(1-2):234-241
    [44]Seker E., Yasyerli N., Gulari E., Lambert C., Hammerle R. H. NO Reduction by Urea under Lean Conditions over Single-Step Sol-Gel Cu/Alumina Catalyst[J]. Journal of Catalysis,2002,208(1):15-20
    [45]Matarrese R., Ingelsten H. H., Skoglundh M. Aspects of reducing agent and role of amine species in the reduction of NO over H-ZSM-5 in oxygen excess[J]. Journal of Catalysis,2008,258(2):386-392
    [46]Klose W., Rincon S. Adsorption and reaction of NO on activated carbon in the presence of oxygen and water vapour[J]. Fuel,2007,86(1-2):203-209
    [47]Tschamber V., Jeguirim M., Villani K., Martens J., EhrburgerP. Comparison of the activity of Ru and Pt catalysts for the oxidation of carbon by NO2[J]. Applied Catalysis B: Environmental,2007,72(3-4):299-303
    [48]Yamashita H., Tomita A. Influence of Char Surface Chemistry on the Reduction of Nitric Oxide with Chars[J]. Energy & Fuels,1993.7(1):85-89
    [49]Catalao R. A., Maldonado-Hodar F. J., Fernandes A., Henriques C. Ribeiro M. F. Reduction of NO with metal-doped carbon aerogels[J]. Applied Catalysis B: Environmental,2009,88(1-2):1-7
    [50]宋燕,乔文明,凌立成,刘朗.球状活性炭及其应用进展[J].炭素,1999,(1):3-6
    [51]杨骏兵,康飞宇.球状活性炭及其应用[J].材料导报,2002、16(5):59-61
    [52]李开喜,凌立成,宋燕,刘朗,刘振宇,张碧江.SO2在球状活性炭上的吸附转化研究[J].煤炭转化,1999,22(1):76-79
    [53]吕春祥.中大孔球状活性炭的制备及其医用性能研究[D].太原:中国科学院山西煤炭化学研究所.2006
    [54]何炳林,王补森,于燕生.新型吸附剂-球形炭化树脂的研究I[J].高分子通讯,1982,(4):271-277
    [55]何炳林,于燕生,钱庭宝.新型吸附剂-球形炭化树脂的研究II[J].高分子通讯,1982,(5):338-342
    [56]何炳林,于燕生,钱庭宝.新型吸附剂-球形炭化树脂的研究III[J].高分子通讯,1984,(4):283-287
    [57]何炳林,王补森,于燕生.新型吸附剂-球形炭化树脂的研究V[J].离子交换与吸附,1986,(4):36-42
    [58]一弓.活性炭的微波低温等离子体处理及其表面性能[J].等离子体应用技术快报,1999,(5):16-17
    [59]Vinke P., Eijk M. V., Verbree M, Voskamp A. F., Bekkum H. V. Modification of the surface of gas-activated carbon and a chemically activated carbon with HNO3[J]. Carbon, 1994,32(4):675-686
    [60]Jagiello J., Handous T. J., Sehwarz A. Inverse gas chromatographic study of activated carbons:the effect if controlled oxidation on microstructure and surface chemical functionality [J]. Colloid & Interface Science,1992,151(2):433-445
    [61]Menendez J. A., Phillips J., Xia B., Radovic L. R. On the modification of chemical surface properties of activated carbon:In the search of carbon with stable basic properties[J]. Langmuir,1996,12(18):4404-4410
    [62]Mangun C. L., Benak K. R., Economy J., Foster K. L. Surface chemistry pore size and adsorption properties of activated carbon fibers and treated with ammonia[J]. Carbon, 2001,39(12):1809-1820
    [63]Moreno-Castilla C, Maldonado-Hodar F. J. Carbon aerogels for catalysis applications: An overview[J]. Carbon,2005,43(3):455-465
    [64]Pekala R. W. Kong, F.M. Resorcinol-formaldehyde aerogels and their carbonized derivatives[J] Energy,1989, (01):15
    [65]Pekala R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Material Science,1989,24(9):3221-3227
    [66]Pekala R. W., Farmer J. C, Alviso C. T., Tran T.D, Mayer ST., Miller J.M., et al. Carbon aerogels for electrochemical applications[J]. Journal of Non-Crystalline Solids.1998,225, 74-80
    [67]Moreno-Castilla C, Maldonado-Hodar F. J., Rivera-Utrilla J.,Rodri guez-Castellon E. Group 6 metal oxide-carbon aerogels.Their synthesis, characterization and catalytic activity in the skeletal isomerization of 1-butene[J]. Applied Catalysis A,1999,183(2): 345-356
    [68]Baumann T. F., Fox G. A., Satcher J. .L Yoshizawa N., Fu R.,Dresselhaus M.S. Synthesis and characterization of copper-doped carbon aerogels[J]. Langmuir,2002,18(18): 7073-7076
    [69]Pajonk G. M., Rao A. V., Pinto N., Ehrburger-Dolle F., Bellido-Gil M. Monolithic carbon aerogels for fuel cells electrodes[J]. Stud Surf Sci Catal 1998,118:167-174
    [70]Maldonado-Ho'dar F. J., Moreno-Castilla C, Rivera-Utrilla J.,Hanzawa Y., Yamada Y. Catalitic graphitization of carbon aerogels by transition metals[J]. Langmuir,2000, 16(9):4367-4373
    [71]Bekyarova E., Kaneko K. Structure and physical properties oftailor-made Ce, Zr-doped carbon aerogels[J].Adv Mater 2000,12(21):1625-1628
    [72]Maldonado-Hodar F. J., Ferro-Garcia M. A., Rivera-Utrilla J.,Moreno-Castilla C. Synthesis and textural characterization oforganic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives[J]. Carbon,1999,37(1):1199-1205
    [73]Janssen F., Kerkhof F., Bosch H., Ross J. R. H. Mechanism of the reaction of nitric oxide, ammonia, and oxygen over vanadia catalysts. I. The role of oxygen studied by way of isotopic transients under dilute conditions[J]. Journal of Physics and Chemistry,1987, 91(23):5921-5927
    [74]Chen J. P., Yang R. T. Role of WO3 in mixed V2O5-WO3/TiO2 catalysts for selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis A-General,1992, 80(1):135-148
    [75]Ozkan U. S., Cai Y. P., Kumthekar M. W., Zhang L. P. Role of ammonia oxidation in selective catalytic reduction of nitric oxide over Vanadia catalysts[J]. Journal of Catalysis, 1993,142(1):182-197
    [76]Ozkan U. S., Kumthekar M. W., Cai Y. P. Selective catalytic reduction of nitric oxide over Vanadia/Titania catalysts:temperature-programmed desorption and isotopically labeled oxygen-exchange studies[J]. Industrial and Engineering Chemistry Research,1994, 33(12):2924-2929
    [77]Dumesic J. A., Topsoe N. Y, Topsoe H., Chen Y., Slabiak T. Kinetics of selective catalytic reduction of nitric oxide by ammonia over Vanadia/Titania[J]. Journal of Catalysis,1996,163(2):409-417
    [78]Choo S. T., Yim S. D., Nam I. S.. Ham S. W., Lee J. B. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3[J]. Applied Catalysis B-Environmental,2003,44(3):237-252
    [79]Giakoumelou I., Fountzoula C., Kordulis C., Boghosian S. Molecular structure and catalytic activity of V2O5/TiO2 catalysts for the SCR of NO by NH3:in Situ Raman Spectra in the presence of O2, NH3, NO, H2, H2O, and SO2[J]. Journal of Catalysis,2006, 239(1):1-12
    [80]Armor J. N. Catalytic removal of nitrogen oxides:where ire the opportunities?[J]. Catalysis Today,1995,26(2):99-105
    [81]Bhattacharyya S., Das R. K. Catalytic control of automotive NOx:a review[J]. Fuel and Energy Abstracts,1999,40(5):353
    [82]Haneda M, Shinoda K., Nagane A., Houshiso O., Takagi HL, Nakahara Y, Hiroe K., Fujitani T., Hamada H. Catalytic performance of Rhodium supported on Ceria-Zirconia mixed oxides for reduction of NO by propene[J]. Journal of Catalysis,2008, 259(2):223-231
    [83]She X., Flytzani-Stephanopoulos M, Wang C., Wang Y, Peden C. H. F. SO2-induced stability of Ag-Alumina catalysts in the SCR of NO with methane[J]. Applied Catalysis B: Environmental,2009,88(1-2):98-105
    [84]Shen S. T., Weng H. S. Comparative study of catalytic reduction of nitric oxide with carbon monoxide over the Lal-xSrxBO3 (B= Mn. Fe, Co, Ni) catalysts[J]. Industrial and Engineering Chemistry Research,1998,37(7):2654
    [85]Wang Y., Zhu A., Zhang Y., Au C. T., Yang X., Shi C. Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction[J]. Applied Catalysis B:Environmental,2008,81 (1):141-149
    [86]Machida M., Kurogi D., Kijima T. MnOx-CeO2 binary oxides for catalytic NOx-sorption at low temperatures. selective reduction of sorbed NOX[J]. Chemistry of Materials,2000, 12(10):3158-3164
    [87]Machida M., Kurogi D., Kijima T. Role of hydrogen-spillover in H2-NO reaction over Pd-supported NOx-adsorbing material, MnOx-CeO2[J]. Journal of Physics Chemistry B, 2003,107(1):196
    [88]Yamashita H., Tomita A., Yamada H., Takashi K., Radovic L. K. Influence of char surface chemistry on the reduction of nitric oxide with chars[J]. Energy Fuels,1993,7(1): 85-89
    [89]Xue Y., Lu G, Guo Y, Guo Y, Wang Y, Zhang Z. Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO[J]. Applied Catalysis B:Environmental,2008,79(3):262-269
    [90]Shirahama N., Mochida I., Korai Y, Choi K. H., Enjoji T., Shimohara T., Yashutake A. Reaction of NO2 in air at room temperature with urea supported on pitch based activated carbon fiber[J]. Applied Catalysis B:Environmental,2004,52(3):173-179
    [91]Shirahama N., Mochida I., Korai Y, Choi K. H., Enjoji T., Shimohara T., Yashutake A. Reaction of NO with urea supported on activated carbons[J]. Applied Catalysis B: Environmental,2005,57(4):237-245
    [92]Liu C., Liang X., Liu X., Wang Q., Zhan L., Zhang R., Qiao W., Ling L. Surface modification of pitch-based spherical activated carbon by CVD of NH3 to improve its adsorption to uric acid. Applied Surface Science,2008,254(21):6701-6705
    [93]Liu C., Liang X., Liu X., Wang Q., Teng N., Zhan L., Zhang R., Qiao W., Ling L. Wettability modification of pitch-based spherical activated carbon by air oxidation and its effects on phenol adsorption. Applied Surface Science,2008,254(9):2659-2665
    [94]Wang Q., Liang X., Qiao W., Liu C, Liu X., Zhang L., Ling L. Preparation of polystyrene-based activated carbon spheres with high surface area and their adsorption to dibenzothiophene. Fuel Processing Technology,2009,90(3):381-387
    [95]Li B., Ren Y, Fan Q., Feng A., Dong W. Preparation and characterization of spherical nickel-doped carbonaceous resin as hydrogenation catalysts Ⅰ. Carbonization procedures. Carbon,2004,42(12-13):2669-2676
    [96]Li B., Dong W., Ren Y., Feng A. Preparation and characterization of spherical nickel-doped carbonized resin as hydrogenation catalysts:Ⅱ. Thermal decomposition of resin and preparation of metal-doped catalysts with different nickel loadings. Carbon, 2007,45(6):1219-1225
    [97]Qi G, Yang R. T. Low-temperature Selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on Titania[J]. Applied Catalysis B:Environmental, 2003,44(3):217-225
    [98]Qi G, Yang R. T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. Journal of Catalysis,2003,217(2):434-441
    [99]Casapu M., Krocher O., Elsener M. Screening of doped MnOx-CeO2 catalysts for low-temperature NO-SCR[J]. Applied Catalysis B:Environmental,2009,88(3-4):413-419
    [100]Zhang W. J., Rabiei S., Bagreev A., Zhuang M. S., Rasouli F. Study of NO adsorption on activated carbons[J]. Applied Catalysis B:Environmental,2008,83(1-2):63-71
    [101]Roman-Martinez M. C, Cazorla-Amoros D., Linares-Solano A., Salinas-Martinez D. L. C. TPD and TPR characterization of carbonaceous supports and Pt/C catalysts[J]. Carbon, 1993,31(6):895-902
    [102]Dandekar A., Baker R. T. K., Vannice M. A. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS[J]. Carbon,1998,36(12):1821-1831
    [103]Zhou J. H., Sui Z. J.. Zhu J., Li P., Chen D., Dai Y. C, Yuan W. K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007,45(4):785-796
    [104]Mochida I., Kishino M., Kawano S., Iwaizono H., Yasutake A., Yoshikawa M. Initial period of NO-NH.3 reduction over a heat-treated pitch-based active carbon fiber[J]. Energy Fuels,1997, 11(2):307
    [105]Zhu Z., Liu Z., Liu S., Niu H. Adsorption and reduction of NO over activated coke at lowtemperature[J]. Fuel,2000,79(6):651-658
    [106]Larrubia M. A., Ramis G., Busca G An FT-IR study of the adsorption of urea and ammonia over V2O5-MoO3-TiO2 SCR catalysts[J]. Applied Catalysis B:Environmental, 2000,27(3):L145-L151
    [107]Li G., Jones C. A., Grassian V. H., Larsen S. C. Selective catalytic reduction of NO2 with urea in nanocrystaiine NaY Zeolite[J]. Journal of Catalysis,2005,234(2):401-413
    [108]Shirahama N., Moon S. H., Choi K. H., Enjoji T., Kawano S., Korai Y, Tanoura M., Mochida I. Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers[J]. Carbon,2002,40(14):2605-2611
    [109]Bashkova S., Bandosz T. J. The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon[J]. Journal of Colloid and Interface Science,2009.333(1):97-103
    [110]Zawadzki J., Thrower P. A. (Eds.) Chemistry and Physics of Carbon; Dekker:New York, 1989; Vol.21, pp 147-380
    [111]Fanning P. E., Vannice M. A. A DRIFTS study of the formation of surface groups on carbon by oxidation[J]. Carbon.1993,31(5):721-730
    [112]Biniak S., Szymanski G., Siedlewski J., Swiatkowski A. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon,1997, 35(12):1799-1810
    [113]Seredych M., Hulicova-Jurcakova D., Lu G. Q., Bandosz T. J. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance [J]. Carbon,2008,46(11):1475-1488
    [114]Ahmed S. N., Baldwin R., Derbyshire F., McEnaney B., Stencel J. Catalytic reduction of nitric oxide over activated carbons[J]. Fuel,1993,72(3):287-292
    [115]Mochida I.. Shirahama N., Kawano S., Korai Y., Yasutake A., Tanoura M., Fujii S., Yoshikawa M. NO oxidation over activated carbon fiber (ACF). part 1. extended kinetics over a pitch based ACF of very large surface area[J]. Fuel,2000,79(14):1713-1723
    [116]Teng H., Hsu Y. F., Tu Y. T. Reduction of NO with NH3 over carbon catalysts-the influence of carbon surface structures and the global kinetics[J]. Applied Catalysis B: Environmental,1999,20(2):145-154
    [117]Klose W., Rincon S. Adsorption and reduction of NO on activated carbon in the presence of oxygen and water vapour[J]. Fuel,2007,86(1-2):203-209
    [118]Mochida I., Kisamori S., Hironaka M, Kamano S., Matsumura Y., Yoshikawa M. Oxidation of NO into NO2 over active carbon fibers[J]. Energy Fuels,1994,8 (6):1341-1344
    [119]Richter E., Schmidt H. J., Schecker H. G. Adsorption and catalytic reactions of NO and NH3 on activated carbon[J]. Chemical Engineering and Technology,1990,13(1):332
    [120]Gao X., Liu S., Zhang Y, Luo Z., Ni M., Cen K. Adsorption and reduction of NO2 over activated carbon at low temperature [J]. Fuel Processing Technology,2011,92(1):139-146
    [121]Raymundo-Pinero E., Cazorla-Amoros D., Salinas-Martinez de Lecea C Linares-Solano A. Factors controlling the SO2 removal by porous carbons:relevance of the SO2 oxidation step[J]. Carbon,2000,38(2):335
    [122]Lozano-Castello D., Cazorla-Amoros D., Linares-Solano A., Quinn D. F. Influence of pore size distribution on methane storage at relatively low pressure:preparation of activated carbon with optimum pore size[J]. Carbon,2002,40(7):989-1002
    [123]Atamny F., Blocker J., Diübotzky A., Kurt H., Timpe O., Loose G, Mahdi W., Schlogl R. Surface chemistry of carbon:activation of molecular oxygen[J]. Molecular Physics,1992, 76(4):851
    [124]Sendt K., Haynes B. S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite[J]. Journal of Physical Chemistry,2007,111(14): 5465-5473
    [125]Frank B., Zhang J., Blume R., Schlogl R., Su D. S. Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons[J]. Angewandte Chemie International Edition,2009,48(37):6913-6917
    [126]Radovic L. R. Active sites in graphene and the mechanism of CO2 formation in carbon oxidation[J]. Journal of the American Chemical Society,2009,131 (47):17166-17175
    [127]Frank B., Rinaldi A., Blume R., Schlogl R., Su D. S. Oxidation stability of multiwalled carbon nanotubes for catalytic applications[J]. Chemistry of Materials,2010,22(15): 4462-4470
    [128]Kong Y., Cha C. Y. NOx Adsorption on char in presence of oxygen and moisture[J]. Carbon.1996,34(8):1027-1033
    [129]Mochida I., Kawano S., Shirahama N.. Enjoji T., Moon S. H., Sakanishi K., Korai Y, Yasutake A., Yoshikawa M. Catalytic activity of pitch-based activated carbon fiber of large surface area heat-treated at high temperature and its regeneration for NO-NH3 reaction at ambient temperatures [J]. Fuel.2001,80(15):2227-2233
    [130]Garcia P., Coloma F., Salinas-Martinez de Lecea C, Mondragon F. Nitrogen complexes formation during NO-C reaction at low temperature in presence of O2 and H2O[J]. Fuel Processing Technology,2002,77-78:255-259
    [131]Long R. Q., Yang R. T. Carbon nanotubes as a superior sorbent for nitrogen oxides[J]. Industrial and Engineering Chemistry Research,2001,40(20):4288-4291
    [132]Rodriguez J. A., Jirsak T., Kim J. Y, Larese J. Z., Maiti A. Interaction of NO and NO2 with MgO(100):photoemission and density-functional studies[J]. Chemical Physics Letters,2000,330(3-4):475-483
    [133]Rodriguez J. A., Jirsak T., Dvorak J., Sambasivan S., Fischer D. Reaction of NO2 with Zn and ZnO:photoemission, XANES, and density functional studies on the formation of NO3[J]. Journal of Physical Chemistry B,2000,104(2):319-328
    [134]Rodriguez J. A., Jirsak T., Liu G, Hrbek J., Dvorak J., Maiti A. Chemistry of NO2 on oxide surfaces:formation of NO3 on TiO2(110) and NO2←→O vacancy interactions[J]. Journal of the American Oil Chemists Society,2001,123(39):9597-9605
    [135]Goldoni A., Larciprete R., Petaccia L., Lizzit S. Single-Wall carbon nanotube interaction with gases:sample contaminants and environmental monitoring [J]. Journal of the American Oil Chemists Society,2003,125(37):11329-11333
    [136]Larciprete R., Petaccia L., Lizzit S., Goldoni A. The role of metal contact in the sensitivity of single-walled carbon nanotubes to NO2[J]. Journal of Physics and Chemistry, 2007,111(33):12169-12174
    [137]Dai J., Giannozzi P., Yuan J. Adsorption of pairs of NOx molecules on single-walled carbon nanotubes and formation of NO+NO3 from NO2[J]. Applied Surface Science, 2009,603(21):3234-3238
    [138]Szanyi J., Kwak J. H., Moline R. A., Peden C. H. F. The adsorption of NO2 and the NO +O2 reaction on Na-Y, FAU:an in situ FTIR investigation[J]. Physiological Chemistry and Physics and Medical,2003,(5):4045
    [139]Szanyi J., Kwak J. H., Peden C. H. F. The Effect of water on the adsorption of NO2 in Na-and Ba-Y, FAU zeolites:a combined FTIR and TPD investigation[J]. Journal of Physics and Chemistry, B 2004,108(12):3746-3753
    [140]Szanyi J., Kwak J. H., Burton S., Rodriguez J. A., Peden C. H. F. Characterization of NOx species in Dehydrated and hydrated Na-and Ba-Y, FAU zeolites formed in NO2 adsorption[J]. Journal of Electron Spectroscopy and Related Phenomena,2006, 150(2-3):164-170
    [141]Peng S., Cho K., Qi P., Dai H. Ab Initio Study of CNT NO2 Gas Sensor [J]. Chemical Physics Letters,2004,387(4-6):71-276
    [142]Fang H. L., DaCosta H. F. M. Urea Thermolysis and NOx reduction with and without SCR catalysts[J]. Applied Catalysis B-Environmental,2003,46(1):17-34
    [143]Yim S. D., Kim S. J., Baik J. H., Nam I. S., Mok Y. S., Lee J. H., Cho B. K., Oh S. H. Decomposition of urea into NH3 for the SCR process[J]. Industrial and Engineering Chemistry Research,2004,43(16):4856-4863
    [144]Eichelbaum M., Farrauto R. J., Castaldi M. J. The impact of urea on the performance of metal exchanged zeolites for the selective catalytic reduction of NOx part I. pyrolysis and hydrolysis of urea over zeolite catalysts[J]. Applied Catalysis B-Environmental,2010, 97(1-2):90-97
    [145]Kleemann M., Elsener M., Koebel M., Wokaun A. Hydrolysis of isocyanic acid on SCR catalysts[J]. Industrial and Engineering Chemistry Research,2000,39(11):4120-4126
    [146]Piazzesi G, Devadas M., Krocher O., Elsener M., Wokaun A. Isocyanic acid hydrolysis over Fe-ZSM5 in urea-SCR[J]. Catalysis Communications,2006,7(8):600-603
    [147]Chen H. Y, Voskoboinikov T., Sachtler W. M. H. Reaction intermediates in the selective catalytic reduction of NOx over Fe/ZSM-5[J]. Journal of Catalysis,1999,186(1):91-99
    [148]Joubert E., Courtois X., Marecot P., Canaff C., Duprez D. The chemistry of DeNOx reactions over Pt/AI2O3:the oxime route to N2 or N2O[J]. Journal of Catalysis,2006, 243(2):252-262
    [149]Mochida I., Korai Y, Shirahama N., Kawano S., Hada T., Seo Y, Yoshikawa M., Yasutake A. Removal of SOx and NOx over activated carbon fibers[J]. Carbon,2000, 38(22):227-239
    [150]Lopez D., Buitrago R., Sepúlveda-Escribano A., Rodriguez-Reinoso F., Mondragon F. Low-temperature catalytic adsorption of NO on activated carbon materials[J]. Langmuir, 2007,23(24):12131-12137
    [151]Jeguirim M., Tschamber V., Brilhac J. F., Ehrburger P. Interaction mechanism of NO2 with carbon black:effect of surface oxygen complexes[J]. Pyrolysis Journal of Analytical and Applied Pyrolysis,2004,72(1):171-181
    [152]Wang Z., Wang Y., Wang D., Chen Q., Qiao W., Zhan L., Ling L. Low-temperature selective catalytic reduction of NO with urea supported on pitch-based spherical activated carbon[J]. Industrial and Engineering Chemistry Research,2010,49(14):6317-6322
    [153]Zhang W. J., Bagreev A., Rasouli F. Reaction of NO2 with activated carbon at ambient temperature[J]. Industrial and Engineering Chemistry Research,2008,47(13):358-4362
    [154]Qi G, Yang R. T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. The Journal of Physical Chemistry B,2004,108(40):15738-15747
    [155]Machida M., Uto M., Kurogi D., Kijima T. Solid-gas interaction of nitrogen oxide adsorbed on MnOx-CeO2:a DRIFTS study [J]. Journal of Materials Chemistry,2001,11(3): 900-904
    [156]Long D., Zhang J., Yang J., Hu Z., Cheng G, Liu X., Zhang R., Zhan L., Qiao W., Ling L. Chemical state of nitrogen in carbon aerogels issued from phenol-melamine-formaldehyde gels[J]. Carbon,2008,46(9):1253-1269
    [157]Kelemen S. R., Afeworki M., Gorbaty M. L., Kwiatek P. J. XPS and 15N NMR study of nitrogen forms in carbonaceous solids[J]. Energy & Fuels,2002,16(6):1507-1515
    [158]Hueso J. L., Espinos J. P., Caballero A., Cotrino J., Gonzalez-Elipe A. R. XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas[J]. Carbon,2007, 45(1):89-96
    [159]Tang Q., Huang X., Chen Y, Liu T., Yang Y. Characterization and catalytic application of highly dispersed manganese oxides supported on activated carbon[J]. Journal of Molecular Catalysis A:Chemical,2009,301(1-2):24-30
    [160]Kang M., Park E. D., Kim J. M., Yie J. E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures [J]. Applied Catalysis A:General,2007,327(2):261-269
    [161]Hadjiivanov K. I. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catalysis Reviews:Science& Engineering,2000,42(1-2):71-144
    [162]Lee Y. W., Choi D. K., Park J. W. Surface chemical characterization using AES/SAM and ToF-SIMS on KOH-impregnated activated carbon by selective adsorption of NOx[J]. Industrial & Engineering Chemistry Research,2001,40(15):3337-3345
    [163]Sellitti C, Koenig J. L., Ishida H. Surface characterization of graphitized carbon fibers by attenuated total reflection fourier transform infrared spectroscopy[J]. Carbon,1990, 28(1):221-228
    [164]Machida M., Uto M., Kurogi D., Kijima T. MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. Sorptive removal of NOX[J]. Chemistry of Materials,2000, 12(10):3158-3164
    [165]Eichelbaum ML, Siemer A. B., Farrauto R. J., Castaldi M. J. The impact of urea on the performance of metal-exchanged zeolites for the selective catalytic reduction of NOx Part Ⅱ. Catalytic, FTIR, and NMR studies[J]. Applied Catalysis B:Environmental,2010, 97(1-2):98-107
    [166]Eichelbaum M., Farrauto R. J., Castaldi M. J. The impact of urea on the performance of metal-exchanged zeolites for the selective catalytic reduction of NOx-Part I. Pyrolysis and hydrolysis of urea over zeolite catalysts[J]. Applied Catalysis B:Environmental,2010, 97(1-2):90-97
    [167]Eickhoff U., Temps F. FTIR study of the products of the reaction between HCCO and NO[J]. Physical Chemistry Chemical Physics,1999,1(2):243-251
    [168]Ingelsten H. H., Skoglundh M. Mechanistic study of lean NO2 reduction by propane over HZSM-5 in the presence of water[J]. Catalysis Letters,2006,106(1-2):15-19
    [169]Ingelsten H. H., Palmqvist A., Skoglundh M. Mechanistic aspects of HC-SCR over HZSM-5:Hydrocarbon activation and role of carbon-nitrogen intermediates[J]. The Journal of Physical Chemistry B,2006,110(37):18392-18400
    [170]Li G., Larsen S. C., Grassian V. H. Catalytic reduction of NO2 in nanocrystalline NaY zeolite[J]. Journal of Molecular Catalysis A:Chemical,2005,227(1-2):25-35
    [171]Yeom Y. H., Wen B., Sachtler W. M. H., Weitz E. NOx reduction from diesel emissions over a nontransition metal zeolite catalyst:A mechanistic study using FTIR spectroscopy[J]. The Journal of Physical Chemistry B,2004,108(17):5386-5404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700